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Abstract. The widely used feature representation scheme for magnetic
resonance (MR) image classification based on low-frequency subband
(LFS) coefficients of wavelet transform (WT) is ineffective in presence
of common MR imaging (MRI) artifacts (small rotation, low dynamic
range etc.). The directional information present in the high-frequency
subbands (HFSs) can be used to improve the performance. Moreover,
little attention has been paid to the newly developed multiscale geo-
metric analysis (MGA) tools (curvelet, contourlet, and ripplet etc.) in
classifying brain MR images. In this paper, we compare various mul-
tiresolution analysis (MRA)/MGA transforms, such as traditional WT,
curvelet, contourlet and ripplet, for brain MR image classification. Both
the LFS and the high-frequency subbands (HFSs) are used to construct
image representative feature vector invariant to common MRI artifacts.
The investigations include the effect of different decomposition levels and
filters on classification performance. By comparing results, we give the
best candidate for classifying brain MR images in presence of common
artifacts.

1 Introduction

Recently, magnetic resonance imaging (MRI) has emerged as one of the popular
choice to study the human brain [1, 2]. However, because of the huge amount
of imaging data, the existing manual methods of analysis and interpretation of
brain images are tedious, time consuming, costly and subject to the experience
of human observer. This necessitates the requirement of developing automated
diagnosis tools to draw quicker and easier inferences from the MR images [3].
Various approaches of brain MR image classification are proposed by different re-
searchers [3–8]. The general framework for classifying brain MR images mainly
consists of three phases: (a) feature extraction, (b) feature reduction and (c)
classification. The performances of the last two phases greatly depend on the
effectiveness of the feature extraction phase. Most of the existing techniques use
variants of wavelet transform (WT) for brain MR image’s feature extraction.
The coefficients of the low frequency subband (LFS) obtained after discrete WT
(DWT) decomposition are used as the image representative feature vector. WT
works effectively for brain MR images free from common MRI artifacts (small
rotation, low dynamic range etc.), but fails in presence of these MRI artifacts.
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WT and related classical MRA transforms suffer from several shortcomings:
limited directionality, non-supportiveness to anisotropy etc. To solve these prob-
lems, some new multiscale geometric analysis (MGA) transforms such as curvelet
(CVT), contourlet (CNT) and type-I ripplet (RT) are introduced [10–12]. These
transforms provide superior results than traditional WT in many image process-
ing applications. However, the effectiveness of these MGA transforms for brain
MR image classification is not explored still. Our prime objective in this article
is to construct an image representative feature vector invariant to these common
MRI artifacts, and to compare the performance of different MRA/MGA tools
using the same for brain MR image classification.

The rest of this paper is organized as follows. In Section 2, brief reviews of
different MRA/MGA transforms are presented. In Section 3, we give the general
classification framework for brain MR images and the novel feature extraction
scheme. Section 4 presents details of numerical experiments and discussions on
the results. Finally, conclusion is drawn in Section 5.

2 Multiresolution Image Decomposition

The MRA/MGA transforms investigated in this article are DWT, CVT, CNT
and RT. In this section we briefly review these transforms.

2.1 Discrete Wavelet Transform

The advantage of wavelet is that it performs an MRA of a signal with localization
in both time and frequency [9]. In addition to this, functions with discontinuities
and functions with sharp spikes require fewer wavelet basis vectors in the wavelet
domain than sine cosine basis vectors to achieve a comparable approximation.
Discrete wavelet transform (DWT) can be implemented as a set of high-pass
and low-pass filter banks. In standard dyadic wavelet decomposition, the output
from the low-pass filter can subsequently be decomposed in the same way and
the process continues to have finer resolution.

2.2 Curvelet Transform (CVT)

Traditional WT is unable to resolve 2-D singularities along arbitrarily shaped
curves, and as a result cannot capture curves and edges of images effectively.
To overcome this problem, Candes et al. proposed the CVT with the idea of
representing a curve as a superposition of bases of various lengths and widths
obeying the scaling law width ≈ length2 [10]. CVT uses a parabolic scaling law
to achieve anisotropic directionality. A curvelet coefficient can be expressed as
the inner product between an element f ∈ L2(R2) and curvelet ϕj,l,k:

c(j, l, k) =< f,ϕj,l,k >=

∫
R2

f(x)ϕj,l,kdx =
1

2π2

∫
f̂(w)Uj(Rθlw)ei<x

(j,l)w
k

>dw (1)

where, j = 0, 1, 2, ..... is a scale parameter; l = 0, 1, 2, 3, ..... is an orientation
parameter; and k = (k1, k2), k1, k2 ε T is a translation parameter. The ϕj(x) is
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defined by means of its Fourier transform ϕ̂j(ω) = Uj(ω), where Uj is frequency

