

Delft University of Technology

Robust collision avoidance for multiple micro aerial vehicles using nonlinear model
predictive control

Kamel, Mina; Alonso Mora, Javier; Siegwart, Roland; Nieto, Juan

DOI
10.1109/IROS.2017.8202163
Publication date
2017
Document Version
Accepted author manuscript
Published in
Proceedings 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

Citation (APA)
Kamel, M., Alonso Mora, J., Siegwart, R., & Nieto, J. (2017). Robust collision avoidance for multiple micro
aerial vehicles using nonlinear model predictive control. In A. Bicchi, & T. Maciejewski (Eds.), Proceedings
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 236-243). IEEE .
https://doi.org/10.1109/IROS.2017.8202163
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/IROS.2017.8202163
https://doi.org/10.1109/IROS.2017.8202163

Robust Collision Avoidance for Multiple Micro Aerial Vehicles Using

Nonlinear Model Predictive Control

Mina Kamel∗, Javier Alonso-Mora†, Roland Siegwart∗, and Juan Nieto∗

∗Autonomous Systems Lab, ETH Zurich
†Cognitive Robotics, Delft University of Technology

Abstract— When several Multirotor Micro Aerial Vehicles
(MAVs) share the same airspace, reliable and robust collision
avoidance is required. In this paper we address the problem of
multi-MAV reactive collision avoidance. We employ a model-
based controller to simultaneously track a reference trajectory
and avoid collisions. Moreover, to achieve a higher degree of
robustness, our method also accounts for the uncertainty of
the state estimator and of the position and velocity of the
other agents. The proposed approach is decentralized, does not
require a collision-free reference trajectory and accounts for the
full MAV dynamics. We validated our approach in simulation
and experimentally with two MAV.

I. INTRODUCTION

As the miniaturization technology advances, low cost and

reliable MAVs are becoming available on the market with

powerful on-board computation power. Many applications

can benefit from the presence of low cost systems, such as

inspection and exploration [1], [2], surveillance [3], map-

ping [4] and aerial videography [5]. However, MAVs are

limited to short flight times due to battery limitation and

size constraints. Due to these limitations, creating a team of

MAVs that can safely share the airspace to execute a specific

mission would be beneficial for time-critical missions such

as search and rescue operations [6] and would also widen

the range of applications where MAVs can be used.

A crucial problem when multiple MAVs share the same

airspace is the risk of mid-air collision. Because of this, a

robust method to avoid multi-MAVs collisions is necessary.

Typically, this problem is solved by planning a collision-free

trajectory for each agent in a centralized manner. However,

this binds the MAVs to the pre-planned trajectory and limits

the adaptivity of the team during the mission: any change in

the task would require trajectory re-planning for the whole

team.

In this work we present a unified framework to achieve ref-

erence trajectory tracking and multi-agent reactive collision

avoidance. The proposed approach exploits the full MAV dy-

namics and takes into account the limitations of the physical

platform. In this way we fully exploit the MAV capabilities

and achieve agile and natural avoidance maneuvers compared

to classic approaches, where planning is decoupled from

trajectory tracking control. To this end, we formulate the

control problem as a constrained optimization problem that

we solve in a receding horizon fashion. The cost function of

the optimization problem includes a potential field-like term

that penalizes collisions between agents. While potential field

methods do not provide any guarantee and are sensitive

Fig. 1: An instance of the experimental evaluation of the proposed
method for multi-agent collision avoidance.

to tuning parameters, we introduce additional tight hard

constraints to guarantee that no mid-air collisions will occur.

The proposed method assumes that each agent knows the

position and velocity of all other agents. Additionally, to

increase the avoidance robustness, we use the state estimator

uncertainty to shape the collision term in the cost function

and the optimization constraints.

The contribution of this paper can be summarized as

follows:

i A unified framework for multi-agent control and collision

avoidance.

ii The incorporation of state estimator uncertainty and

communication delay for robust collision avoidance.

This paper is organized as follows. In Section II we present

an overview of existing methods for multi-agent collision

avoidance. In Section III we briefly present the MAV model

that will be considered in the controller formulation. In

Section IV we present the controller and discuss the state

estimator uncertainty propagation. Finally, in Section V we

present simulation and experimental results of the proposed

approach.

