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Abstract 35 

The COVID-19 pandemic sparked rapid development of SARS-CoV-2 diagnostics. However, emerging 36 

variants pose the risk for target dropout and false-negative results secondary to primer/probe binding site 37 

(PBS) mismatches. The Agena MassARRAY® SARS-CoV-2 Panel combines RT-PCR and MALDI-38 

TOF mass-spectrometry to probe for five targets across N and ORF1ab genes, which provides a robust 39 

platform to accommodate PBS mismatches in divergent viruses. Herein, we utilize a deidentified dataset 40 

of 1,262 SARS-CoV-2-positive specimens from Mount Sinai Health System (New York City) from 41 

December 2020 through April 2021 to evaluate target results and corresponding sequencing data. 42 

Overall, the level of PBS mismatches was greater in specimens with target dropout. Of specimens with 43 

N3 target dropout, 57% harbored an A28095T substitution that is highly-specific for the alpha (B.1.1.7) 44 

variant of concern. These data highlight the benefit of redundancy in target design and the potential for 45 

target performance to illuminate the dynamics of circulating SARS-CoV-2 variants. 46 

 47 

 48 

  49 

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 16, 2021. ; https://doi.org/10.1101/2021.09.09.21263348doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.09.21263348
http://creativecommons.org/licenses/by-nd/4.0/


 4

Introduction 50 

 Molecular diagnostic assays for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-51 

2), the etiologic agent of coronavirus disease 2019 (COVID-19), utilize nucleic acid amplification test 52 

(NAAT) methods to assess for presence of viral nucleic acids in clinical specimens. These assays rely on 53 

primers and probes targeting one or more viral gene regions including open reading frame 1ab 54 

(ORF1ab), open reading frame 8 (ORF 8), nucleocapsid (N), spike (S), and envelope (E) 1. These targets 55 

have been designed primarily based on sequences from virus strains that circulated early in the 56 

pandemic, including the reference genome collected from Wuhan, China in January, 2020 2–4.  57 

In addition to the quantity of viral nucleic acids in a clinical specimen, the diagnostic and 58 

analytic capabilities of NAATs depend on the complementarity of primers and probes to viral genome 59 

sequences to reliably amplify targets of interest. As a result, binding of primers and probes can be 60 

impacted by progressive accumulation of changes in the viral genomes at primer binding sites (PBSs). 61 

Indeed, mismatches in PBSs – particularly the 2-3 nucleotides at the 3’ end of the oligonucleotide – can 62 

result in reduced binding and subsequent failure to amplify (termed “dropout” in diagnostic NAAT 63 

assays) 5–8. In fact, SARS-CoV-2 has diversified over the past 18 months, and mutations in the N, S, and 64 

E genes have been reported in viruses from specimens with corresponding target dropout during testing 65 

on commercial NAAT-based diagnostic platforms 9–15. Moreover, in silico analyses have utilized 66 

publicly-available SARS-CoV-2 genome sequences to identify mutations in circulating viral variants 67 

that have the potential to interfere with diagnostic targets 1,5,16–18. These findings highlight the potential 68 

diagnostic challenge as increasingly diverse SARS-CoV-2 lineages (e.g., B.1.1.7) continue to emerge 69 

globally 19,20.  70 

To limit the risk of false-negative results, most NAAT assays for SARS-CoV-2 that currently 71 

have emergency use authorization (EUA) from the US Food and Drug Administration (FDA) utilize two 72 
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or more diagnostic targets 21,22. We recently reported the analytic performance of the Agena 73 

MassARRAY® SARS-CoV-2 Panel which combines RT-PCR and matrix-assisted laser 74 

desorption/ionization time-of-flight (MALDI-TOF) technologies to detect SARS-CoV-2 23. The Agena 75 

MassARRAY® platform probes for five distinct targets in the ORF1ab and N viral genes 24, providing a 76 

robust platform for diagnosis of SARS-CoV-2 in clinical specimens despite the emergence of virus 77 

strains that have accumulated mutations that can interfere with some diagnostic targets. We evaluated 78 

the pattern of target detections for SARS-CoV-2-positive specimens collected at the Mount Sinai Health 79 

