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Abstract

We study the robust communication complexity of maximum matching. Edges of an arbitrary
n-vertex graph G are randomly partitioned between Alice and Bob independently and uniformly.
Alice has to send a single message to Bob such that Bob can find an (approximate) maximum
matching of the whole graph G. We specifically study the best approximation ratio achievable
via protocols where Alice communicates only ‹O(n) bits to Bob.

There has been a growing interest on the robust communication model due to its connections
to the random-order streaming model. An algorithm of Assadi and Behnezhad [ICALP’21]
implies a (2/3 + ε0 ∼ .667)-approximation for a small constant 0 < ε0 < 10−18, which remains
the best-known approximation for general graphs. For bipartite graphs, Assadi and Behnezhad
[Random’21] improved the approximation to .716 albeit with a computationally inefficient (i.e.,
exponential time) protocol.

In this paper, we study a natural and efficient protocol implied by a random-order streaming
algorithm of Bernstein [ICALP’20] which is based on edge-degree constrained subgraphs (EDCS)
[Bernstein and Stein; ICALP’15]. The result of Bernstein immediately implies that this pro-
tocol achieves an (almost) (2/3 ∼ .666)-approximation in the robust communication model.
We present a new analysis, proving that it achieves a much better (almost) (5/6 ∼ .833)-
approximation. This significantly improves previous approximations both for general and bi-
partite graphs. We also prove that our analysis of Bernstein’s protocol is tight.
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1 Introduction

Given an n-vertex graph G = (V,E), a matching is a collection of vertex disjoint edges in G and
a maximum matching is the matching with the maximum size. In this paper, we study matchings
in Yao’s (one-way) communication model [13]. The edge-set E is partitioned between two players
Alice and Bob. Alice has to send a single message to Bob such that Bob can find an (approximate)
maximum matching of the whole graph G. We are particularly interested in the trade-off between
the size of the message sent by Alice and the approximation ratio of the output solution. Besides
being a natural problem, this communication model is closely related to streaming algorithms and
has thus been studied extensively over the years [10, 12, 8, 1, 2].

In order to obtain an exact maximum matching, it is known that Ω(n2) bits of communication
are needed [9]. That is, the trivial protocol where Alice sends her whole input to Bob is optimal. The
situation is more interesting for approximate solutions. It is clear that Ω(n) words of communication
are needed for any approximation as the whole matching can be given to Alice. A natural question,
therefore, studied in numerous prior works [10, 11, 12, 1, 2], is the best approximation achievable

via protocols that have a near-optimal communication complexity of ‹O(n) = O(n poly log).

It is not hard to see that if Alice sends a maximum matching of her input to Bob, then Bob
can find a 1/2-approximate matching. There is, however, a more sophisticated approach based
on the powerful edge-degree constrained subgraph (EDCS) of Bernstein and Stein [6] that achieves
an (almost) 2/3-approximation (see the paper of Assadi and Bernstein [3]). This turns out to
be the right approximation under an adversarial partitioning of edges. In their seminal paper,
Goel, Kapralov, and Khanna [10] proved that obtaining a better than 2/3-approximation requires
n1+1/(log logn) � n poly log n communication.

The communication model discussed above is doubly worst-case in that both the input graph
and the edge partitioning are chosen by an adversary. In this paper, we study the so called robust
communication model—à la Chakrabarti, Cormode, and McGregor [8]—where the graph G is still
chosen by an adversary but its edges are now randomly partitioned between Alice and Bob (i.e.,
each edge is uniformly given either to Alice or Bob independently). This model goes beyond the
doubly worst-case scenario discussed above and sheds light on whether the hardness of a problem is
inherent to the input graph or rather a pathological partitioning of its edges. Another motivation
behind the study of the robust communication model is its connections to random-order streams.
In particular, almost all known lower bounds for random-order streams are proved in this robust
communication model.

While existing adversarial partitioning protocols already imply an (almost) 2/3-approximation
in the robust communication model, a random-order streaming algorithm of Assadi and Behnezhad
[1] implies a better bound. Their algorithm starts with an EDCS-based algorithm of Bernstein [5],
and then augments it with a number of short augmenting paths, achieving a (2/3+ε0)-approximation
for some fixed constant 0 < ε0 < 10−18. This remains the best-known approximation in general
graphs. For bipartite graphs, an entirely different approach of Assadi and Behnezhad [2] achieves
a larger .716-approximtaion although their protocol runs in doubly exponential time.

In this paper, we give a new analysis for the EDCS-based protocol of Bernstein [5] showing
that, without any augmentation, it already achieves a much better than 2/3-approximation.

Theorem 1. Bernstein’s protocol [5] with high probability achieves a (1− ε)5/6 ∼ .833 approxi-
mation in the robust communication model using O(n · log n ·poly(1/ε)) words of communication.
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Theorem 1 improves, rather significantly, the state-of-the-art approximation for both general
and bipartite graphs from .667 [1] and .716 [2] respectively to .833. We note that Bernstein’s
protocol runs in linear time in the input size; hence Theorem 1, in addition to improving ap-
proximation, also improves the running time of the algorithm of [2] from doubly exponential to
linear. Besides these quantitative improvements, we believe that a more important qualitative
implication of Theorem 1 is that EDCS, which has been used in the literature to only obtain 2/3
or slightly-larger-than-2/3 approximations in various models, can be used to obtain a significantly
better approximation in the robust communication model.