II. RELATED WORK

Many researchers have demonstrated successful trajectory

generation and navigation on MAVs in controlled envi-

ronment where obstacles are static, using external motion

capture system [7] or using on-board sensing [8]. Sampling

based planning techniques can be used to generate global

collision-free trajectories for a single agent, taking into

account the agent dynamics [9] and static and dynamics

obstacles in the environment.

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

One way to generate collision-free trajectories for a team

of robots is to solve a mixed integer quadratic problem in a

centralized fashion as shown in [10]. A similar approach was

presented in [11] where sequential quadratic programming

techniques were employed to generate collision-free trajec-

tories for a team of MAVs. The aforementioned methods

lack real-time performance and do not consider unforeseen

changes in the environment.

Global collision-free trajectory generation methods limit

the versatility of the team of robots. In real missions, where

multiple agents are required to cooperate, the task assigned

to each agent might change according to the current situation,

and real-time reactive methods for local trajectory planning

become crucial.

One of the earliest works to achieve reactive collision

avoidance for a team of flying robots using a Nonlinear

Model Predictive Control (NMPC) framework is the work

presented in [12]. A decentralized NMPC was employed to

control multiple helicopters in a complex environment with

an artificial potential field for reactive collision avoidance.

This approach does not provide any guarantees and was

evaluated only in simulation.

In [13] the authors present various algorithms based on

the Velocity Obstacles (VO) concept to select collision-

free trajectories from a set of candidate trajectories. The

method was experimentally evaluated on four MAVs flying

in close proximity and including human. However, the MAV

dynamics were not fully modeled, and decoupling trajectory

generation from control has various limitations as shown in

the experimental section of [13].

Among the attempts to unify trajectory optimization and

control is the work presented in [14]. The robot control

problem is formulated as a finite horizon optimal control

problem and an unconstrained optimization is performed at

every time step to generate time-varying feedback gains and

feed-forward control inputs simultaneously. The approach

has been successfully applied on MAVs and a ball balancing

robot. Similar to our work, [5] also employed a NMPC

framework for controlling a MAVs while avoiding collisions,

but limited to a single MAVs. We employ a more general

dynamical model for the MAVs.

In this work, we unify the trajectory tracking and collision

avoidance into a single optimization problem in a decen-

tralized manner. In this way, trajectories generated from a

global planner can be sent directly to the trajectory tracking

controller without modifications, leaving the local avoidance

task to the tracking controller.

III. MODEL

In this section we present the MAV model employed in

the controller formulation. We first introduce the full vehicle

model and explain the forces and moments acting on the

system. Next, we will briefly discuss the closed-loop attitude

model employed in the trajectory tracking controller.

1) System model: We define the world fixed inertial frame

I and the body fixed frame B attached to the MAV in the

Center of Gravity (CoG) as shown in Figure 2. The vehicle

Bx

Bz

By

Fi

Ix

Iy

Iz

FT,i

Faero,i

v

v⊥

−mgIp,RIB

ni

Fi

Fig. 2: A schematic of a MAV showing forces and torques acting on
the MAV, and aerodynamic forces acting on a single rotor. Inertial
and CoG frames are also shown.

configuration is described by the position of the CoG in the

inertial frame p ∈ R
3, the vehicle velocity in the inertial

frame v, the vehicle orientation RIB ∈ SO(3) which is

parameterized by Euler angles and the body angular rate ω.

The main forces acting on the vehicle are generated from

the propellers. Each propeller generates thrust proportional

to the square of the propeller rotation speed niand angular

moment due to the drag force. The generated thrust FT,i and

moment Mi from the i− th propeller is given by:

FT,i = knn
2
iez, (1a)

Mi = (−1)i−1kmFT,i, (1b)

where kn and km are positive constants and ez is a unit

vector in z direction. Moreover, we consider two impor-

tant effects that appear in the case of dynamic maneuvers.

These effects are the blade flapping and induced drag. The

importance of these effects stems from the fact that they

introduce additional forces in the x − y rotor plane, adding

some damping to the MAV velocity as shown in [15]. It is

possible to combine these effects as shown in [16], [17] into

one lumped drag coefficient kD.

This leads to the aerodynamic force Faero,i:

Faero,i = fT,iKdragR
T
IBv (2)

where Kdrag = diag(kD, kD, 0) and fT,i is the z component

of the i− th thrust force.