System (MSHS) to interrogate the impact of viral genetic variation on this diagnostic platform. 80 

To do this, we compared detection of Agena diagnostic targets and genomic sequence data for 81 

SARS-CoV-2-positive specimens that were deidentified and banked as part of our Pathogen 82 

Surveillance Program (MSHS PSP) at the Icahn School of Medicine at Mount Sinai (ISMMS), which 83 

has been previously described 25. Complete viral genomes underwent phylogenetic analyses to 84 

characterize emergent evolutionary lineages among the SARS-CoV-2-positive specimens at MSHS 85 

(manuscript in preparation). For this analysis, we utilized a dataset comprised of 1,262 viral genomes 86 

recovered from deidentified clinical specimens collected from patients seeking care at the Mount Sinai 87 

Health System from December 1, 2020 through April 24, 2021. We identified PBS mismatches 88 

associated with lineage-specific substitutions in SARS-CoV-2 variants of concern (VOC) that resulted in 89 

Agena MassARRAY® platform target dropout. 90 

  91 
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Materials and Methods 92 

Ethics statement 93 

This study was reviewed and approved by the Institutional Review Board of the Icahn School of 94 

Medicine at Mount Sinai (HS#13-00981).  95 

 96 

SARS-CoV-2 specimen collection and testing 97 

Upper respiratory tract (e.g., nasopharyngeal, anterior nares) and saliva specimens collected for 98 

SARS-CoV-2 testing underwent diagnostic testing in the MSHS Clinical Microbiology Laboratory 99 

(CML), which is certified under Clinical Laboratory Improvement Amendments of 1988 (CLIA), 42 100 

U.S.C. §263a and meets requirements to perform high-complexity tests. For this study, we 101 

retrospectively utilized deidentified data available for diagnostic specimens tested on the Agena 102 

MassARRAY® SARS-CoV-2 Panel and MassARRAY® System (Agena, CPM384) platform during the 103 

study period.  104 

As previously described, prior to SARS-CoV-2 testing, saliva specimens underwent an initial 105 

processing step involving a 15 minute incubation at 55°C prior to RNA extraction 23. Upper respiratory 106 

specimens did not undergo any pre-processing prior to testing. RNA was extracted from 300µL of each 107 

specimen using the chemagicTM Viral DNA/RNA 300 Kit H96 (PerkinElmer, CMG-1033-S) on the 108 

automated chemagicTM 360 instrument (PerkinElmer, 2024-0020) per the manufacturer’s protocol. The 109 

MS2 phage RNA internal control (IC) was included in all extraction steps. The extracted RNA 110 

underwent RT-PCR with iPLEX® Pro chemistry to amplify different Agena targets, per the 111 

manufacturer’s protocol. After inactivation of unincorporated dNTPs by treatment with shrimp alkaline 112 

phosphatase (SAP), a sequence-specific primer extension step was performed, in which a mass-modified 113 
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terminator nucleotide was added to the probe, using supplied extension primers and iPLEX® Pro 114 

reagents.  115 

Extension products (analytes) were desalted, transferred to a SpectroCHIP® Array (silicon chip 116 

with pre-spotted matrix crystal) and loaded into the MassARRAY® Analyzer (a MALDI-TOF mass 117 

spectrometer). The analyte/matrix co-crystals were irradiated by a laser inducing desorption and 118 

ionization, and positively charged molecules accelerated into a flight tube towards a detector. Separation 119 

occurred by time-of-flight, which is proportional to molecular mass. After data processing, a spectral 120 

fingerprint was generated for each analyte that characterizes the mass/charge ratio and relative intensity 121 

of the molecules. Data acquired by the MassARRAY® Analyzer was processed with the MassARRAY® 122 

Typer software and SARS-CoV-2 Report software. The assay detects five viral targets: three in the 123 

nucleocapsid (N) gene (N1, N2, N3) and two in the ORF1ab gene (ORF1A, ORF1AB). If the IC was 124 

detected, results were interpreted as positive if ≥ 2 targets were detected or negative if < 2 targets were 125 

detected. If no IC and no targets were detected, the result was invalid and required repeat testing of the 126 

specimen before reporting. If IC was detected and no targets were detected, the sample was interpreted 127 

as negative.  128 

Overall, 86,781 upper respiratory and saliva specimens underwent clinical testing in the CML at 129 