Our analysis can be applied to the more general multi-party one-way robust communication
model where instead of two players Alice and Bob, the input is randomly partitioned between
k players (see Section 3 for the formal definition of the model). This communication model is
particularly of interest since any lower bound in it, for any choice of k, also implies a lower bound
for random-order streams. We show the following, which generalizes Theorem 1:

Theorem 2. For any k ≥ 2 and any ε > 0, Bernstein’s protocol [5] in the k-party one-way
robust communication model achieves a (1 − ε)(23 + 1

3k )-approximation of maximum matching
using messages of length O(n · log n · poly(1/ε)).

We note that the current best approximation known in the random-order streaming setting for
maximum matching is (2/3 + 10−18) by Assadi and Behnezhad [1]. Theorem 2 implies that either
there is a better random-order streaming algorithm for maximum matching (which likely is the
case), or else to prove a tight lower bound via the multi-party communication model, one has to
consider at least k ≥ 1018/3 parties!

Finally, we show that our guarantees of Theorems 1 and 2 are tight for Bernstein’s protocol.
That is, we show that:

Theorem 3. For any k ≥ 2, there exist an infinite family of graphs G such that the expected
approximation ratio of Bernstein’s protocol in the k-party one-way robust communication model
is at most (23 + 1

3k ).

2 Technical Overview

Bernstein’s protocol constructs two subgraphs H and U of size O(n log n) both of which will be
communicated to Bob. Subgraph H is constructed solely by Alice who does so by revealing only ε
fraction of her input graph. The construction guarantees that for some sufficiently large constant
β ≥ 1, every edge (u, v) ∈ H satisfies degH(u) + degH(v) ≤ β. That is, H has edge-degree upper
bounded by β. This already implies that H has at most O(nβ) = O(n) edges. The subgraph U
is simply the set of all the remaining edges (u, v) in the graph G (given either to Alice or Bob)
for which degH(u) + degH(v) ≤ β − 1. In other words, all the remaining “underfull” edges whose
edge-degree is less than β are added to U . While it is not at all clear that H can be constructed in
such a way that guarantees |U | = O(n log n), Bernstein [5] showed this is indeed possible. At the
end, Bob returns a maximum matching of all the edges that he receives.

The subgraph H∪U can be shown to include an edge-degree constrained subgraph (EDCS) of G,
which is known to include a (2/3−O(ε))-approximate maximum matching of the base graph G for
β ≥ 1/ε [6, 4]. This already implies an (almost) 2/3-approximation in our model. This guarantee

2
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Figure 1: An example where subgraph H ∪ U in Bernstein’s protocol does not include a better than 2/3-
approximation.

is in fact tight for the maximum matching contained in H ∪ U as illustrated in Figure 1. In the
example of Figure 1, the missed (red dashed) edges have edge-degree β in H, and so they do not
belong to U . While the graph in the example of Figure 1 has a perfect matching, any matching in
H ∪ U can only match 2/3-fraction of vertices.

The crucial insight is that although H ∪ U may only include a 2/3-approximate matching of
the graph, Bob in addition will also have access to the set EB of the edges originally given to him
in the random partitioning. So instead of H ∪ U , we need to focus on the size of the maximum
matching contained in H ∪ U ∪ EB. Let us now revisit the example of Figure 1. As we discussed,
the set H is only constructed using a small ε fraction of the edges. Moreover, conditioned on H,
the subgraph U will also be fully determined regardless of how the edges are partitioned between
Alice and Bob. This implies that, even conditioned on the outcome of H and U , each dashed edge
is given to Bob with probability (almost) 1/2. This results in an (almost) 5/6-approximation in
the example of Figure 1: We can combine the 2/3-approximate black matching in U with half of
the dashed edges, obtaining an (almost) 2

3 + 1
2 ·

1
3 = 5

6 approximation. We remark that this example
already shows that our 5/6-approximation guarantee of Theorem 1 is tight for Bernstein’s protocol
(see Theorem 3 for the formal proof).

The nice property of the example of Figure 1 is that subgraph H∪U includes a 2/3-approximate
matching M (the black matching in U) where removing its vertices from the graph still leaves a 1/3-
approximate matching in G (the dashed red edges). If we prove that this holds for every graph, then
we immediately get an (almost) 5/6-approximation analysis for Bernstein’s protocol. Unfortunately,
however, this property does not hold for all graphs. In Section 6, we provide examples of H,U such
that for every matching M in H ∪ U , it holds that

|M |+ 1

2
µ(G− V (M)) ≤ 0.75µ(G),

where µ(G−V (M)) here is the size of maximum matching remained in graph G after removing ver-
tices of M . This implies that this idea is not sufficient to guarantee an (almost) 5/6-approximation
for Bernstein’s protocol.

