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ABSTRACT Robust watermarking is a valuable methodology used in protecting the copyright and securing

digital images. In this paper, new fractional-order multi-channel orthogonal exponent moments (MFrEMs)

and their invariants to geometric transformations are derived for the first time. We utilized these highly

accurate moments to construct a new robust watermarking algorithm for color images. This algorithm

consists of three phases. First, the bits of the binary watermark scrambled by using a 1D Sine chaotic

map. Second, the fractional-order MFrEMs are calculated from the host color image. Finally, a quantization

process is performed, where the scrambled bits of the binary watermark embedded into the host color image.

Various experiments were conducted to test the proposed watermarking algorithm and compare it with

the existing robust watermarking algorithms for color images. The obtained results ensure the proposed

robust watermarking algorithm’s superiority over existing algorithms regarding the visual imperceptibility

and robustness against various attacks.

INDEX TERMS Robust watermarking, fractional-order orthogonal moments, sine mapping, geometric

attacks.

I. INTRODUCTION

With the rapid advancement of color images and the

widespread use of sophisticated tools for editing digital

content, the door opened for various problems, such as tam-

pering, modification, forgery of digital contents, and infringe-

ment of intellectual property rights. Therefore, protecting

copyright content and digital images’ integrity increases

and becomes a significant security matter [1]. Digital

watermarking is widely used in the protection of digital con-

tent [2]. Methods of watermarking are classified into robust

watermarking [3], semi-fragile watermarking [4], and fragile

watermarking [5]. Both semi-fragile and fragile watermark-

ing methods are sensitive to partial or complete modifica-

tion. On the other side, the robust watermarking technique

is resisting common attacks. Fazli and Moeini [6] show that

when geometric attacks attack watermarked images, transla-

tion, scaling, and rotation (TSR), extracting the watermark

is challenging. Therefore, robustness and imperceptibility are

the most critical performance requirements—a watermarking
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algorithm’s ability to resist attacks is called robustness.

Wang et al. [7] showed that imperceptibility reflects the cover

image’s visual quality after attacks.

A successful watermarking algorithm should resist

TSR and other attacks such as noise, compression, etc.

Alghoniemy et al. [8] utilized the geometric moment invari-

ants (Hu moments) for the first time to construct a robust

watermarking algorithm. Many geometric invariant water-

marking algorithms [9]–[12] proposed various orthogonal

moments. However, these watermarking techniques are pre-

sented to deal with grey-level images. In recent years, color

imaging technologies improved, and color image process-

ing’s interest gained more attention, so color image water-

marking became an active research topic.

Researchers focus on robust color image watermark-

ing to resist geometric attacks. Tsougenis et al. [13]

used non-orthogonal quaternion radial moments in color

image watermarking. On the other side, researchers utilized

orthogonal quaternion moments such as exponent moments

(QEMs) [14], radial harmonic Fourier moments (QRHFMs)

[15], and polar harmonic transforms (QPHTs) [16] in geo-

metrically invariant watermarking. Wang et al. [17] and
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Xu et al. [18] utilized QEMs and QPHTs in robust color

image watermarking. In [13]–[18], the quaternion moments

computed using the approximated Zero-order method (ZOA),

which results in numerical errors and instability, especially at

high moment orders. The utilization of inaccurate quaternion

moments led to bad imperceptibility and low robustness,

which are challenging problems.

To overcome these challenges, Hosny and Darwish pro-

posed two accurate watermarking methods for color images.

The first is the quaternion Legendre-Fourier moments

(QLFMs) [19], while the second one is the quaternion radial

substituted Chebyshev moments (QRSCMs) [20].

Researchers in their recent works [21]–[24] used different

chaotic maps with moment-based watermarking algorithms

to increase security. Ma et al. [25] combined invariant accu-

rate polar harmonic Fourier moments with chaotic map-

ping for robust watermarking of grey-level images. These

moment-based methods for image watermarking are limited

to utilizing orthogonal moments of integer-orders. Recent

studies [26]–[31] proved that polynomials with fractional

orders have a better ability to represent functions than

their corresponding integer orders. Yamni et al. [32], [33]

used fractional-order Charlier moments to reconstruct and

watermarking grey-level images. Chen et al. [34] utilized

quaternion discrete fractional random transform for adaptive

watermarking of color images.