MSHS, during the period from December 1, 2020 through April 24, 2021. Of those specimens, 2,062 130 

tested positive for SARS-CoV-2. A subset of 1,262 specimens were deidentified, related data was 131 

entered in to the MSHS PSP database, and underwent SARS-CoV-2 next-generation sequencing as 132 

previously described 25,26.  133 

 134 

SARS-CoV-2 sequencing, assembly and phylogenetic analyses 135 

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 16, 2021. ; https://doi.org/10.1101/2021.09.09.21263348doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.09.21263348
http://creativecommons.org/licenses/by-nd/4.0/


 8

 SARS-CoV-2 viral RNA underwent reverse transcription, PCR amplification and next-136 

generation sequencing followed by genome assembly and lineage assignment using a phylogenetic-137 

based nomenclature as described by Rambaut et al. 27 using the PANGOLIN tool, version 2021-04-28 28 138 

as previously described 25,26. Ultimately, this yielded 1,176 complete genomes (≥95% completeness) and 139 

86 partial genomes (<95% completeness). 140 

 141 

Agena target sequence alignment 142 

 Agena MassARRAY® target detection results were matched to the corresponding genome 143 

sequences. Primer and probe sequences for each Agena target were obtained from published FDA EUA 144 

documentation for the Agena MassARRAY® SARS-CoV-2 Panel (Supplemental Table S1) 24. We 145 

generated reverse-complement sequences for reverse primers for all five targets and probes that are 146 

designed in the reverse orientation (e.g., N1-N3). An unaligned FASTA file including sequence data for 147 

the clinical specimens and the Wuhan-Hu-1 reference sequence (NCBI nucleotide: NC_045512.2 148 

(Genbank: MN908947.3)) was generated for each of the fifteen primers/probes. The Multiple Alignment 149 

using Fast Fourier Transform (MAFFT) platform 29,30 which is publicly available for use online 150 

(https://mafft.cbrc.jp/alignment/server/add_fragments.html?frommanualnov6) was used to align each 151 

file. To enable inclusion of incomplete genomes that had intact regions sequenced at PBSs, we did not 152 

remove uninformative sequences (e.g., with ambiguous letters). Otherwise, the default settings were 153 

used to align all sequences to the reference genome, which generated a resulting FASTA alignment file 154 

for each primer and probe sequence.  155 

 156 

Sequence variation in primer/probe target regions 157 
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To identify mismatches in the primer and probe regions of the viral genomes, FASTA alignment 158 

files were processed locally in a Bash environment. Custom Unix-code 159 

(https://github.com/AceM1188/SACOV_primer-probe_analyses) was used to identify mismatches at 160 

each nucleotide position within each primer and probe sequence 31. A tab-delimited output file that 161 

identified mismatches by primer/probe nucleotide position across the viral genome sequences was 162 

generated for each alignment.  163 

Note that for the viral genome sequences with stretches of Ns that corresponded with the PBS, 164 

mismatches could not be called, and these sequences were excluded from the mismatch counting for the 165 

given primer/probe. In addition, genomes with gaps that spanned the entire region of a PBS were 166 

excluded from the analyses for the given primer/probe.  167 

Mismatches by position in PBS regions of forward/reverse primer and probe sequences were 168 

manually counted on Microsoft Excel v16.48. To account for differences in completeness of consensus 169 

genomes, the number of PBS mismatches was normalized to the number of nucleotides in the PBS of 170 

each specimen consensus sequence.  171 

 172 

Statistical analyses 173 

 For statistical comparison of fraction of PBS with mismatches in genomes with detected targets 174 

versus those with dropout targets, normality was assessed by D’Agostino and Pearson test (GraphPad 175 

Prism 9.1.0), which indicated that all distributions were non-parametric; thus, a Mann-Whitney test 176 

(two-tailed) was performed (GraphPad). To determine if specific mismatches were associated with 177 

specific target dropout results, specimens were grouped by (1) presence or absence of the mismatch of 178 

interest (in the setting of no other mismatches) and (2) detection or dropout of the target of interest – 179 

which resulted in a 2x2 contingency table which underwent association testing by Fisher’s exact test. 180 
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 181 