In our analysis, instead of first committing to a 2/3-approximate matching in H ∪ U and then
augmenting it using the edges in EB, we first commit to a smaller 1/2-approximate matching by
fixing an arbitrary maximum matching M∗ and taking half of its edges that are given to Bob.
The advantage of this smaller 1/2-approximate matching is that it can be augmented much better.
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Specifically, we show that this 1/2-approximate matching, in expectation, can be augmented by a
matching of size (almost) µ(G)/3 using the edges in H ∪ U , achieving overall a matching of size
(almost) 1

2µ(G)+ 1
3µ(G) = 5

6µ(G). The proof of why a matching of size µ(G)/3 can be found within
the available vertices is the crux of our analysis and is formalized via fractional matchings.

3 Preliminaries

We start by formally defining the robust communication model for maximum matching.

Definition 3.1. In the k-party one-way robust communication model, each edge is assigned inde-
pendently and uniformly to one of the parties. The i-th party, supplied with the assigned edges and
a message mi from the (i− 1)-th party, decides what message to send to the (i+ 1)-th party. The
k-th and last party is responsible for reporting a matching. The communication complexity of a
protocol in this model, is defined as the maximum number of words in the messages communicated
between the parties, i.e. maxi |mi|, where |mi| denotes the number of words in mi.

In case k = 2, we refer to the first party as Alice and to the second party as Bob.

We use µ(G) to denote the size of the maximum matching in graph G. For an edge e, we define
its edge-degree as the sum of the degrees of its endpoints.

Background on Matching Theory

Proposition 3.2 (folklore). Let G be any graph, and let x be a fractional matching on G, such
that for every vertex set S ⊆ V that |S| is smaller than 1

ε , we have

∑
e∈G[S]

xe ≤
õ |S|

2

û
.

Then, it holds that µ(G) ≥ (1− ε)
∑

e xe.

Proof sketch. Let z be another fractional matching where ze = (1 − ε)xe. If the x satisfies the

blossom inequality, i.e.
∑

e∈G[S] xe ≤
ö |S|

2

ù
, for all S of size at most 1

ε , Then z satisfies it for all S.

To see this, let S be an odd-sized vertex set size at least 1
ε such that

∑
e∈G[S] xe ≥

ö |S|
2

ù
. Then it

holds: ∑
e∈G[S]

ze = (1− ε)
∑
e∈G[S]

xe ≤
∑
e∈G[S]

xe −
1

2
≤ |S|

2
− 1

2
≤
õ |S|

2

û
.

Hence there exists an integral matching of size at least
∑

e ze = (1− ε)
∑

e xe.

The following definitions were introduced by Bernstein [5]. The proposition, from the same
paper, plays a key role in our analysis.

Definition 3.3. A graph H has bounded edge-degree β, if for all edges (u, v) ∈ EH it holds that
dH(u) + dH(v) ≤ β.

Definition 3.4. Given a graph G, and a subgraph H ⊆ G an edge (u, v) ∈ EG \ EH is (H,β, λ)-
underfull if dH(u) + dH(v) < (1− λ)β.
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Proposition 3.5 (Lemma 3.1 from [5]). Fix any ε ∈
[
0, 12
]
, let λ, β be parameters such that

λ ≤ ε
384 , β ≥ 50λ−2 log

(
1
λ

)
. Consider any graph G, and any subgraph H with bounded edge-degree

β. Let U contain all the (H,β, 3λ)-underfull edges in G \H. Then µ(H ∪ U) ≥
(
2
3 − ε

)
µ(G).

Concentration Inequalities

We use the following concentration inequalities in our proofs.

Proposition 3.6 (Chernoff bound). Let X1, . . . , Xn be independent random variables taking values
in [0, 1]. Let X =

∑
Xi and let µ = E [X]. Then, for any 0 < δ ≤ 1 and 0 < a ≤ µ, we have

Pr (X ≥ (1 + δ)µ) ≤ exp

Å
−δ

2µ

3

ã
and Pr (X ≥ µ+ a) ≤ exp

Å
− a

2

3µ

ã
.

Definition 3.7 ([7]). A function f : {0, 1}n → N is self-bounding if there exist functions f1, . . . , fn :
{0, 1}n−1 → N such that for all x ∈ {0, 1}n satisfy

0 ≤ f(x)− fi(x(i)) ≤ 1 ∀i ∈ [n],

and
n∑
i=1

Ä
f(x)− fi(x(i))

ä
≤ f(x).

Where x(i) is obtained by dropping the i-th component of x.

Proposition 3.8 ([7]). Take a self-bounding function f : {0, 1}n → N, and independent 0 − 1
variables X1, . . . , Xn. Define Z = f(X1, . . . , Xn). Then, it holds that

Pr (Z ≤ EZ − t) ≤ exp

Å −t2
2EZ

ã
.

4 A New Analysis of Bernstein’s Protocol

This section is devoted to the proof of Theorems 1 and 2. We will provide an analysis of Bernstein’s
protocol (Protocol 1) in the two-party model. To make this analysis applicable to the multi-party
model, we assume that each edge is assigned to Bob independently with probability p ≤ 1

2 .