The motion of the vehicle can be described by the follow-

ing equations:

ṗ = v, (3a)

v̇ =
1

m

(

RIB

Nr
∑

i=0

FT,i −RIB

Nr
∑

i=0

Faero,i + Fext

)

+

0
0
−g

 , (3b)

ṘIB = RIB⌊ω×⌋, (3c)

Jω̇ = −ω × Jω +A

n2
1

...

n2
Nr

, (3d)

where m is the mass of the MAV and Fext is the external

forces acting on the vehicle (i.e wind). ⌊ω×⌋ is the skew

symmetric matrix of the angular velocity expressed in body

frame. J is the inertia matrix, ω is the angular velocity, A
is the allocation matrix and Nr is the number of propellers.

2) Attitude model: We follow a cascaded approach as

described in [18] and assume that the vehicle attitude is

controlled by an attitude controller. For completeness we

quickly summarize their findings in the following paragraph.

To achieve accurate trajectory tracking, it is crucial for

the high level controller to consider the inner loop system

dynamics. Therefore, it is necessary to consider a simple

model of the attitude closed-loop response. These dynamics

can either be calculated by simplifying the closed loop

dynamic equations (if the controller is known) or by a

simple system identification procedure in case of an unknown

attitude controller (on commercial platforms for instance).

In this work we used the system identification approach to

identify a first order closed-loop attitude response.

The inner-loop attitude dynamics are then expressed as

follows:

φ̇ =
1

τ φ
(kφφcmd − φ) , (4a)

θ̇ =
1

τ θ
(kθθcmd − θ) , (4b)

ψ̇ = ψ̇cmd, (4c)

where kφ, kθ and τφ, τθ are the gains and time constant

of roll and pitch angles respectively. φcmd and θcmd are

the commanded roll and pitch angles and ψ̇cmd is the

commanded angular velocity of the vehicle heading.

The aforementioned model will be employed in the subse-

quent trajectory tracking controller to account for the attitude

inner-loop dynamics. Note that the vehicle heading angular

rate ψ̇ is assumed to track the command instantaneously. This

assumption is reasonable as the MAV heading angle has no

effect on the MAV position.

IV. CONTROLLER FORMULATION

In this section we present the unified trajectory tracking

and multi-agent collision avoidance NMPC controller. First,

we will present the Optimal Control Problem (OCP). After-

wards we will discuss the cost function choice and the state

estimator uncertainty propagation to achieve robust collision

avoidance. Next, we will present the optimization constraints

and finally we will discuss the approach adopted to solve the

OCP in real-time on-board of the MAV.

A. Optimal Control Problem

To formulate the OCP, we first define the system state

vector x and control input u as follows:

x =
[

pT vT φ θ ψ
]T

(5)

u =
[

φcmd θcmd Tcmd

]T
(6)

Every time step, we solve the following OCP online:

min
U ,X

∫ T

t=0

{

Jx
(

x(t),xref (t)
)

+ Ju
(

u(t),uref (t)
)

+ Jc (x(t))
}

dt

+ JT (x(T))

subject to ẋ = f(x,u);

u(t) ∈ U

G(x(t)) ≤ 0

x(0) = x (t0) .
(7)

where f is composed of Equations (3a), (3b) and (4). Jx is

the cost function for tracking the reference trajectory xref ,

Ju is the control input penalty, Jc is the collision cost

and JT is the terminal cost function. G is a function that

represents the state constraint, and U is the set of admissible

control inputs. In the following, we discuss the details of

the aforementioned OCP and discuss a method to efficiently

solve it in real-time.

B. Cost Function

We now describe the components of the cost function

presented in Equation (7). The first term Jx (x(t),xref (t))
penalizes the deviation of the predicted state x from the

desired state vector xref in a quadratic sense as shown

below:

Jx (x(t),xref (t)) = ‖x(t)− xref (t)‖
2

Qx
(8)

where Qx � 0 is a tuning parameter. The state reference

xref is obtained from the desired trajectory. The second term

in the cost function is related to the penalty on the control

input as shown below:

Ju (u(t),uref (t)) = ‖u(t)− uref (t)‖
2

Ru
(9)

where Ru � 0 is a tuning parameter. The control input ref-

erence uref is chosen to achieve better tracking performance

based on desired trajectory acceleration as described in [19].