Recent fractional-order moments’ intrinsic characteris-

tics motivate the authors to propose novel fractional-order

exponent moments with their invariants to the geometric

transformations. Then the authors utilized these invariant

geometric moments with a Sine mapping to construct a

highly accurate and robust reversible watermarking for color

images.

In this work, a new watermarking algorithm with high

resistance ability to various attacks is proposed. This algo-

rithm utilized new fractional-order multi-channel orthogonal

exponent moments (MFrEM) and Sine mapping. In this algo-

rithm, orthogonal exponent Fourier functions of fractional

orders are derived. These functions are used to formulate new

fractional-order multi-channel orthogonal exponent moments

(MFrEM). The rotation, scaling, and translation (RST) invari-

ants of these fractional-order moments are derived. We used

a highly accurate computation method to compute MFrEM

based on Gaussian numerical integration for radial kernels

and exact integration for angular kernels, which signifi-

cantly improved the accuracy of MFrEM. Finally, a one-

dimensional (1D)-chaotic Sine map is utilized to enhance

security.

Chaotic mapping is used because of its superiority in terms

of ergodic uniformity and the ability to increase the algo-

rithm’s speed in finding the optima while generating initial

values uniformly distributed within the range of [0, 1]. The

performance of the algorithm and the comparison with exist-

ing methods are evaluated through a series of experiments.

The proposed watermarking algorithm outperformed existing

methods.

The remainder of this paper is organized as follows.

Section II presents the proposed fractional-order multi-

channel orthogonal exponent moments and their geometric

invariances. A detailed description of the proposed water-

marking algorithm is proposed in Section III. Section IV

presents a description of the performed experiments.

Section V concludes the paper.

II. FRACTIONAL-ORDER ORTHOGONAL MOMENTS

A. THE DEFINITION OF MFrEMs FOR RGB COLOR IMAGES

Exponent moments are circular orthogonal moments [35]:

Mpq = 1

4π

∫ 2π

0

∫ 1

0

f (r, θ)
[

Epq (r, θ)
]∗
rdrdθ (1)

where the order and repetition, are p = q =
0, ±1, ±2, ±3, . . . .; î =

√
−1; [·]∗ the complex

conjugate;Epq (r, θ) refers to the exponent basis functions,

which defined as:
Epq (r, θ) = Tp (r) e−îqθ (2)

With

Tp (r) =
√

2

r
e

−î2πpr
(3)

We generalized Epq (r, θ) of integer orders in the domain

[0, 1] × [0, 2π ] and converted to the fractional-order form,

W α
pq (r, θ), with a real-values parameter α ∈ R+ in the same

domain as follows:
W α
pq (r, θ) = Tp (r, α) e−îqθ (4)

where:

Tp (r, α) = rα−1

√

2

rα
e

−î2πprα

(5)

The basic functions of fractional-order, Wα
pq (r, θ), are

orthogonal where:
∫ 2π

0

∫ 1

0

W α
pm (r, θ)

[

W α
qn (r, θ)

]∗
rdrdθ = 4π

α
δpmδqn (6)

Based on the advantages of the multi-channel approach

[36], [37] over the quaternion approach, the input color

images represented using the RGB color model where the

R,G & B channels are expressed using gR (r, θ), gG (r, θ)

& gB (r, θ), respectively. The multi-channel orthogonal

fractional-order exponent moments are:

FrMpq= α

4π

∫ 2π

0

∫ 1

0

gc (r, θ) rα−1

√

2

rα
e−î2πpr

α

e−iqθ rdrdθ

(7)

The image function, gC (r, θ), reconstructed as:

grecons.C (r, θ) =
∞
∑

p=−∞

∞
∑

q=−∞
FrMpq(gC )W

α
pq (r, θ)

≈
pmax
∑

p=−pmax

qmax
∑

q=−qmax
FrMpq(gC )W

α
pq (r, θ) (8)
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The reconstructed color image grecons.C (r, θ) obtained using

grecons.R (r, θ) , grecons.G (r, θ) , and grecons.B (r, θ). The quality

of the reconstructed image is improved as pmax & qmax

increased.