We give a description of the protocol for the two-party model here. The multi-party protocol is
rather similar and we describe it in the Proof of Theorem 2. Let EA be the set of edges assigned to
Alice, and EB be the set of edges assigned to Bob. Also, fix a constant ε ∈

[
0, 12
]

and let λ = ε
384 ,

and β = 50λ−4. The protocol is formalized as Protocol 1.

Claim 4.1 shows that Alice can execute step 2, and that Protocol 1 has communication com-
plexity O(n · log n · poly(1/ε)). Note that taking into account the randomization in dividing the
edges between Alice and Bob, Es can be considered a uniform sample from the whole edge set that
contains each edge with probability ε.

Claim 4.1 (Lemma 4.1 in [5]). Alice, by looking only at the edges of Es, can take a subgraph H ⊆ Es
that has bounded degree β, and with high probability Er = E(G)\Es has at most O(n·log n·poly(1/ε))
many (H,β, λ)-underfull edges.
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Protocol 1: Bernstein’s protocol via EDCS in the two-party one-way robust communication
model.

Alice:

1. Take a subsample Es that includes each edge of EA independently with probability ε
1−p .

2. Take a subgraph H of bounded edge-degree β from Es, such that the number of (H,β, λ)-
underfull edges in Er = E(G) \ Es is O(n · log n · poly(1/ε)) with high probability. (See
Claim 4.1 for the existence of H.)

3. Find the (H,β, λ)-underfull edges of EA \ Es, call them UA.

4. Communicate H ∪ UA to Bob.

Bob:

1. Return the maximum matching in EB ∪H ∪ UA.

For the analysis, we first construct a fractional matching x of expected size
(
2
3 −O(ε)

)
µ(G),

the support of which is contained in H ∪ U . Then we show that a fractional matching y can be
obtained from x, such that its support is contained in EB ∪ H ∪ UA and has expected size at
least

(
2
3 + p

3 −O(ε)
)
µ(G). Finally, we use the structure of y to show that its existence implies

EB ∪H ∪UA has an integral matching almost as large as the size of y. In Section 5, we show that
the approximation ratio is also achieved with high probability.

First, we describe how to obtain the fractional matching x given H ∪ U , where recall that U
is the set of (H,β, λ)-underfull edges in Er. Fix a maximum matching M∗ in Er. Let Min be the
edges of M∗ that appear in H ∪ U , i.e. Min = M∗ ∩ (H ∪ U), and let Mout = M∗ \Min.

• Start with H1 = H, and U1 = U .

• For i = 1, . . . , λβ :

• Let Mi be a maximum matching in Hi ∪ Ui.

• Let Hi+1 = Hi \ (Mi \Min), Ui+1 = Ui \ (Mi \Min).

• For every edge e, let xe =
|{i : e ∈Mi}|

λβ
.

One can think of this process as, starting with H ∪ U , taking a maximum matching Mi each
time, and removing Mi \Min from the graph. Then, letting xe equal to the fraction of matchings
we have taken that include e. Note that the matchings M1, . . . Mλβ can intersect only in Min. We
will use Proposition 3.5 to show that x has expected size at least

(
2
3 −O(ε)

)
µ(G).

Lemma 4.2. It holds that E [
∑

e xe] ≥
(
2
3 −

5
3ε
)
µ(G).

Proof. We apply Proposition 3.5 to Gi = (H ∪Er) \
Ä⋃

j<iMj \Min

ä
, Hi, and Ui. After removing

a matching from H, for any edge, its degree in H will decrease by at most 2. Also, U contains all
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the (H,β, λ)-underfull edges of Er. Hence, Ui contains all the edges of Gi \Hi that have Hi-degree
smaller than (1− λ)β − 2(i− 1) ≥ (1− 3λ)β. Therefore, Proposition 3.5 implies

|Mi| ≥
Å

2

3
− ε
ã
µ(Gi).

Also, notice that Gi always includes M∗, consequently it holds µ(Gi) = µ(Er), and we have:∑
e

xe ≥
1

λβ

∑
i

|Mi| ≥
Å

2

3
− ε
ã
µ(Er)

Taking into account the fact that E [µ(ER)] ≥ (1− ε)µ(G), we get:

E

[∑
e

xe

]
≥
Å

2

3
− ε
ã

(1− ε)µ(G) ≥
Å

2

3
− 5

3
ε

ã
µ(G).

To describe how y is obtained, we condition on Es, thereby fixing H, U , and x. The support
of y is included in EB ∪H ∪ UA, i.e. the edges that Bob will have access to in the end. We show
that y has expected size at least about p · µ(Er) + (1 − p)

∑
e xe, where the randomness is over

how the remaining edges Er are divided between Alice and Bob. Lifting the condition on Es, the
expectation of this value, by Lemma 4.2, is larger than

(
2
3 + p

3 −O(ε)
)
µ(G).