The collision cost Jc (x(t)) to avoid collisions with other

Nagents is based on the logistic function, and the main

motivation behind this choice is to achieve a smooth and

bounded collision cost function. Figure 3 shows the cost

0 0.5 1 1.5 2 2.5 3

distance [m]

0

0.2

0.4

0.6

0.8

1
c
o

s
t

r
th
→

κ = 2

κ = 4

κ = 6

κ = 10

Fig. 3: Logistic function based potential field for different smooth-
ness parameter κ.

function for different κ parameters. The collision cost is

given by:

Jc (x(t)) =

Nagents
∑

j=1

Qc,j

1 + expκj (dj(t)− rth,j(t))

for j = 1, . . . , Nagents

(10)

where dj(t) is the Euclidean distance to the j−th agent given

by dj(t) = ‖p(t)− pj(t)‖2, Qc,j > 0 is a tuning parameter,

κj > 0 is a parameter that defines the smoothness of the

cost function and rth,j(t) is a threshold distance between

the agents where the collision cost is Qc,j/2.

C. Constraints

The first constraint in (7) guarantees that the state evo-
lution respects the MAV dynamics. To achieve offset-free
tracking we must compensate for external disturbances and
modeling errors to achieve offset-free tracking. We employ a
model-based filter to estimate external disturbances Fext as
described in details in [19]. The second constraint addresses
limitations on the control input:

U =

u ∈ R
3|

φmin

θmin

Tcmd,min

 ≤ u ≤

φmax

θmax

Tcmd,max

. (11)

The third constraint guarantees collision avoidance by

setting tight hard constraints on the distance between two

agents. The j − th row of the G matrix represents the

collision constraints with the j − th agent. This is given

by:

Gj(x) = −‖p(t)− pj(t)‖
2

2
+ r2min,j(t). (12)

where pj(t) is the position of the j − th agent at time t.
These are non-convex constraints and G is continuous and

smooth. rmin,j is chosen to always be strictly less than rth,j
to guarantee that the hard constraints are activated only if

the potential field in Equation (10) is not able to maintain

rmin,j distance to the j−th agent. For simplicity we consider

spherical hard constraints, but this can be replaced with more

complex geometry.

Finally, the last constraint in the optimization problem is to

fix the initial state x(0) to the current estimated state x(t0).

D. Motion Prediction of Agents

Since the approach presented in this work is based on

Model Predictive Control, it is beneficial to employ a simple

model for the other agents and use it to predict their

future behavior. In this work we assume that the agents

communicate their current position and velocity through a

common network, and employ a constant velocity model,

which could be replaced by a more sophisticated model.

Given the current position and velocity of the j − th agent

pj(t0),vj(t0) we predict the future positions of the j − th
agent along the prediction horizon as follows:

pj(t) = pj(t0) + vj(t0) (t− t0 + δ) . (13)

where δ is the communication delay that we compensate

for to achieve better prediction. δ is calculated based on the

difference between the timestamp on the message and the ar-

rival time. This is possible thanks to a clock synchronization

between the agents and a time server. The communication

delay compensation can be omitted if there is no clock

synchronization between agents. Additionally, to reduce the

noise sensitivity, i.e. we consider the velocity to be zero if

it is below a certain threshold vth.

E. Uncertainty Propagation

To achieve a higher level of robustness, we account for the

uncertainty in the state estimator and the uncertainty of the

other agents. We propagate the estimated state uncertainty

to calculate the minimum allowed distance rmin,j(t) to the

j − th agent and the threshold distance rth,j(t). In other

words, if the state is highly uncertain, we should be more

conservative on allowing agents to get closer to each other

by increasing rmin,j and rth,j at time t along the prediction

horizon. The uncertainty of the j−th agent’s position is prop-

agated using the model described in Equation (13), while the

self-uncertainty can be propagated with higher accuracy em-

ploying the system model described in Equations (3a), (3b)

and (4). In many previous works, the uncertainty propagation

is typically performed using the unscented transformation

when the system is nonlinear. In our case, given that we need

real-time performance, we choose to perform uncertainty

propagation based on an Extended Kalman Filter (EKF).