B. GEOMETRIC INVARIANCE OF MFrEMs

Geometric invariant watermarking relies on the invariance

to RST geometric transformations. Through the following

subsections, we mathematically derive and prove the RST

invariance.

1) ROTATION INVARIANCE

Let gC (r, θ) refers to the original color image, then,

the rotated image with an angle β is while g
β
C (r, θ), where:

g
β
C (r, θ) = gC (r, θ − β) (9)

The MFrEMs of g
β
C (r, θ) is

FrMR
pq

(

g
β
C

)

= α

4π

∫ 2π

0

∫ 1

0

g
β
C (r, θ)

[

Wpq (r, θ)
]∗
rdrdθ

= α

4π

∫ 2π

0

∫ 1

0

gC (r, θ − β)Tp(α, r)e−iqθ rdrdθ

= α

4π

∫ 2π

0

∫ 1

0

gC (r, θ)Tp(α, r)e−iq(θ+β)rdrdθ

= α

4π

∫ 2π

0

∫ 1

0

gC (r, θ)Tp(α, r)e−iqθe−iqβrdrdθ

= FrMpq(gC )e
−iqβ (10)

Simply, we could write:

FrMpq

(

g
β
C

)

= e−iqβFrMpq(gC ), C ∈ {R,G,B} (11)

where FrMpq (gC ) and FrMpq(g
β
C ) are the MFrEMs of,

gC (r, θ) and g
β
C (r, θ), respectively.

Since
∣

∣e−iqβ
∣

∣ = 1, for any value of q and β; therefore:

|FrMpq

(

g
β
C

)

| = |e−iqβFrMpq(gC )|

Then:

|FrMpq

(

g
β
C

)

| = |FrMpq(gC )| (12)

Equation (12) proves the rotation invariance of MFrEMs.

2) SCALING INVARIANCE

The scaling invariance of the multi-channels orthogonal cir-

cular moments is valid if these circular moments are com-

puted in polar coordinates [38]. In the proposed method,

the MFrEMs are defined and calculated on the unit circle

where input RGB color images are mapped. (See Fig. 1).

FIGURE 1. Cartesian to Polar mapping: (a) Cartesian pixels, (b) Polar
pixels.

3) TRANSLATION INVARIANCE

Invariance to translation means shifting the coordinate origin

to coincides with image centroid (xc, yc) [39] where xc & yc
defined using geometric moments as:

xc = (m10 (gR) + m10 (gG) + m10 (gB))
/

m00,

yc = (m01 (gR) + m01 (gG) + m01 (gB))
/

m00,

m00 = m00 (gR) + m00 (gG) + m00 (gB) . (13)

The central MFrEMs are:

FrMpq = α

4π

∫ 2π

0

∫ 1

0

gC
(

r, θ
) [

Wpq

(

r̄, θ̄
)]∗

rdrdθ

= α

4π

∫ 2π

0

∫ 1

0

gC
(

r, θ
)

Tp(α, r̄)e−iqθ̄ rdrdθ (14)

C. ACCURATE COMPUTATION OF MFrEMs

Accurate computation of MFrEMs is the cornerstone of

the proposed watermarking algorithm. The accumulations of

both geometrical and numerical errors degrade the process

of watermarking and significantly decrease the robustness of

VOLUME 9, 2021 47427



K. M. Hosny et al.: Robust Color Images Watermarking Using New Fractional-Order Exponent Moments

the watermarking against various attacks. The highly accurate

kernel-based approach [40] utilized where the MFrEMs are

computed as follows:

FrMpq = α

4π

∑

i

∑

j

Kpq
(

ri, θij
)

ĝC
(

ri, θi,j
)

(15)

with

Kpq
(

ri, θij
)