After drawing EB, take a matching M ′, which includes each edge of Min independently with
probability p, and includes each edge of Mout ∩ EB independently with probability 1 − ε. Note,
that conditioned on Es, each edge of Mout is assigned to Bob with probability p

1−ε . Hence, each
edge of Mout ends up in M ′ with probability p

1−ε(1 − ε) = p, i.e. M ′ includes each edge of M∗

independently with probability p.

For any edge e /∈ M∗, define pe as the probability of e not being adjacent to any edge in M ′.
Notice, pe is simply equal to (1− p) to the power of the number of edges in M ′ that are adjacent
to e. We define matching ŷ as follows:

ŷe =


1 if e ∈M ′,
xe if e ∈M∗ \M ′,
0 if e /∈M∗ and e is adjacent to an edge of M ′,

(1− p) · xe
pe

otherwise.

We then scale down ŷ by a factor of 1+ε, and zero out some edges to obtain a fractional matching.
Formally, we let:

y(u,v) =

0 if ŷu/(1 + ε) > 1 or ŷv/(1 + ε) > 1,
ŷ(u,v)

1 + ε
otherwise.

Lemma 4.3. Conditioned on Es, it holds that

E

[∑
e

ye

]
≥ (1− 3ε)p · µ(Er) + (1− 3ε)(1− p)

∑
e

xe − 2εµ(G).

Proof. All the arguments made in this proof are conditioned on Es.
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Claim 4.4. For every vertex u, it holds that E [ŷu] = p ·χM∗(u) + (1− p)xu, where χM∗(u) is equal
to 1 if u is covered by M∗ and zero otherwise.

Proof. First, consider a vertex u that is covered by M∗, say by edge e∗ ∈ M∗. When e∗ appears
in M ′, we have ŷe∗ = 1, and for all the other edges e adjacent to u, the value of ŷe is equal to zero.
Thus, we will have ŷu = 1, i.e. E [ŷu | e∗ ∈M∗] = 1.

Now, we condition on e∗ /∈M ′. In this case, we will have ŷe∗ = xe∗ . Also, for any other edge e
adjacent to u, the probability that e is not adjacent to any edge in M ′ is equal to pe

1−p . Thus with

probability pe
1−p it holds that ŷe = (1 − p) · xepe , and we will have ŷe = 0 otherwise. Hence, we can

write:

E
[
ŷu | e∗ /∈M ′

]
= xe∗ +

∑
e3u
e6=e∗

pe
1− p

·
Å

(1− p) · xe
pe

ã
=
∑
e3u

xe = xu.

Therefore, for a vertex u that is covered by M∗, it holds that

E [ŷu] = p · E
[
ŷu | e∗ ∈M ′

]
+ (1− p) · E

[
ŷu | e∗ /∈M ′

]
= p+ (1− p)xu.

The case where the vertex u is not covered by M∗ follows similarly. For each edge e adjacent
to u we have ŷe = (1− p) · xepe with probability pe, and we have ŷe = 0 otherwise. Thus

E [ŷu] =
∑
e3u

pe ·
Å

(1− p) · xe
pe

ã
= (1− p)xu.

The following claim helps us show that we do not lose much of ŷ when we scale it down and
zero out some of the edges.

Claim 4.5. For every vertex u, we have ŷu ≤ 1 if u is not covered by M∗ or xu ≤ 1
2 , otherwise it

holds that Pr (ŷu > 1 + ε) ≤ ε.

Proof. Consider a vertex u not covered by M∗. For each edge e adjacent to u it holds that pe ≥ 1−p
because e has at most one neighbouring edge in M∗. Hence we have:

ŷu ≤
∑
e3u

(1− p) · xe
pe
≤
∑
e3u

xe ≤ 1.

Now take a vertex u that is covered by M∗, say by edge e∗ ∈ M∗. If e∗ ∈ M ′, then we have
ŷu = 1. Therefore we assume e∗ /∈M ′, and accordingly ŷe = xe. For any other edge e it holds that
pe ≥ (1− p)2. Hence we have:

ŷu ≤ xe∗ +
∑
e3u
e6=e∗

(1− p) · xe
pe
≤ xe∗ +

∑
e3u
e6=e∗

xe
1− p

≤ 2
∑
e3u

xe = 2xu.

Thus, if it holds that xu ≤ 1
2 , then it follows ŷu ≤ 1.

For the other cases, we use the Chernoff bound to show that with high probability ŷu is not
much larger than 1. As mentioned before, if e∗ appears in M ′, it holds that ŷu = 1. Therefore,
we condition on e∗ /∈ M ′. We express X = yu − ye∗ as a sum of independent random variables
that take values in [0, 4/λβ]. Note that since the edges outside Min appear in at most one Mi, for
e /∈M∗ we have xe ≤ 1

λβ .

8



Take an edge e = (u, v) 6= e∗. If v is not matched in M∗ to another neighbour of u, then the
value of ye is independent of the value of the other edges adjacent to u. It is equal to (1−p)· xepe ≤

2
λβ

with probability pe
1−p , and zero otherwise.

If v is matched in M∗ to another neighbour v′ of u. Let e′ = (u, v′). Then the value of ye + y′e
is independent of the value of the other edges adjacent to u. It is equal to (1 − p) · xe+x

′
e

(1−p)2 ≤
4
λβ ,

with probability (1− p), and zero otherwise.