Given the current predicted state x(t0) with covariance

Σ(t0), we propagate the uncertainty by solving the following

differential equation:

Σ̇(t) = F (t)Σ(t)F (t)T (14)

with boundary condition Σ(0) = Σ(t0). F (t) is the state

transition Jacobian matrix. Using Equation (14) we compute

the j − th agent’s uncertainty and the self-uncertainty at

time t, namely Σj(t) and Σ(t). These values are employed

to calculate rmin,j(t) and rth,j(t). We use the maximum

eigenvalue to reduce the problem of computing the distance

between two ellipsoids, which is more complex and time

consuming, to the computation of the distance between

two spheres. Therefore, rmin,j(t) and rth,j(t) are calculated

j − th agent

dj(t)

rmin,j + 3σ(t) + 3σj(t)

potential field threshold

hard constraints

rth,j + 3σ(t) + 3σj(t)

Fig. 4: The concept of robust collision avoidance, the minimum
acceptable distance between two agents is increased along the
prediction horizon based on the state uncertainty propagation.
Tighter hard constraints will be activated only if the potential field
fails to maintain the minimum acceptable distance rmin,j . Note that
the plotted trajectories are predicted trajectories obtained from the
solution of the OCP (7).

according to the following equations:

rmin,j(t) = rmin + 3σ(t) + 3σj(t),

rth,j(t) = rth + 3σ(t) + 3σj(t).
(15)

where σ is the square root of the maximum eigenvalue of

the self-uncertainty Σ and σj is the square root of maximum

eigenvalue of the j − th agent’s uncertainty Σj . rmin and

rth are constant parameters. Approximating the uncertainty

ellipsoid by the enclosing sphere makes the bounds more

conservative, especially if the uncertainty is disproportion-

ately large only in a particular direction. Figure 4 illustrates

the concept for two agents.

F. Implementation

A multiple shooting technique [20] is employed to solve

the OCP (7). The system dynamics and constraints are

discretized over a coarse discrete time grid t0, . . . , tN within

the time interval [tk, tk+1]. For each interval, a Boundary

Value Problem (BVP) is solved, where additional continuity

constrains are imposed. An implicit RK integrator of order

4 is employed to forward simulate the system dynamics

along the interval. The OCP can be expressed as a Nonlinear

Program (NLP) which we solve using Sequential Quadratic

Programming (SQP). An active set or interior point method

can be used to solve the associated Quadratic Program

(QP). For the controller to behave as a local planner and

to guarantee problem feasibility, a long prediction horizon T
is necessary. To achieve this without significantly increasing

the computation effort, the time step of the grid over which

the system dynamics is discretized is chosen to be larger than

the controller rate. Smooth predictions are obtained thanks

to the implicit Runge-Kutta of order 4 integrator employed

and because the system dynamics is not represented by stiff

differential equations.

V. EVALUATION

In this section we evaluate the proposed approach experi-

mentally and in simulation. The proposed controller has been

implemented in C++ and integrated into Robot Operating

System (ROS). The ACADO toolkit [21] is employed to

generate a fast C solver for the OCP.

First we present two experimental evaluations of the

method with two MAVs. Then we show two simulation

studies in a high fidelity MAVs simulator, RotorS [22] where

six MAVs are commanded to swap positions simultaneously.

The proposed method can handle priorities simply by

changing the connectivity graph between agents. The highest

priority MAV will not perform any avoidance maneuver and

therefore doesn’t need to have access to other agents state. A

lower priority agent will perform avoidance maneuver only

to avoid higher priority agents.

A. Experimental Results

We experimentally evaluated the proposed approach on

two AscTec NEO hexacopters. In a first experiment, one

MAV is commanded to hover in position, while a second

MAV with high priority is commanded manually to fly

in the vicinity to the first MAV. In a second experiment,

crossing reference trajectories are planned for both MAVs

and executed. The purpose of these experiments is to show

how the proposed method exploits the system dynamics and

abruptly responds to changes in the other agent behavior in

a robust manner.

1) Experimental Setup: The AscTec NEO hexacopter is

equipped with an Intel i7 2.8 GHz 8 GHz RAM computer

running ROS and an onboard flight controller and tuned

attitude controller. The on-board computer communicates

with the flight controller over a serial port and exchanges

information at 100 Hz. An external motion capture system

(Vicon) is used to measure each MAV pose. This mea-

surement is fused with the onboard Inertial Measurement

Unit (IMU) to achieve accurate state estimation using the

multi-sensor fusion framework [23]. The estimated position

and velocity of each agent is shared over the network. The

controller is running onboard of each MAV at 100 Hz while

the prediction horizon of the controller is chosen to be

2 seconds.

