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ROBUST CONSENSUS FOR CONTINUOUS-TIME
MULTIAGENT DYNAMICS∗
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Abstract. This paper investigates consensus problems for continuous-time multiagent systems
with time-varying communication graphs subject to input noise. Based on input-to-state stability
and integral input-to-state stability, robust consensus and integral robust consensus are defined
with respect to L∞ and L1 norms of the noise function, respectively. Sufficient and/or necessary
connectivity conditions are obtained for the system to reach robust consensus or integral robust
consensus under mild assumptions. The results answer the question on how much interaction is
required for a multiagent network to converge despite a certain amount of input disturbance. The
ε-convergence time is obtained for the consensus computation on directed and K-bidirectional graphs.
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1. Introduction. Coordination of multiagent networks has attracted a signif-
icant amount of attention in the past few years, due to its broad applications in
various fields of science including physics, engineering, biology, ecology, and social
science [42, 15, 25, 21, 9]. Distributed control using neighboring information flow has
been shown to ensure collective tasks such as formation, flocking, rendezvous, and
aggregation [24, 17, 18, 19, 30].

Central to multiagent coordination is the study of consensus, or state agree-
ment, which requires that all agents achieve a common state. The idea of dis-
tributed consensus arose as early as 1980s in the classical work [41] for the study
of distributed optimization methods. Since then consensus seeking has been exten-
sively studied in the literature for both continuous-time and discrete-time models
[15, 21, 38, 39, 3, 4, 28, 18, 45, 46, 49, 48], where node interactions are carried out
over an underlying communication graph. The connectivity of this communication
graph plays a key role in consensus analysis. The “joint connectivity,” i.e., connectiv-
ity defined on the union graph over a time interval, and similar concepts are impor-
tant in the analysis of consensus stability with time-dependent topology. Uniformly
joint connectivity, which requests that the union graph be connected for all intervals
longer than some positive constant, has been employed for consensus problems for
discrete-time and continuous-time agent dynamics, as well as directed and undirected
interconnection topologies [41, 15, 18, 13, 6]. In [15], the authors proved the consen-
sus of a simplified Vicsek model under uniformly joint connectivity, followed by some
more precise analysis in [3, 4, 28]. In [13] and [6], the jointly connected coordina-
tion was investigated for second-order agent dynamics. A nonlinear continuous-time
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model was discussed in [18] with directed communications, in which convergence to
a consensus is shown to be uniform for bounded initial conditions. The [t,∞)-joint
connectivity requires the union graph to be connected for infinitely many disjoint
intervals in [0,∞] and was discussed in [21] for consensus seeking of discrete-time
agents. This connectivity concept was then extended to continuous-time distributed
control analysis for target set convergence and state agreement in [30].

Communication over networks is often unreliable and noisy. This inspired research
on the robustness of consensus algorithms [43, 44, 22, 14, 16, 40]. In [27], robustness
was discussed for average consensus algorithms. In [16], a Kalman filter consensus
algorithm was shown to be input-to-state stable. Then in [43, 44], robust consensus
was studied under directed communication graphs for discrete-time systems. For
continuous-time multiagent systems, robustness of consensus was established by an
H2 bound for networks of single integrators with a fixed directed communication
graph in [47]. In [40], robust consensus with diverse input delays and asymmetric
interconnection perturbations was discussed for a second-order leader-follower model.
Recently, an optimal synchronization protocol was studied for discrete-time double
integrators subject to process noise [5].

Clearly, robustness of consensus algorithms subject to noise highly relies on the
convergence rate for the algorithm in the absence of noise. Convergence rates for
discrete-time models have been treated for both deterministic and randomized models
[18, 4, 26, 23, 2], where the concept of ε-convergence time defined as the minimum time
required for the network to reach a certain level of consensus captured by a parameter
ε, served as a proper measure for the convergence speed. Bounds of ε-convergence time
have been widely established in the literature for discrete-time dynamics [2, 4, 26],
and recently a sharp bound was presented in [23] indicating that the convergence time
is of order O(n2B), where n is the number of nodes in the network and B is a lower
bound for the time interval in the definition of uniformly joint connectedness. Few
results have been obtained on the convergence rates for continuous-time multiagent
systems reaching a consensus on switching directed graphs. In [25], a convergence rate
was established when the switching graphs are always kept strongly connected. In
[20], it was proved that exponential consensus can be achieved if a node can be found
such that it is the root of some union graphs on time intervals with a positive lower
bound of length. In [18], for a generalized nonlinear variation of the continuous-time
dynamics with a more restricted switching rule, the authors extended this result and
showed that uniform asymptotic consensus can be achieved if and only if the union
graph on every time interval with a positive lower bound of length admits a directed
spanning tree. In all these results, explicit convergence rates were not obtained, so
the ε-convergence time for continuous-time systems with switching directed graphs is
still open. In [31], convergence rates were established explicitly for a leader-follower
model with multiple moving leaders, but the analysis cannot be applied to general
multiagent systems due to the special structure of leader-follower models and the
assumptions on the switching graphs.