Thus, by pairing the edges that are matched together, we can express X as a sum of independent
random variables in [0, 4/λβ]. The expectation of X, as calculated in Claim 4.4, is equal to
xu − xe∗ ≤ 1. From the Chernoff bound we get:

Pr (ŷu > 1 + ε) ≤ Pr (X > EX + ε)

≤ Pr

Å
X · λβ

4
> µ

λβ

4
+ ε

λβ

4

ã
≤ exp

Å
−ε

2λ2β2/16

3µλβ/4

ã
(By Chernoff bound, noting that Xλβ/4 is a sum of independent random variables in [0, 1].)

= exp

Å
−ε

2λβ

12

ã
< ε, (Since λ = ε

384 and β = 50λ−4)

concluding the proof.

We analyze E [yu]. Consider generating yu, in two steps. First, for every edge (u, v), we let
y(u,v) be equal to 1

1+ε ŷ(u,v) if ŷv ≤ 1 + ε, and zero otherwise. Then, we zero out y for all the edges
adjacent to u if ŷu > 1 + ε.

In the first step, we lose a factor (1 + ε) when we scale ŷu down. Also, by Claim 4.5, when we
zero out edge (u, v) because yv > 1 + ε, we lose an ε-fraction from each edge, and consequently
from E [ŷu]. In the second step, again by Claim 4.5, if xu ≤ 1

2 or u is not covered by M∗ we lose
nothing. Otherwise, we zero out all the edges with probability at most ε. We have ŷu ≤ 2xu ≤ 2,
hence we lose an additive factor of 2ε. Overall for any vertex u we get:

E [yu] ≥ (1− ε)E [ŷu]

1 + ε
− 2ε ≥ (1− 3ε) (p · χM∗(u) + (1− p)xu)− 2ε,

and for any vertex u with xu ≤ 1
2 , we get:

E [yu] ≥ (1− 3ε) (p · χM∗(u) + (1− p)xu) .

Notice that since the sum of the components of x is at most µ(G), there are at most 2µ(G) vertices
with xu ≥ 1

2 . Thus, by summing the last two equations over u we get:∑
u

E [yu] =
∑

u∈V (M∗)

E [yu] +
∑

u/∈V (M∗)

E [yu]

≥

Ñ
(1− 3ε)

∑
u∈V (M∗)

p+ (1− p)xu

é
+

Ñ
(1− 3ε)

∑
u/∈V (M∗)

(1− p)xu

é
− 2ε · 2µ(G)

9



= (1− 3ε)2p · |M∗|+ (1− 3ε)(1− p)
∑
u

xu − 4εµ(G).

Recall that |M∗| = µ(Er). Finally, by dividing both sides by 2, we get:∑
e

E [ye] ≥ (1− 3ε)p · µ(Er) + (1− 3ε)(1− p)
∑
e

xe − 2εµ(G).

Now we lift the condition on Es.

Lemma 4.6. It holds that E [
∑

e ye] ≥
(
2
3 + p

3 − 6ε
)
µ(G).

Proof. We have:

E

[∑
e

ye

]
= E

[
E

[∑
e

ye

∣∣∣∣ Es
]]

≥ E

[
(1− 3ε)p · µ(Er) + (1− 3ε)(1− p)

∑
e

xe − 2εµ(G)

]

≥ (1− 3ε)p · (1− ε)µ(G) + (1− 3ε)(1− p)
Å

2

3
− 5

3
ε

ã
µ(G)− 2εµ(G)

(by E [µ(Er)] = (1− ε)µ(G) and Lemma 4.2)

≥
Å

2

3
+
p

3
−
Å

7

6
p+

29

6

ã
ε

ã
µ(G)

≥
Å

2

3
+
p

3
− 6ε

ã
µ(G).

We show that EB ∪H ∪ UA has an integral matching almost as large as the size of y.

Lemma 4.7. There exists a matching of size (1− 3ε)
∑

e ye in EB ∪H ∪ UA.

Proof. Notice that for every edge e, except the edges of M∗ which is a matching, it holds that
ye ≤ 4

λβ ≤ ε
3. Therefore, for any vertex set S ⊆ V that |S| is smaller than 1

ε , we have:

∑
e∈G[S]

xe =
∑

e∈G[S]∩M∗
xe +

∑
e∈G[S]\M∗

xe ≤ |G[S] ∩M∗|+ 1

ε2
ε3 ≤

õ |S|
2

û
+ ε.

Hence, we can apply Proposition 3.2 to (1− 2ε)y, to get µ(EB ∪H ∪ UA) ≥ (1− 3ε)
∑

e ye.

Proof of Theorem 1. By Claim 4.1, Bernstein’s protocol (Protocol 1) is implementable using only
O(n · log n · poly(1/ε)) words of communication.