2) Experiments: Figure 5 shows a sequence of images

taken 1 second apart during the experiment 1.

Figure 6a shows the distance between the two agents

over time. The distance is almost always maintained above

rth except for moments of aggressive maneuvers, however

the hard constraint was never activated as the distance was

always above rmin all the time.

In the second experiment, intersecting reference trajecto-

ries with maximum velocity of 2 m/s are planned and sent as

reference trajectories to the respective MAV. Figure 6b shows

the distance between the two MAVs over time. The hard

constraint was never active since the distance was always

above rmin.

1video available on goo.gl/RWRhmJ

B. Simulation Results

In this simulation study we evaluate our method on six

MAVs commanded to exchange their initial positions. The

reference trajectory for each agent is not collision-free.

Figure 7a shows the evolution of the MAV trajectories when

all agents are sharing position and velocity information in

a fully connected graph. In this case, avoidance maneuvers

are reciprocal. The average computation time during this

simulation is 1.0 ms, while worst case computation time is

around 4.0 ms on an Intel i7 2.8 GHz CPU.

In another simulation study depicted in Figure 7b, we

assigned a hierarchical avoidance scheme, where the first

MAV (blue sphere) has top priority to follow the reference

trajectory, while the second MAV (red sphere) is avoiding

only the first MAV. The third MAV is avoiding the first two,

etc... .

In this case, assigning a priority scheme makes the prob-

lem simpler to solve and with better position swapping

trajectories as shown in Figure 7.

VI. CONCLUSIONS

In this paper we presented a multi-MAVs collision avoid-

ance strategy based on Nonlinear Model Predictive Control.

The approach accounts for state estimator uncertainty by

propagating the uncertainty along the prediction horizon to

increase the minimum acceptable distance between agents,

providing robust collision avoidance. Tight hard constraints

on the distance between agents guarantee collision-free navi-

gation if the prediction horizon is sufficiently long. Moreover,

by changing the connectivity graph, it is possible to assign

priority to certain agents to follow their reference trajectories.

The approach has been evaluated in simulation with 6 sim-

ulated MAVs and in real experiments with two MAVs. Our

experiments showed that this collision avoidance approach

results into agile and dynamic avoidance maneuvers while

maintaining system stability at reasonable computational

cost.

ACKNOWLEDGMENT

This project has received funding from the European

Union’s Horizon 2020 research and innovation programme

under grant agreement No 644128 and from the Swiss State

Secretariat for Education, Research and Innovation (SERI)

under contract number 15.0044.

REFERENCES

[1] K. Steich, M. Kamel, P. Beardsleys, M. K. Obrist, R. Siegwart,
and T. Lachat, “Tree cavity inspection using aerial robots,” in 2016

IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), October 2016.
[2] A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, and R. Siegwart,

“Receding horizon ”next-best-view” planner for 3d exploration,” in
2016 IEEE International Conference on Robotics and Automation

(ICRA), May 2016, pp. 1462–1468.
[3] A. Girard, A. Howell, and J. Hedrick, “Border patrol and surveillance

missions using multiple unmanned air vehicles,” in Decision and

Control, 2004. CDC. 43rd IEEE Conference on, 2004.
[4] P. Oettershagen, T. J. Stastny, T. A. Mantel, A. S. Melzer, K. Rudin,

G. Agamennoni, K. Alexis, R. Siegwart, “Long-endurance sensing and
mapping using a hand-launchable solar-powered uav,” in Field and

Service Robotics, 10th Conference on, June 2015, (accepted).

[5] T. Nägeli, J. Alonso-Mora, A. Domahidi, D. Rus, and O. Hilliges,
“Real-time motion planning for aerial videography with real-time
with dynamic obstacle avoidance and viewpoint optimization,” IEEE

Robotics and Automation Letters, vol. 2, no. 3, pp. 1696–1703, July
2017.

[6] P. Rudol and P. Doherty, “Human body detection and geolocalization
for uav search and rescue missions using color and thermal imagery,”
in Aerospace Conference, 2008 IEEE, 2008, pp. 1–8.