Display Items 182 

All figures are original and were generated using the GraphPad Prism software 9.1.0, R software 183 

package ggplot2, NCBI Multiple Sequence Alignment Viewer v.1.17.0 184 

(https://www.ncbi.nlm.nih.gov/tools/msaviewer/), and finished in Adobe Illustrator 2021 (v.25.2.1).  185 

  186 
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Results  187 

 Overall, of the 2,062 SARS-CoV-2-positive specimens, 1,274 (62%) had all five targets detected 188 

with the remaining having one (n = 419) or more (n = 369) targets dropout. For the subset of 1,262 189 

SARS-CoV-2-positive specimens sequenced in our study, all five diagnostic targets were detected in 190 

943 (75%), with the remaining having one (n = 227) or more (n = 92) target dropout (Supplemental 191 

Table S2). When we calculated the target detection rate among these SARS-CoV-2-positive specimens 192 

by week, the ORF1AB target had the lowest average detection rate per week (0.87) followed by the N3 193 

target (0.88) and the N2 target (0.94) (Figure 1). Notably, the N3 detection rate declined over time with 194 

the lowest detection occurring during the last four weeks of the timeframe studied (week ending April 3 195 

(0.75) – April 24, 2021 (0.79)). Given these observations, we used the diagnostic data and corresponding 196 

genome sequences to identify mismatches to each primer/probe utilized by the Agena MassARRAY® 197 

platform to determine the impact on target detection results. 198 

 199 

Nucleotide mismatches across diagnostic targets 200 

We aligned each forward primer, reverse primer, and probe sequence of the Agena 201 

MassARRAY® SARS-CoV-2 Panel to the set of 1,262 SARS-CoV-2 genome sequences.  202 

To examine the impact of mismatches on target results, we measured the number of mismatches 203 

(normalized to the number of nucleotides in the PBS; see methods) in specimens with detected and 204 

undetected target results (Figure 2). Detection of each of four targets (N1, N3, ORF1A, ORF1AB) was 205 

associated with perfect complementarity (0 mismatches) between the genome sequence and the 206 

respective target PBSs. Specifically, > 96% of specimens with either detectable N1 or N3 targets had 207 

perfect complementarity to the respective forward/reverse/probe PBS, and > 95% of specimens with 208 

detectable ORF1A or ORF1AB targets had perfect complementarity to the respective 209 
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forward/reverse/probe PBS. The remaining specimens had – at most – only one mismatch to each of the 210 

target PBSs. The exception to this was the N2 target, for which, more specimens with detectable N2 211 

target had mismatches to N2 forward (43%) and N2 reverse (39%) PBSs (Figure 2B). Indeed, up to four 212 

mismatches to the N2 forward and up to two mismatches to the N2 reverse PBSs were found in the 213 

specimens for which the N2 target was detected. 214 

When compared across target result groups, the number of mismatches was significantly higher 215 

in specimens with N1, N2, N3 and ORF1A target dropout (Figure 2A-D). In addition, we found the 216 

fraction of N1 probe PBS with mismatches was significantly higher in specimens with N1 target dropout 217 

than in those with detectable N1 (Figure 2A).  218 

 Because the position of mismatches within PBSs affect primer binding capabilities 1,6–8, we 219 

characterized the mismatch frequency by position of each primer/probe. Specifically, we measured the 220 

proportion of specimen genomes with a mismatch at each independent position along the full length of 221 

each target’s primer/probe (Figure 3, Supplemental Figure S1). From 5’ to 3’ direction, we found that 222 

among 15 specimens with N1 target dropout, 10 harbored single mismatches to the 4th – 14th basepair 223 

(bp) (SARS-CoV-2 genome positions 28714 – 28704) of the 17-bp-long N1 probe PBS (Figure 3A). 224 

Specifically, these mismatches reflected the following substitutions: G28714A (n = 1 specimens), 225 

G28713A (n = 2), C28709T (n = 2), C28706T (n = 1), G28704C (n = 3), G28704T (n = 1).  226 