By Lemma 4.6 there exists a fractional matching y of expected size
(
2
3 + p

3 − 6ε
)
µ(G). Putting

this together with Lemma 4.7, we can conclude Protocol 1 achieves a
(
2
3 + p

3 − 9ε
)

approximation
ratio. To see this approximation ratio is also achieved with high probability, refer to Section 5.
Finally, letting p = 1

2 and rescaling ε proves the theorem.

Proof of Theorem 2. We need to adjust Protocol 1 for the k-party model. The first party will
sample each of its edges independently with probability ε/(1 − 1/k) to obtain Es. It will then

10



construct the subgraph H ⊆ Es with bounded edge-degree, and send it to the next party along
with the (H,β, λ)-underfull edges. Each of the next parties, except the last, communicates the
(H,β, λ)-underfull edges it has been assigned along with the edges in the message it has received,
to the next party. Finally, the last party will report the maximum matching in the graph consisting
of all the edges to which it has access.

This way, setting p = 1
k , the first k − 1 parties will act as Alice in our analysis, and the last

party acts as Bob. Hence, by a similar argument as in the Proof of Theorem 1, Protocol 1 achieves
a (23 + 1

3k − 9ε) approximation ratio, and a rescaling of ε proves the theorem.

5 From Expectation to High Probability

In this section, we show that with a slight modification, Bernstein’s protocol (Protocol 1) achieves
the 5

6 -approximation with high probability. To do so, Alice should send all the edges to Bob when
the number of edges is too small.

Claim 5.1. Without loss of generality, we can assume µ(G) = Ω (log n).

Proof. A charging argument can be used to show that the number of edges in G is less than 2nµ(G).
Fix a maximum matching M in G. For any edge e, charge a unit to an edge of M that is adjacent
to e. Such an edge must exist since M is a maximum matching. This way, we charge once for every
edge in G, and every edge of M is charged at most n times through each of its endpoints.

To see why the claim is true, note that in case µ(G) is too small, i.e. µ(G) = O(log n), the
number of edges in the graph will be O(n log n) and Alice can send all of its edges to Bob.

Lemma 5.2. Assuming that µ(G) = Ω(log n), whatever approximation ratio Protocol 1 achieves
in expectation, it will achieve with high probability.

Proof. We condition on the sample edge set Es, thereby fixing H and U . Bob will have access to
the edges of H ∪ U because they are either assigned to Bob, or they are communicated to Bob by
Alice. Let e1, . . . , ek be the other edges, i.e. the edges of Er \U . Each of these edges is assigned to

Bob independently with probability 1/2
1−ε .

We define a self-bounding function f : {0, 1}k → Z. For x ∈ {0, 1}k, the value of f(x) is equal
to the maximum matching of H ∪ U ∪Ex, where Ex = {ei | xi = 1}. Equivalently, f(x) is the size
of the output matching when the edges {ei | xi = 1} are assigned to Bob, i.e. EB ∪H ∪UA is equal
to Ex ∪H ∪ U . Also, let fi(x

(i)) = f(x1, . . . xi−1, 0, xi+1, . . . xk).

Take any x ∈ {0, 1}k. Notice that fi(x
(i)) is equal to µ(Ex \ ei), and removing an edge from a

graph, will decrease its maximum matching by at most 1. Therefore, it holds:

0 ≤ f(x)− fi(x(i)) ≤ 1, ∀i : 1 ≤ i ≤ k.

Take the maximum matching M in H ∪ U ∪ Ex, and let I be the indices of the edges in Ex ∩M ,
i.e. I = {i | xi = 1 and ei ∈M}. For any i /∈ I, the edge set Ex \ ei includes M . Therefore, fi(x

(i))
is equal to f(x), and we have:

k∑
i=1

Ä
f(x)− fi(x(i))

ä
≤ |I| = f(x).

11



Thus, f is a self-bounding function.

We can now apply Proposition 3.8. Let Xi be the indicator variable that ei is assigned to Bob,
i.e. Xi is equal to 1 when ei ∈ EB. Let Z = f(X1, . . . , Xk), and µ = E [Z] = rµ(G). That is, Z
is the size of the output matching, and r is the approximation ratio that Protocol 1 achieves in
expectation. By Proposition 3.8, we have:

Pr
(
Z ≤ rµ(G)−

»
2µ(G) log n

)
≤ exp

Å
−2µ(G) log n

2µ(G)

ã
=

1

n
.

Thus, with high probability Protocol 1 outputs a matching of size (1− o(1))rµ(G). Note that the
deviation is o(1) by the assumption that µ(G) = Ω(logn).

6 Some Instances for Bernstein’s Protocol

In this section, we first prove Theorem 3 that our analysis of Bernstein’s protocol in Theorems 1
and 2 are tight. Then, we formalize a remark we made in Section 2.