[7] N. Michael, D. Mellinger, Q. Lindsey, and V. Kumar, “The grasp
multiple micro-uav testbed,” IEEE Robotics & Automation Magazine,
vol. 17, no. 3, pp. 56–65, 2010.

[8] M. Burri, H. Oleynikova, M. W. Achtelik, and R. Siegwart, “Real-time
visual-inertial mapping, re-localization and planning onboard mavs in
unknown environments,” in Intelligent Robots and Systems (IROS),

2015 IEEE/RSJ International Conference on. IEEE, 2015, pp. 1872–
1878.

[9] E. Frazzoli, M. A. Dahleh, and E. Feron, “Real-time motion planning
for agile autonomous vehicles,” Journal of Guidance, Control, and

Dynamics, vol. 25, no. 1, pp. 116–129, 2002.
[10] A. Kushleyev, D. Mellinger, C. Powers, and V. Kumar, “Towards a

swarm of agile micro quadrotors,” Autonomous Robots, vol. 35, no. 4,
pp. 287–300, 2013.

[11] F. Augugliaro, A. P. Schoellig, and R. D’Andrea, “Generation of
collision-free trajectories for a quadrocopter fleet: A sequential convex
programming approach,” in Intelligent Robots and Systems (IROS),

2012 IEEE/RSJ International Conference on. IEEE, 2012, pp. 1917–
1922.

[12] D. H. Shim, H. J. Kim, and S. Sastry, “Decentralized nonlinear model
predictive control of multiple flying robots,” in Decision and control,

2003. Proceedings. 42nd IEEE conference on, vol. 4. IEEE, 2003,
pp. 3621–3626.

[13] J. Alonso-Mora, T. Naegeli, R. Siegwart, and P. Beardsley, “Collision
avoidance for aerial vehicles in multi-agent scenarios,” Autonomous

Robots, vol. 39, no. 1, pp. 101–121, 2015.
[14] M. Neunert, C. de Crousaz, F. Furrer, M. Kamel, F. Farshidian,

R. Siegwart, and J. Buchli, “Fast nonlinear model predictive control
for unified trajectory optimization and tracking,” in Robotics and

Automation (ICRA), 2016 IEEE International Conference on. IEEE,
2016, pp. 1398–1404.

[15] R. Mahony, V. Kumar, and P. Corke, “Multirotor aerial vehicles: Mod-
eling, estimation, and control of quadrotor,” IEEE Robotics Automation

Magazine, vol. 19, no. 3, pp. 20–32, Sept 2012.
[16] S. Omari, M. D. Hua, G. Ducard, and T. Hamel, “Nonlinear control

of vtol uavs incorporating flapping dynamics,” in 2013 IEEE/RSJ

International Conference on Intelligent Robots and Systems, Nov
2013, pp. 2419–2425.

[17] M. Burri, J. Nikolic, H. Oleynikova, M. W. Achtelik, and R. Siegwart,
“Maximum likelihood parameter identification for mavs,” in 2016

IEEE International Conference on Robotics and Automation (ICRA),
May 2016, pp. 4297–4303.

[18] M. Blösch, S. Weiss, D. Scaramuzza, and R. Siegwart, “Vision
based mav navigation in unknown and unstructured environments,” in
Robotics and automation (ICRA), 2010 IEEE international conference

on. IEEE, 2010, pp. 21–28.
[19] M. Kamel, T. Stastny, K. Alexis, and R. Siegwart, “Model predictive

control for trajectory tracking of unmanned aerial vehicles using robot
operating system,” in Robot Operating System (ROS). Springer
International Publishing, 2017, pp. 3–39.

[20] C. Kirches, The Direct Multiple Shooting Method for Optimal

Control. Wiesbaden: Vieweg+Teubner Verlag, 2011, pp. 13–29.
[Online]. Available: http://dx.doi.org/10.1007/978-3-8348-8202-8 2

[21] B. Houska, H. Ferreau, and M. Diehl, “ACADO Toolkit – An Open
Source Framework for Automatic Control and Dynamic Optimization,”
Optimal Control Applications and Methods, vol. 32, no. 3, pp. 298–
312, 2011.