By contrast, mismatches in the 5’ end of the 22-bp-long N2 primer PBSs (forward, 1st – 3rd bp 227 

(28881 – 28883); reverse, 3rd bp (28977) and 5th bp (28975)) were identified in sequences that yielded 228 

both N2 target detection and dropout (Figure 3B). In 340 specimens with any one mismatch to the first 229 

3 bp of the N2 forward primer, 336 (99%) harbored the concurrent substitutions G28881A, G28882A, 230 

and G28883C in the N gene. Of the 72 specimen genomes with N2 target dropout, 34 (47%) had this 231 

substitution trio. Although, this polymorphism was found in 304 (26%) of the 1,163 specimen genomes 232 
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with N2 target detection, statistically, this represents a significant association of the GGG-to-AAC 233 

substitution with N2 target dropout (Fisher’s exact, p = 0.0002).  234 

In addition, specimens that harbor mismatches to the 5’ end of the N2 reverse primer are the 235 

result of the C28977T or G28975A substitutions. However, of 466 specimens that harbor either 236 

substitution, only 1 had both suggesting these substitutions occur independently of one another. When 237 

grouped by N2 target detection result, neither substitution was significantly associated with N2 target 238 

dropout (Fisher’s exact, p ≥ 0.1351).  239 

Interestingly, we found that of the 110 specimen genomes with N3 target dropout, 63 (57%) had 240 

a mismatch at the penultimate nucleotide towards the 3’ end in the 20-bp-long N3 forward primer 241 

(Figure 3C). All mismatches at this position are the result of a specific adenine-to-thymine substitution 242 

in ORF8 (A28095T) of the SARS-CoV-2 genome. Of the 1,102 genomes with detected N3 target, only 243 

two harbored this mismatch; overall, this represents a statistically significant association of this 244 

positional mismatch with N3 target dropout (Fisher’s exact, p < 0.0001).  245 

We also assessed whether the association of these mismatches with target dropout is maintained 246 

when the quantity of virus in the specimen is controlled. Although the Agena platform yields a 247 

qualitative diagnostic result, we have demonstrated previously that the number of detected targets is 248 

proportional to the quantity of virus in a given specimen 23. When we limit our dataset only to specimens 249 

for which all other (e.g., non-N3) targets are detected, the association of the A28095T substitution with 250 

N3 target dropout remains statistically significant (Fisher’s exact, p < 0.0001), indicating that N3 target 251 

dropout due to the A28095T substitution is independent of differences in virus concentration.  252 

 253 

Lineage-specific variation and target dropout 254 

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 16, 2021. ; https://doi.org/10.1101/2021.09.09.21263348doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.09.21263348
http://creativecommons.org/licenses/by-nd/4.0/


 14

 In order to assess whether target dropout was due to lineage-specific variation, we examined the 255 

phylogenetic lineages of genomes harboring distinct substitutions in our dataset. Among the 34 256 

specimens with the concurrent GGG-to-AAC tri-nucleotide substitution and N2 target dropout, the 257 

earliest was from December 29, 2020 (PV24926) which belonged to the B.1.1.434 lineage. This 258 

polymorphism did not demonstrate bias to any one lineage in specimens that yielded N2 target dropout 259 

as it was found in specimens that mapped to 15 different lineages including B.1.1.7 (alpha, n = 11), 260 

B.1.1.434 (n = 6), and B.1.1 (n = 4) lineages. 261 

We next examined the phylogenetic lineage of genomes harboring the A28095T substitution in 262 

our dataset to assess whether N3 target dropout was due to lineage-specific variation. We found that the 263 

earliest specimen with this substitution was from January 8, 2021 (specimen PV25263) and belonged to 264 

the B.1.1.7 lineage. Indeed, the substitution appeared in a subset of genomes of the B.1.1.7 lineage. 265 

Interestingly, of the 127 B.1.1.7 genomes, approximately half (n = 65) harbored the A28095T 266 

substitution while the remaining maintained the adenine at the position (Figure 4). Ninety-seven percent 267 

(63/65) of the B.1.1.7 specimens with the A20895T substitution demonstrated N3 target dropout. 268 

Furthermore, the converse was also true as almost all B.1.1.7 specimens with N3 target dropout (63/64 269 