Proof of Theorem 3. Consider a bipartite graph G(L,R), such that |L| = |R|. Where L consists
of three equally-sized groups of vertices A1, A2, and A3, and similarly R consists of B1, B2, and
B3. The induced subgraphs M1 = G[A1, B1], M2 = G[A2, B2], and M3 = G[A3, B3] are perfect
matchings. The induced subgraphs K1 = G[A1, B2] and K2 = G[A2, B3] are complete bipartite
graphs, and there are no other edges in the graph (see Figure 1). Note that G has a perfect

matching, i.e. the size of the maximum matching is equal to |L| = |R|. Let β ≤ |V (G)|
12k which is

O(|V (G)|).
Let EL be the set of edges assigned to the last party. To upper bound the approximation ratio

of the multi-party protocol, we construct a vertex cover for EL∪H∪U . It is a well-known fact that
the size of the minimum vertex cover is larger than the size of the maximum matching. With high
probability, the first party can take H to be completely inside K1 ∪K2, so that U will be equal the
M1 ∪M3, and no edges of M2 will appear in H ∪ U .

Let X = V (M2 ∩EL)∩A2, i.e. X includes one endpoint from every edge of M2 that is assigned
to the last party. We claim A1 ∪B3 ∪X is a vertex cover for EL ∪H ∪U . This is true because A1

covers the edges of M1 and K1, B3 covers the edges of M3 and K2, and X covers all the remaining
edges, which is EL ∩M2.

Conditioned on the H as described above, each edge of M2 will be assigned to Bob with
probability 1/k

1−ε . Thus the expected size of the vertex cover is equal to

|A1|+ |B3|+
1/k

1− ε
|A2| =

Å
1

3
+

1

3
+

1/k

1− ε
· 1

3

ã
µ(G) ≤ (1 + 2ε)

Å
2

3
+

1

3k

ã
µ(G).

Letting ε be arbitrarily small proves the theorem.

As mentioned in Section 2, the graph discussed in Theorem 3 (see Figure 1) has a nice property,
i.e. there exists a large matching M such that G− V (M) also has a large matching. As the output
of Bernstein’s protocol has expected size of at least |M | + 1

2µ(G − V (M)), which in this case is
equal to 5

6µ(G), this property might seem useful to analyze the protocol. However, the following
claim shows that such an M does not generally exist.
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Claim 6.1. There exists a graph G, with arbitrarily large number of vertices, such that for β ≤
|V (G)| /4, there is a choice of H and U , such that every matching M in H ∪ U satisfies |M | +
1
2µ(G − V (M)) ≤ 0.75µ(G). Where here H is subgraph with bounded edge-degree β, and U is the
set of the underfull edges in G \H, i.e. the edges of G \H with H-degree smaller than β − 1.

Proof. Let G(L,R) be a bipratite graph, such that |L| = |R|. Where L consists of four equally-sized
groups of vertices A1, A2, A3, and A4, and similarly R consists of B1, B2, B3, and B4. The induced
subgraphs M1 = G[A1, B1], M2 = G[A2, B2], M3 = G[A3, B3], and M4 = G[A4, B4] are perfect
matchings. The induced subgraphs K1 = G[A1, B2], K2 = G[A2, B3], and K3 = G[A3, B4] are
complete bipartite graphs, and there are no other edges in the graph. Note that G has a perfect
matching (see Figure 2).

A1 A2

U
H
missed

B1 B2 B3

A3

B4

A4

Figure 2: An example where every matching M satisfies |M |+ 1
2µ(G− V (M)) ≤ 0.75µ(G).

LetH be a (β/2)-regular subgraph ofK1∪K2∪K3. The corresponding U is equal toM1∪M4, and
none of the edges inM2∪M3 appear inH∪U . We prove that maxM |M |+1

2µ(G−V (M)) ≤ 0.75µ(G),
where M ranges over all the matchings in H ∪ U . We say that a matching is optimal if it achieves
the maximum possible value for |M |+ 1

2µ(G− V (M)).

First, we prove there exists an optimal matching that includes all of M1 ∪M4. To see this,
take an optimal matching M . Take any vertex u in A1, and let its adjacent edge in M1 be e.
If u is covered by some edge e′ ∈ M , then removing e′ from M and adding e does not decrease
|M |+ 1

2µ(G−V (M)). Because this would not change |M | and can only increase µ(G−V (M)). Also,
when u is not covered by M , adding the e to M will cause |M | to grow by one, and µ(G− V (M))
to decrease by at most one. A similar argument holds for the vertices in B4. Hence, by repeatedly
adding such edges, we can obtain an optimal matching containing M1 ∪M4.

Now we can restrict our attention to A2 ∪ A3 ∪B2 ∪B3. We claim no matter what the rest of
M (a.k.a. M \ (M1 ∪M2) = M ∩ K2) is, the value of |M | + 1

2µ(G − V (M)) would be the same.
Because if |M ∩K2| is equal to k, it holds that µ(G − V (M)) = 1

2µ(G) − 2k. Hence the optimal
value of |M |+ 1

2µ(G− V (M)) is equal to

|M1|+ |M2|+ k +
1

2

Å
1

2
µ(G)− 2k

ã
=

3

4
µ(G).

To see why µ(G−V (M)) = 1
2µ(G)−2k, note that since M1∪M4 ⊆M , any vertex of B2∪A3 is

a singleton in G−V (M). Hence, a maximum matching in G−V (M) is the set of edges in M2∪M3

that are not adjacent to an edge of M , which has size 1
2µ(G)− 2k.
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