= Ip (ri) Jq
(

θij
)

(16)

We applied the cubic interpolation [41] to get the interpolated

color image, ĝC
(

ri, θ i,j
)

. The angular and radial kernels are

defined as:

Jq
(

θij
)

=
Vi,j+1
∫

Vij

e−îqθdθ (17)

IP (ri) =
Ui+1
∫

Ui

Tp(α, r)rdr =
Ui+1
∫

Ui

R(r)dr (18)

With:

R (r) = Tp(α, r)r (19)

The limits, V i,j+1, V i,j , U i+1 & U i are:

Vi,j+1 = θi,j + 1θi,j/2; Vi,j = θi,j − 1θi,j/2 (20)

Ui+1 = Ri + 1Ri/2; Ui = Ri − 1Ri/2 (21)

Based on the principles of Calculus, Jq
(

θij
)

computed in the

exact form

Jq
(

θi,j
)

=











î

q

(

e−îqVi,j+1 − e−îqVi,j
)

, q 6= 0

Vi,j+1 − Vi,j, q = 0

(22)

Unlike Jq
(

θ ij
)

, calculating Ip (ri) ; requires numerical inte-

gration. Based on its successful implementation in [42], [43],

accurate Gaussian integration [44] is our choice. The Ip (ri)

computed using as:

Ip (ri) =
Ui+1
∫

Ui

R (r) dr ≈ (Ui+1 − Ui)

2

c−1
∑

l=0

wl

×R

(

Ui+1 + Ui

2
+ Ui+1 − Ui

2
tl

)

(23)

The symbols, wl & tl , refer to weights and the locatio l =
0, 1, 2, . . . . .c − 1 of sampling points; c is the order of

the numerical integration. The values of wl are fixed and
∑c−1

l=0 wl = 2. The values of tl can be expressed in terms

of the limits of the integration Ui and Ui+1.

For an efficient computational process, the 8-point symme-

try is applied where the moments’ computation is performed

using the first octant. Fig. 1 shows that the red and blue

colored pixels refer to the first and second kind of symmetry

in the polar raster. Each red pixel in the first octant has

7 similar pixels in the 2nd to 8th octants, while each blue-pixel

has 3 similar pixels on the diagonals.

III. PROPOSED WATERMARKING SCHEME

The MFrEMs are combined with a 1D Sine map to design a

new watermarking algorithm for color images. In this algo-

rithm, we selected RST invariants MFrEMs magnitudes and

used these selected moments to construct a robust watermark.

Then, we used a sine map in scrambling the image features.

Through the following subsection, we consider the host color

image, gc, of size N × N while the watermark is a binary

image, W , of size P × Q where W = {w (i, j) ∈ {0, 1} , 0 ≤
i < P, 0 ≤ j < Q}.

A. EMBEDDING PROCESS

The embedding process is achieved through three steps.

First, the MFrEMs of the host color image are com-

puted. Second, the most significant TSR MFrEMs invari-

ant selected. Third, the bits of the watermark embedded in

the selected moment invariants. Fig. 2 shows an illustrated

flowchart of the embedding process.

Step 1: Transforming and Scrambling the binary

watermark image.

The watermark image, W, is converted to a one-

dimensional vector, W1, where W1 = {w1 (i) : 0 ≤ i <

P × Q}. Then a chaotic sequence C of the length P × Q

generated by using the Sine chaotic map [45] with the initial

value of x0. This map defined as follows:

xn+1 = rsin(πxn) (24)

The variable r is the control parameter of the Sine map, r ∈
[0, 1]. The chaotic sequence C = {c (i) : 0 ≤ i < P × Q}
can be obtained using key K1 as the initial value of the Sine

chaotic mapping, where the initial value of the Sine chaotic

mapping watermark sequence scrambled using Sine chaotic

mapping and a binarized chaotic sequence Ĉ = {ĉ(i), 0 ≤
i < P× Q} is obtained by binarizing C as follows:

Ĉ(i) =
{

1, if ĉ (i) ≥ T

0, if ĉ(i) < T ,
(0 ≤ i < P × Q)

where T refers to the threshold, which is defined as the mean

of C. Then, the binarized watermark sequence is scrambled

from W1 to Ŵ1 by applying the XOR logical operation on

the watermark sequence and the binarized chaotic sequence

Ĉ, and a chaotic scrambled watermark sequence, Ŵ1 =
{ŵ1(i), 0 ≤ i < P × Q}, is generated:

Ŵ1 = XOR(W1, Ĉ) (25)

Step 2: Computing MFrEMs

The scaling and translation invariants of MFrEMs for the

host image are computed according to a maximum moment

order equal to P× Q.

Step 3: Selected MFrEMs

The magnitude values of MFrEMs are computed to

assure the invariances. Xin et al. [10] in their remarkable

work showed that orthogonal moments in circular domain

with q = 4m, m ∈ Z (i.e., m = 0, m = 4, m = 8, m =
12, . . .) are not suitable to embed the watermark bits. The
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FIGURE 2. Watermark embedding framework.

FIGURE 3. Watermark extraction framework.

dependence of the MFrEMs with negative repetition m <

0 on the MFrEMs with positive repetition m > 0 results in an

information redundancy. Therefore, we select MFrEMs with

positive repetitions, q 6= 4m,m ∈ Z , as follows:

S = {
∣

∣FrMpq

∣

∣ , q 6= 4m, m ∈ Z }

By using a secret key K2, P × Q coefficients MFrEMs,

MFrEM , are randomly selected from the accurate coefficients

set S based on the number of digital watermark bits, and the

magnitudes sequence of the feature vector are obtained.

Step 4: Watermark embedding

The binary watermark bits embedded in the host color

image modulate selected MFrEMs using the dither modula-

tion function [10].

m′
FrEM (i) =

[

mFrEM (i)−di(ŵ1(i))

1

]

∗ 1 + di
(

ŵ1(i)
)

,

0 ≤ i < P × Q

di (1) = 1

2
+ di (0) , di (0) ∈ [0, 1] (26)

where mFrEM (i) refers to a vector that contains these magni-

tude values of selected MFrEMs. The vector length is equal

to the number of watermark bits; m′
FrEM (i) refers to the

modulated one; the [·] is the rounding operator; 1 refers to

watermark quantization step; di refers to the dither function

where dither vector elements are uniformly distributed over

[0, 1] and randomly generated.

Step 5: Obtaining the watermarked image

The inverse operation of MFrEMs is applied to obtain the

watermarked color image, gwc (r, θ), as:

gwc (r, θ) = gc (r, θ) − gMc (r, θ) + gM
′

c (r, θ) (27)

where gc (r, θ) denotes the original image, gMc (r, θ) &

gM
′

c (r, θ), are the image components contributed by using

unmodified and modified MFrEMs, respectively.

B. WATERMARK EXTRACTION PROCESS

The extraction process is an inverse process of the embedding

one, where the binary bits of the watermark is extracted.

First, the MFrEMs are computed for the watermarked image

using the same accurate method. Second, a similar selection

process is applied. Third, the same secret keys are employed.

Finally, the binary watermark bits are extracted. Fig. 3 shows

a flowchart for the extraction process.

Step 1: Computing MFrEMs moments of the attacked

watermarked image

The MFrEMs of this image is calculated using the same

accurate method as described in Section II-C.

Step 2: Selected MFrEMs Coefficients

VOLUME 9, 2021 47429
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The P × Q feature vector of MFrEMs, M∗
FrEM =

{

m∗
FrEM (i) , 0 ≤ i < P × Q

}

are selected by using the same

secret key, K2, which is a symmetric key for the embedding

and extraction processes.

Step 3: Extraction of the watermark sequence

The selected MFrEMs magnitudes are extracted using the

same quantization process as:

∣

∣m∗
FrEM (i)

∣

∣

j
=

[
∣

∣m∗
FrEM

∣

∣ − di(j)

1

]

∗ 1 + di (j) , j = 0, 1

(28)

A bit ŵ∗
1(i) is either 0 or 1 based on the value m

∗
FrEM (i) where:

ŵ∗
1(i) = argmin

j∈[0,1]

(

∣

∣m∗
FrEM (i)

∣

∣

j
−

∣

∣m∗
FrEM (i)

∣

∣

)2
(29)

The ŵ∗

1
(i) is called a minimum distance decoder.