(98%)) had the A28095T substitution (Figure 4A).  270 

Among the other 45 specimens with N3 target dropout, 10 harbored mismatches in the N3 PBS 271 

(Supplemental Figure S2). Of the 10 genomes, only one (specimen PV36946) had the A28095T 272 

substitution, but the sequence recovered was incomplete (42% completeness) and a lineage could not be 273 

assigned. The other 9 genomes represented B.1.2 (n = 3), B.1.36.18 (n = 1), B.1.427 (n = 2), B.1.575 (n 274 

= 2), and B.1.621 (n = 1) lineages. Among these non-B.1.1.7 genomes, three mismatches were identified 275 

at the 1st (G28077T; n = 1), 11th (C28087T; n = 3) and 17th (C28093T; n = 5) bp of the N3 forward PBS 276 

which were encoded by viruses from multiple lineages. Of note, these non-B.1.1.7 genomes did not have 277 
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any other mismatches in the N3 reverse or probe PBS. Furthermore, the two mismatches closest to the 3’ 278 

end of the N3 forward primer – C28087T and C28093T – were significantly associated with N3 target 279 

dropout (Fisher’s exact, p = 0.0407 and p < 0.0001, respectively), but the mismatch at the first position 280 

was not significantly associated with N3 target dropout (Fisher’s exact, p = 0.0914). 281 

  282 
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Discussion 283 

 Molecular assays for the diagnosis of COVID-19 developed early in the pandemic utilize primers 284 

and probes based on conserved regions in the then-available SARS-CoV-2 genome sequences. Now, 285 

more than 18 months later, circulating SARS-CoV-2 variants have accumulated numerous nucleotide 286 

substitutions in response to evolutionary pressures. These genomic variations can be associated with 287 

increased infectivity, transmissibility, and disease pathogenesis 32–36, warranting accurate and quick 288 

surveillance efforts. However, genome variation can also be a challenge for detection of these variants 289 

of interest (VOIs) or VOCs if mismatches to PBSs in diagnostic targets are present. A number of studies 290 

have described substitutions in the ORF1ab, S, E, and N genes that may interfere with specific RT-PCR 291 

targets 1,5,9,11,12,14–16,18, but these studies have inherent limitations. Several are in silico analyses that do 292 

not reflect diagnostic performance in the clinical setting 1,5,16,18, whereas others do not definitively 293 

demonstrate target dropout due to substitutions as they utilize platforms for which primer/probe 294 

sequence information is not publicly available 9,11,14,15. In addition, the later studies are based on assays 295 

that interrogate up to 3 diagnostic targets, and are limited by the number and diversity of viral sequences 296 

surveyed over finite timeframes, some prior to the emergence and expansion of VOCs.  297 

In the current study, we describe a robust evaluation of the impact of PBS mismatches on Agena 298 

MassARRAY® SARS-CoV-2 Panel target results for over 1,200 specimens over a five-month time 299 

period that corresponds with the rapid emergence of viral VOIs/VOCs (December 2020 through April 300 

2021). This large dataset enabled direct correlation of detection of each of five different Agena 301 

diagnostic viral targets with genomic sequence data 302 

Additionally, by using publicly available primer/probe sequences to map lineage-specific 303 

substitutions, we were able to further evaluate the impact of mismatches on target results and to 304 

demonstrate an association between variation in SARS-CoV-2 PBSs and target dropout. Our analysis 305 
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revealed that several mutations result in N1 and N3 target dropout. Interestingly, although specimens 306 

from other lineages harbor mismatches in the N3 target region, we identified a distinct association 307 

between the B.1.1.7-associated A28095T substitution and dropout of the N3 diagnostic target on the 308 

Agena MassARRAY® SARS-CoV-2 Panel. This finding represents the first description of a lineage-309 

specific substitution that introduces a mismatch to a publicly available primer sequence and yields 310 

diagnostic target dropout. This underscores the utility of publicly available sequences to further monitor 311 

their diagnostic ability as SARS-CoV-2 continues to evolve and new lineages emerge. 312 

The B.1.1.7 lineage (alpha) has been designated as a variant of concern by the World Health 313 