window defined in the polar coordinate system Uj(r, θ) = 2
−3j
4 W (2−jr)V (

2� j
2 �θ
2π )

where, W and V are the radial and angular windows obeying the admissibil-
ity conditions, respectively. Curvelets at scale 2−j , orientation θl and position

x
(j,l)
k = R−1

θl
(k1 · 2j , k2 · 2−j

2 ) can be expressed as: ϕj,l,k(x) = ϕ(Rθl(x− x
(j,l)
k )),

where θl = 2π · 2� j
2 � · l, with l = 0, 1, ..., 0 ≤ θl < 2π,Rθl is the rotation by

θl radians. The actual implementation of the CVT is as follows: (i) apply the
2D FFT and obtain Fourier samples, (ii) form the product by multiplying the
discrete localizing window Uj,l for each scale j and angle l, (iii) wrap this prod-
uct around the origin, (iv) apply the inverse 2D FFT to collect the discrete
coefficients cD(j, l, k).

2.3 Contourlet Transform (CNT)

CNT gives a multiresolution, local and directional expansion of image using
Pyramidal Directional Filter Bank (PDFB) [11]. The PDFB combines Laplacian
pyramid (LP) which captures the point discontinuities, with a directional filter
bank (DFB) which links these discontinuities into linear structures. LP is a
multiscale decomposition of L2(R2) into series of increasing resolution subspaces
which are orthogonal complements of each other as follows: L2(R2) = Vj0 ⊕
(
⊕−∞

j=J0
Wj). An l-level DFB generates a local directional basis for l2(Z2) that

is composed of the impulse responses of the DFBs and their shifts. In CNT,
the directional filter is applied to the detail subspace Wj . This results in a

decomposition of Wj into 2lj subspaces at scale 2j : Wj =
⊕2lj−1

k=0 W
lj
j,k.

2.4 Ripplet Transform Type - I(RT)

To generalize the scaling law of the CVT and to find out which scaling law will
be optimal for all types of boundaries Xu et al. proposed the RT. RT generalizes
CVT by adding two parameters: support c and degree d [12]. CVT is a special
case of RT with c = 1 and d = 2. In the frequency domain, the frequency response

of ripplet function is in the form: ρ̂j(r, ω) =
1√
c
a

m+n
2n W (2−j ·r)V (1c ·2−�j m−n

n �·ω−
l) where, W and V are the ‘radial’ and ‘angular’ windows, respectively satisfying

the admissibility conditions. aj,
−→
b k and θl represents the scale, position and

rotation parameters, respectively and satisfy that aj = 2−j ,
−→
b k = [c · 2−j ·

k1, 2
−j/d · k2]T and θl =

2Π
c · 2−�j(1−1/d)� · l, where −→

k = [k1, k2]
T , and j, k1,

k2, l ∈ Z. (·)T denotes the transpose of a vector. The ‘wedge’ corresponding
to the ripplet function in the frequency domain is: Hj,l(r, θ) = {2j ≤ |r| ≤
22j, |θ − π

c · 2−�j(1−1/d)� · l| ≤ π
2 2

−j}. The DRT of an M ×N image f(n1, n2) is
in the form of

R
j,
−→
k ,l

=
M−1
∑

n1=0

N−1
∑

n2=0

f(n1, n2)ρj,−→k ,l
(n1, n2) (2)

where R
j,
−→
k ,l

are the ripplet coefficients and (.) denotes the conjugate operator.
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Fig. 1. Block diagram of the general framework for brain MRI classification

3 General Framework for Brain MRI Classification

The block diagram of the Fig. 1 shows the general framework for brain MRI
classification. Different MRA/MGA transforms are used in the first phase for
feature extraction. The high dimensionality of the feature vector is reduced by
principal component analysis (PCA) during the second phase. In the third phase,
various classification techniques are used to classify the brain MR image into
normal and abnormal classes [3–8].

Small rotation, low dynamic range, noise etc. are the common artifacts present
in today’s MR images. The existing brain MR image classification schemes work
efficiently for images free from common MRI artifacts, but their performance
decrease in presence of these artifacts. The commonly used LFS for representing
MR images is ineffective in capturing the subtle details and directional infor-
mation present in the images. To tackle this problem, in this article we propose
to use both the LFS and HFSs coefficients during feature extraction. After de-
composing the images of the training set through a MRA/MGA transform, the
subband’s energy for each HFSs are calculated as follows:

ENGd
s =

1

M × L

M
∑

x=1

L
∑

y=1

|Ids (x, y)|2 (3)

where, Ids is the subband of size M ×L at scale s and direction d, s = 1, 2, ..., S,
d = 1, 2, ..., D. Then the coefficients of the LFSs and the HFSs energies’ are
passed to PCA for feature reduction, which results in the feature vector of di-
mension 10 (this value is chosen experimentally). The novel use of HFSs infor-
mation for feature representation is indicated by “orange” colored lines in the
block diagram of Fig. 1.