Step 4: Generation of the watermark image

The one-dimensional watermark, W ∗
1 , is obtained by

performing reverse Sine mapping and scrambling of

Ŵ ∗
1 = {ŵ∗

1(i), 0 ≤ i < P × Q} using key K1.

Then, W ∗
1 = {w∗

1(i), 0 ≤ i < P× Q} is transformed into a

two-dimensional binary watermark W ∗ = {w∗ (i, j) ∈
{0, 1} , 0 ≤ i < P, 0 ≤ j < Q}.

IV. EXPERIMENTS

Few experiments are performed to test the proposed water-

marking algorithm and compare its performance with recent

existing algorithms [17]–[20] using quantitative and qualita-

tive measures: visual imperceptibility the robustness against

attacks are used as metrics for watermarking performance.

Several criteria are used to qualify the proposed method;

visual imperceptibility was evaluated by Peak Signal-to-

Noise Ratio (PSNR) as a quantitative measure. Robustness

against attacks measured using the Normalized Correlation

(NC) and the bit error rate (BER) as quantitative measures.

In the experiments, eight standard color images, as displayed

in Fig. 4, are selected and used as host images. Eight binary

images, as shown in Fig. 4 used as test watermarks.

FIGURE 4. Standard Color images (Host images).

FIGURE 5. Binary images (watermarks).

FIGURE 6. PSNR using different values of (1).

A. WATERMARK INVISIBILITY

Excellent watermark imperceptibility means an invisible

watermark. In other words, the human eye cannot see the

embedded watermark. The PSNR value is an indicator of

imperceptibility, where increased PSNR means improved

imperceptibility.

The PSNR of the watermarked image, gwc , and the original

image, gc, is:

PSNR
(

gc, g
w
c

)

= 10 log10
2552

MSE
(30)

where:

MSE = 1

N 2





N
∑

i=1

N
∑

j=1

[

gwc (i, j) − gc(i, j)
]2



 (31)

Since various positive real numbers could be assigned to the

fractional parameter α ∈ R+, we must precisely determine

the best choice. To achieve this goal, the authors theoreti-

cally analyzed the behavior of the real-values radial function,

Tp (r, α) , using various values of α; some of these values are

less than 1, and the others are greater than 1. Xiao et al. [28]

showed that 0 < α < 2.
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FIGURE 7. Real-values radial function using the order p = 10: (a) MFrEMs with α = 0.7, (b) MFrEMs with α = 1.9, (c) MFrEMs with α = 2.3, (d) MFrEMs
with α = 2.6.

Accordingly, we used various values of the parameter α

(0.7, 1.9, 2.3, and 2.6) and then plotted the curves corre-

sponding to these values. The plotted curves are displayed

in Fig. 7(a) to 7(d). For α = 0.7, the plotted curve shows

high fluctuations, which makes this selection unacceptable.

Despite the reduction of fluctuationswithα = 2.3&α = 2.6,

the radial function is non-uniformly distributed and tends to

be concentrated at the outer region of the circular domain.

On the other side, the value α = 1.9 represents the best choice

where no fluctuations and the radial function is uniformly

distributed over the entire domain (0 ≤ r ≤ 1). An addi-

tional experiment is performed to confirm this observation.

The standard color image of Lena is reconstructed using the

MFrEMs with α = 0.7, 1.9, 2.3, and 2.6. The reconstructed
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TABLE 1. The average PSNR (dB) using different amounts of (1).

TABLE 2. Average values of BER with various attacks.

images are displayed in Fig. 8. The quantitative and qualita-

tive measures of the reconstructed images show that α = 1.9

is the best choice.