Organization and the US Centers for Diseases Control and Prevention due to its increased 314 

transmissibility 20,33–35,37. This lineage was first reported in > 1,100 cases in the United Kingdom (UK) 315 

on December 14, 2020 38, but it has been estimated to have emerged in September 2020 20,35. Since then, 316 

the B.1.1.7 lineage spread rapidly, comprising > 90% of new SARS-CoV-2 infections in the UK by 317 

March 2021 35. This lineage also spread globally, including in the US 39,40, where recent epidemiological 318 

reports indicate B.1.1.7 variants caused > 60% of the new infections as of May 6, 2021 41.  319 

These characteristics further underscore the urgency to update and continually develop robust 320 

screening modalities to capture VOCs like B.1.1.7. Sequencing of these variants remains the ‘gold 321 

standard’ of surveillance, but not all diagnostic laboratories have the infrastructure or capacity to readily 322 

utilize this technology. S gene target failure (SGTF) on commercial RT-PCR platforms has been 323 

proposed as a screening alternative to detect the S protein deletion H69-V70 (ΔH69/ΔV70) 14,15,42,43 324 

which is found in B.1.1.7 and, to a lesser extent, in other circulating lineages (e.g., B.1.525, B.1.620 325 

(NextStrain, build June 23, 2021)) 15.  326 

In this study, we describe diagnostic target dropout that can be utilized to promptly identify 327 

specimens of interest for whole genome sequencing and variant classification. Notably detection of the 328 
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B.1.1.7 variant containing the A28095T substitution is associated with the Agena N3 target dropout. 329 

This substitution is characteristic of 50% of the circulating B.1.1.7 specimens in our dataset and reflects 330 

a unique snapshot of genomic variation occurring within the circulating B.1.1.7 variants in New York 331 

City. The A28095T substitution introduces a stop codon in the ORF8 gene producing a truncated version 332 

with potential functional changes in encoded protein (K68stop). Among a dataset of >2 million publicly 333 

available viral genomes from global surveillance efforts (GISAID, June 23, 2021), 309,050 genomes 334 

harbor this substitution. Nearly all (99.9%) of these A28095T-genomes belong to the B.1.1.7 lineage 335 

which, in turn, represent a sub-population (33.9%) of all B.1.1.7 genomes. Therefore, continued 336 

diagnostic surveillance of the Agena N3 target dropout and subsequent genomic surveillance can be 337 

exploited to monitor the spread of the B.1.1.7 variant as well as other VOCs. Indeed, based on publicly 338 

available genomes, other VOCs harbor substitutions that result in mismatches to Agena target PBSs. For 339 

example, 73% of delta (B.1.617.2) variant genomes have the non-synonymous substitution, G28916T in 340 

the N gene (amino acid change, G215C) which introduces a mismatch to the terminal bp of the N2 probe 341 

(GISAID, June 23, 2021). Given its position in the probe, this mismatch likely impacts N2 target 342 

performance. This warrants further study, particularly as the B.1.617.2 VOC continues to expand 343 

globally 44–46 since its parent lineage was first identified in India in October 2020 47–49.  344 

An important potential limitation of our study is that target performance can be affected when 345 

the quantity of viral nucleic acids in diagnostic specimens is at or near the assay limit of detection, and 346 

that the limit of detection varies for different targets. We have demonstrated previously that Agena 347 

MassARRAY® target detection is proportional to quantity of viral nucleic acids 23. Thus, detection of 348 

other targets can be used as a control to evaluate the performance of an individual target, such as N3 349 

target dropout in the setting of the B.1.1.7 A28095T variant. In addition, we have also identified other 350 

mutations in this study that are associated with N1 and N3 target dropout. However, unlike the B.1.1.7 351 
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A28095T/A genomes in our dataset, these are fewer in number and further comprehensive evaluation is 352 

needed to determine the definitive impact on target performance.  353 

Assay platforms that incorporate testing of multiple targets within the virus genome are more 354 

likely to retain diagnostic sensitivity as SARS-CoV-2 continues to diversify and new variants emerge. 355 