[22] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart, Robot Operating

System (ROS): The Complete Reference (Volume 1). Cham: Springer
International Publishing, 2016, ch. RotorS—A Modular Gazebo
MAV Simulator Framework, pp. 595–625. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-26054-9 23

[23] S. Lynen, M. W. Achtelik, S. Weiss, M. Chli, and R. Siegwart,
“A robust and modular multi-sensor fusion approach applied to mav
navigation,” in Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ

International Conference on. IEEE, 2013, pp. 3923–3929.

Fig. 5: A sequence of images during the cross trajectories experiments. The two MAVs are commanded to follow a non collision-free
trajectories with priority assigned to the MAV with the red hat. Images are taken 1 second apart starting from top left.

20 40 60 80 100 120 140 160

time [sec]

0

1

2

3

4

d
is

ta
n
c
e
 [
m

]

Manual flight experiment

distance between MAVs

r
min

r
th

0 0.5 1 1.5 2 2.5 3

distance [m]

0

500

1000

1500

2000

2500

3000

c
o

u
n
t

Histogram of MAVs distance

(a) The upper plot shows the distance between two MAVs
over time during the manual flight experiment. One MAV is
commanded to hover in position while the other one is manually
commanded to approach it with a priority assigned to the
manually commanded MAV. rth is set to 1.2 m while the hard
constraint on the distance is set to rmin = 0.9 m. The lower
plot shows the histogram of the distance.

10 20 30 40 50 60

time [sec]

0

1

2

3

4

d
is

ta
n
c
e
 [
m

]

Cross reference trajectory flight experiment

distance between MAVs

r
min

r
th

0 0.5 1 1.5 2 2.5 3 3.5

distance [m]

0

200

400

600

800

1000

1200

1400

c
o

u
n
t

Histogram of MAVs distance

(b) The upper plot shows the distance between two MAVs over
time during the crossing trajectories experiment. rth is set to
1.2 m while the hard constraint on the distance is set to rmin =

0.9 m. The lower plot shows the histogram of the distance.

Fig. 6: Experimental results with two MAVs

-4 -2 0 2 4

x [m]

-4

-3

-2

-1

0

1

2

3

4

y
 [
m

]

time = 0 sec

-4 -2 0 2 4

x [m]

0

1

2

3

4

z
 [
m

]

-4 -2 0 2 4

x [m]

-4

-3

-2

-1

0

1

2

3

4

y
 [
m

]

time = 2.4 sec

-4 -2 0 2 4

x [m]

0

1

2

3

4

z
 [
m

]

-4 -2 0 2 4

x [m]

-4

-3

-2

-1

0

1

2

3

4

y
 [
m

]

time = 4.9 sec

-4 -2 0 2 4

x [m]

0

1

2

3

4

z
 [
m

]

-4 -2 0 2 4

x [m]

-4

-3

-2

-1

0

1

2

3

4

y
 [
m

]

time = 7.4 sec

-4 -2 0 2 4

x [m]

0

1

2

3

4

z
 [
m

]

(a) Trajectories of 6 MAVs during a position swapping simulation. The MAVs are represented by spheres, while dotted lines represent
the reference trajectory provided to the controller. Solid lines represent the actual trajectory executed by each agent.

-4 -2 0 2 4

x [m]

-4

-3

-2

-1

0

1

2

3

4

y
 [
m

]

time = 0 sec

-4 -2 0 2 4

x [m]

0

1

2

3

4

z
 [
m

]

-4 -2 0 2 4

x [m]

-4

-3

-2

-1

0

1

2

3

4

y
 [
m

]

time = 1.75 sec

-4 -2 0 2 4

x [m]

0

1

2

3

4

z
 [
m

]

-4 -2 0 2 4

x [m]

-4

-3

-2

-1

0

1

2

3

4

y
 [
m

]

time = 2.4 sec

-4 -2 0 2 4

x [m]

0

1

2

3

4

z
 [
m

]

-4 -2 0 2 4

x [m]

-4

-3

-2

-1

0

1

2

3

4

y
 [
m

]

time = 4.5 sec

-4 -2 0 2 4

x [m]

0

1

2

3

4

z
 [
m

]

(b) Trajectories of 6 MAVs during a position swapping simulation with priority given to the first MAV (blue sphere). Dotted lines
represent the reference trajectory provided to the controller. Solid lines represent the actual trajectory executed by each agent.

Fig. 7: Simulation results of 6 MAVs exchanging positions