486 S. Das and M.K. Kundu

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 2. Sample brain MR images (row 1) with corresponding rotated (row 2) and
dynamic range (row 3) modified versions: (a) normal, (b) glioma, (c) meningioma,
(d) sarcoma, (e) Pick’s disease, (f) Huntington’s disease, (g) Alzheimer’s disease, (h)
Alzheimer’s disease with visual agnosia

4 Experimental Results and Comparisons

The dataset used in the experiments consists of 66 T2-weighted MR brain images
in axial plane, free from common MRI artifacts (downloaded from the website of
Harvard Medical School URL:http://med.harvard.edu/AANLIB/). This dataset
consists of 18 normal and 48 abnormal brain MR images. The abnormal brain
MR images of the datasets includes images of the following diseases: glioma,
meningioma, Alzheimer’s disease, Alzheimer’s disease plus visual agnosia, Pick’s
disease, sarcoma and Huntington’s disease. The training set images are rotated
through 5 different angles 5◦ to 25◦ in clockwise direction, and the dynamic
ranges of the images are modified to 5 different levels (150,10) to (250,30), re-
spectively. Therefore, the total number of images in the dataset used in the
experiments is 726. To compare the performance of the DWT using different
numbers of decomposition levels and wavelet bases, we consider 3 wavelet fam-
ilies: Daubechies (dbN, N = 1, 8), Coiflets (coifN, N = 1, 5), and Biorthogonal
(biorN.N, N.N = 1.3, 6.8). For each wavelet basis, the number of decomposi-
tion levels from 1 to 4 is considered. For the other three transforms, 6 different
pyramidal and directional filter combinations (from {‘9/7’, ‘5/3’} and {‘9/7’,
‘5/3’, ‘pkva’}) are considered with different number of decomposition levels. To
classify the images k-nearest neighbor (k-NN) classifier is used with k = 1. To
avoid overfitting problem, we integrate K-fold cross validation into our method
(K = 5), which make the proposed scheme reliable and generalize to other in-
dependent datasets. Fig. 2, shows samples of the brain MR images used in the
experiments.

We consider different number of principal components (PCs) to reduce the
dimension of the feature vector. After extensive experiments we have found that
10 number of PCs (preserving > 80% of the total variance) is providing ac-
ceptable results. Therefore, in this article we compare the different MRA/MGA
transforms considering only 10 PCs.
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Fig. 3. Performance comparison of different wavelet combinations

Fig. 3 illustrates the performance comparison of WT with different decompo-
sition levels and mother wavelets. For CNT, CVT and RT the best results are
obtained for decomposition orientations {4, 8, 8}, {4, 4} and {2, 4}, respectively.
The graph of Fig. 4 shows the results for CNT, CVT and RT with different fil-
ter combinations and the above mentioned best decomposition orientations. The

Fig. 4. Performance comparison of CNT, CVT and RT

graph of Fig. 3, shows that ‘bior1.3’ mother wavelet at decomposition level 3 pro-
vides the best performance (≈ 88%) among different WT configurations. This is
because of the high smoothness, small support, high vanishing moments, linear
phase and near orthogonal properties of ‘bior’ wavelet compared to others. The
performance decreases near about 10%− 12%, when we only used LFS features
for classification. From the graph of Fig. 4, it can be clearly seen that the fil-
ter combination ‘9/7’ (pyramidal) and ‘pkva’ (directional) performs the best for
CNT, CVT and RT. The ‘9/7’ filters are linear phase and are close to being
orthogonal and thus carries more subtle image information. Whereas, the ladder
structure ‘pkva’ filters are more effective because of its superior edge direction
localization property. Moreover, among these three transforms CNT performs
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the best in terms of average classification accuracy of ≥ 93%. When we used
only LFS features obtained from these three transforms for classification, the
performance decreases near about 6%− 7%.

5 Conclusions

Existing techniques for classifying brain MR images perform poorly in presence
of common MRI artifacts. The directional information present in HFSs along
with the LFS features prove effective in these scenarios. Moreover, recent ad-
vanced transforms perform much better than the conventional WT in classifying
brain MR images. Comparative study of the performances of these transforms
show that CNT performs superiorly considering both the classification accuracy
and the dimension of the feature vector.
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