Diagnostic target performance patterns on these redundant platforms have the potential to accommodate 356 

unfolding genomic variation in a timely manner, and highlight the potential of diagnostic results to serve 357 

as a robust system for detection of these emergent SARS-CoV-2 variants. These qualities demonstrate 358 

the importance of these platforms to capture the evolutionary consequences of the ongoing pandemic to 359 

inform public health and infection prevention measures.  360 
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Code availability 361 

To generate genome sequences, sequencing data were analyzed using a custom reference-based 362 

(MN908947.3) pipeline, https://github.com/mjsull/COVID_pipe 50. To analyze mismatches to diagnostic 363 

target PBSs, genome sequences were analyzed using a custom Unix-code 364 

https://github.com/AceM1188/SACOV_primer-probe_analyses 31.  365 

 366 

Data availability  367 

SARS-CoV-2 sequencing read data for all study genomes were deposited in GISAID [www.gisaid.org] 368 

(accessions pending).  369 

  370 
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Figure Legends 567 
 568 
Figure 1. Agena target detection rate in SARS-CoV-2-positive specimens by week. Heatmap 569 

depicting the proportion of sequenced SARS-CoV-2-positive specimens that have detectable N1, N2, 570 

N3, ORF1A, or ORF1AB targets by week from December 1, 2020 through April 24, 2021. International, 571 

national, and global statistics are indicated by dates in purple font. NYC statistics are indicated by dates 572 

in red font. Data for epidemiologic events obtained from 38,39,41,44,46. The number of sequenced SARS-573 

CoV-2-positive specimens per week is indicated above each week (column).  574 
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Figure 2. Impact of SARS-CoV-2 primer/probe binding site mismatches on Agena target detection 575 

results. Number of mismatches normalized to the number of nucleotides in primer/probe binding sites 576 

(PBS length) across five Agena MassARRAY® diagnostic targets: A: N1, B: N2, C: N3, D: ORF1A, E: 577 

ORF1AB. Each point represents the calculated mismatches per specimen consensus genome for each 578 

target PBS. Violin plots represent the distribution as density of the points grouped by primer/probe 579 

sequence (forward (For), reverse (Rev), Probe) and by target detection result (detected (magenta), 580 

dropout (turquoise)). The number of genome sequences analyzed for mismatches are depicted above 581 

each violin plot. Medians are depicted as yellow lines. Bars above distributions reflect statistical 582 

comparison of underlying distributions by Mann-Whitney test. Asterisks reflect p-values (*, p < 0.05; 583 

****, p < 0.0001). 584 
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Figure 3. SARS-CoV-2 positional mismatches at target primer/probe binding sites. Line graphs 586 

depict the percentage of specimen genomes with mismatches at individual basepair positions across 587 

Agena MassARRAY® target PBSs: A: N1, B: N2, C: N3, D: ORF1A. There are three plots for each 588 

target that correspond with the forward (For), reverse (Rev), and Probe binding sites. Two line plots are 589 

depicted for each binding site to depict mismatches in genomes from specimens that yielded a detected 590 

target result (magenta) or target dropout (turquoise). The percentage represents the number of genomes 591 

with mismatches at each position relative to the number of genome sequences detected or not detected 592 

by each target (annotated in each graph). 593 

 594 
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Figure 4. Lineage-specific substitution interferes with SARS-CoV-2 diagnostic target detection. A: 596 

Alignment of B.1.1.7 genomes associated with N3 target dropout. View is magnified to display 597 

mismatches across the N3 forward (For) primer binding site. Sixty-four specimen genomes are indicated 598 

by laboratory identifiers (Genome ID) and mismatches to the Wuhan-Hu-1 reference sequence 599 

(NC_045512.2) and the N3 For primer (orange) are highlighted in green. Substitutions that correspond 600 

with each of the mismatches are annotated below each panel. The lineage specific A28095T substitution 601 

that is associated with N3 target dropout is highlighted in red with white typeface font. B: Alignment of 602 

B.1.1.7 genomes associated with N3 target detection. Sixty-three individual genomes are indicated by 603 

laboratory identifiers and mismatches are highlighted and annotated as in A. Note for substitutions that 604 

are shared across both target results (e.g., dropout and detected), annotations are in boldface font.  605 

 606 
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