The imperceptibility of the proposed watermark algorithm

was evaluated in the first experiment. The MFrEMs are

computed with α = 1.9. The proposed and the existing

algorithms [17]–[20] used to embed a 128-bit watermark

sequence into the eight standard color images with 1 ∈
[0.2, 0.4, 0.6, 0.8, 1.0]. Fig. 6 clearly shows that the average

PSNR is decreased as the value of 1 is increased. Also,

TABLE 3. Binary watermark extraction with various distortions.

the value 1 = 0.2 results in the highest average PSNR;

therefore, we used this value, 1 = 0.2, in all the performed

experiments.

Each standard image is watermarked using the eight binary

watermarks of 32×32; therefore, the proposed watermarking
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TABLE 4. BER values distorted watermark.

algorithm is tested using 64 watermarked images. The aver-

age PSNR values are computed for all compared algorithms

and plotted in Fig. 6. The PSNR values are decreased as the

quantization step is increased. Table 1 shows the average val-

ues of PSNR computed using different algorithms [17]–[20].

As observed in Fig. 6 and Table 1, the proposed watermark-

ing algorithm achieved the highest values of PSNR, where

all PSNR values are greater than 44 dB, which means that

the proposed scheme achieved the imperceptibility require-

ments. The proposed algorithm outperformed the existing

algorithms [17]–[20].

Based on (32) and (33), NC and BER’s optimum values are

1 and 0.

An additional experiment is conducted to assess the robust-

ness against various attacks. A binary watermark image is

resized to 10 × 10 and embedded into the host images using

the proposed algorithm with α = 1.9, and the existing water-

marking methods [17]–[20]. We reconstructed 64 water-

marked color images for each algorithm and then applied

TABLE 5. NC values of distorted watermarks.

various attacks to distort each of the watermarked images.

The embedded watermark is extracted. The average BER val-

ues for each method are computed and presented in Table 2,

which shows that the new MFrEMs-based watermarking

algorithm provides the most robustness for different attacks.

Tables 4 and 5 show the BER and NC values of the

extracted watermarks using the proposed algorithm and

the algorithms [17]–[20]. The smallest values in Table 4,

while the highest values in Table 5, show the new

MFrEMs-based watermarking algorithm’s superiority over

the algorithms [17]–[20].

B. ROBUSTNESS OF THE WATERMARK

The robustness against the attacks is evaluated using the BER

and NC measures, which are defined as:

BER = 1

P× Q





P
∑

i=1

Q
∑

j=1

[

w (i, j) − w∗ (i, j)
]2



 (32)

NC =

P
∑

i=1

Q
∑

j=1

[

w (i, j) × w∗ (i, j)
]

P
∑

i=1

Q
∑

j=1

[w (i, j)]2
(33)
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FIGURE 8. Reconstructed color images of Lena.

The symbols, W & W ∗, refer to the original and extracted

watermarks.

An additional experiment is conducted using the binary

CUP image of size 32× 32, embedded in Lena’s color image

using the new MFrEMs-based method and the algorithms

in [17]–[20]. The reconstructed watermarked color image

is distorted using different attacks, and then the extracted

CUP watermarks are presented in Table 3. For simplicity,

the corresponding BER and NC for each extracted watermark

are computed and presented in Tables 4 and 5, respectively.

Table 3 shows that the extracted watermarks by the proposed

algorithm recognized after these attacks.

V. CONCLUSION

A new algorithm was proposed for robust watermarking of

color images. This algorithm is based on new fractional-order

multi-channel moments. These MFrEMs are accurate and

stable, where higher-order moments are calculated with min-

imum numerical errors. A 1D Sine chaotic map is used to

scramble the binary watermarks’ bits where these scram-

bled bits are embedded into host color images by adapting

the MFrEMs magnitudes. Simple attacks and a complicated

combination of different attacks are applied to the color

watermarked images. Despite these attacks, the extracted

embedded watermarks are very similar to the original water-

marks. Numerical simulation ensures the embedded water-

mark’s high invisibility and robustness against different kinds

of geometric distortions and attacks. Also, the proposed algo-

rithm outperforms the existing algorithms.
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