The primary aim of this paper is to establish consensus convergence for first-order,
continuous-time multiagent systems with input noise for time-varying and directed
communication graphs. Borrowing ideas from input-to-state stability (ISS) and in-
tegral input-to-state stability (iISS) [36, 37], we define robust consensus and integral
robust consensus. We present explicit convergence bounds for the system with re-
spect to L∞ and L1 norms of the input noise. Sufficient and necessary connectivity
conditions are obtained for the system to reach robust consensus or integral robust
consensus, respectively, for directed graphs and a class of K-bidirectional graphs. As
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a result of the robustness analysis, some upper bounds for the ε-convergence time
are established. To the best of our knowledge, the results are the first to show that
consensus is reached exponentially in t with uniformly jointly connected graphs, while
“exponentially” in the times that the joint graph are connected with infinitely jointly
connected graphs. Compared to the literature, our results are based on quite mild
assumptions which allow infinite switches in bounded time intervals and unbounded
weight functions for the arcs in the communication graph.

A preliminary version of this paper was presented in [33], where the weight func-
tions were assumed to admit some positive lower and upper bounds. In the current
work, inspired by [20], we can derive the same robust consensus results based on condi-
tions relying only on the integral of these weight functions. In [35], the role persistent
arcs play in consensus seeking was discussed on a fixed underlying graph, where inter-
action arcs whose weight functions have infinite integral over the entire time horizon
are called persistent arcs. The current paper enjoys some similar idea and analysis
techniques on weight function integrals as [35], but the results in the current work
and [35] cannot cover each other because [35] considers fixed graphs with a crucial
arc-balance condition. We also believe that our robust consensus results would be
useful in various more advanced problems in multiagent systems since the noise term
can be interpreted in many ways. Such examples include [34, 32], where in [34] the
noise term corresponds to an event-triggering condition in distributed event-triggered
consensus, and in [32] the noise term corresponds to a convex projection term in a
distributed optimization problem.

The paper is organized as follows. In section 2, some preliminary concepts are
introduced. We set up the system model and present our standing assumptions and
the problem of interest in section 3. Then convergence analysis is carried out for
directed and K-bidirectional graphs in sections 4 and 5, respectively. Finally, some
concluding remarks are given in section 6.

2. Preliminaries. Here we introduce some notation and theories on directed
graphs and Dini derivatives.

2.1. Directed graphs. A directed graph (digraph) G = (V , E) consists of a
finite set V = {1, . . . , N} of nodes and an arc set E , where an element e = (i, j) ∈ E
is an arc from node i and to j [11]. An alternating sequence v0e1v1e2v2 . . . envn of
nodes vi, i = 1, 2, . . . , n, with arcs ei = (vi−1, vi) ∈ E ∀ i, is called a (directed) path
with length n. A path with no repeated nodes is called a simple path. If there exists a
path from node i to node j, then node j is said to be reachable from node i. A node
v from which any other node is reachable is called a center (or a root) of G. A digraph
G is said to be strongly connected if each node is reachable from the other for every
two different nodes and quasi-strongly connected if G has a center [1, 18]. For graph
G = (V , E) if each arc (i, j) ∈ E is additionally associated with a weight aji > 0, we
call G a weighted digraph, and we denote it as GA =

(V , E , A) with A = [aij ] ∈ RN×N .
In this paper, we define the (generalized) distance from i to j, d(i, j), as the length
of a longest simple path from i to j if j is reachable from i, and the (generalized)
diameter of G as max{d(i, j) : i, j ∈ V , j is reachable from i}.

2.2. Dini derivatives. The upper Dini derivative of a function h : (a, b) → R

at t is defined as

D+h(t) = lim sup
s→0+

h(t+ s)− h(t)

s
.

The next result is useful for the calculation of Dini derivatives [8, 18].
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Lemma 2.1. Let Vi(t, x) : R × Rm → R (i = 1, . . . , n) be C1 and V (t, x) =
maxi=1,...,n Vi(t, x). If I(t) = {i ∈ {1, 2, . . . , n} : V (t, x(t)) = Vi(t, x(t))} is the set of

indices where the maximum is reached at t, then D+V (t, x(t)) = maxi∈I(t) V̇i(t, x(t)).

Notation. For a vector z = (z1, . . . , zN)T in RN , |z| denotes the maximum norm,
i.e., |z| .

= maxi=1,...,N |zi|. When z : R≥0 → RN is a measurable function defined on
[0,+∞), ‖z‖∞ denotes the essential supremum of {|z(t)|, t ∈ [0,+∞)}. Moreover, a
function γ : R≥0 → R≥0 is said to be a K-class function if it is continuous, strictly
increasing, and γ(0) = 0; a function β : R≥0 × R≥0 → R is a KL-class function if
β(·, t) is of class K for each fixed t ≥ 0 and β(s, t) → 0 decreasingly as t → ∞ for
each fixed s ≥ 0.

3. Problem definition.

3.1. Network, dynamics, and assumption. Consider a multiagent system
with agent set V = {1, . . . , N}, N ≥ 2. Each agent (node) i holds a state xi(t) ∈ R.
The initial time is t0 ≥ 0. The evolution of the node states follows

(3.1) ẋi(t) =
N∑
j=1

aij(t)
(
xj(t)− xi(t)

)
+ wi(t), i = 1, . . . , N,

where aij(t) ≥ 0 is a function marking the strength of the information flow from j to
i for i, j ∈ V , and wi(t) is the input noise in node i’s dynamics which may come from
the information exchange with other nodes or simply measurement disturbance.

For aij(t) and wi(t), i, j ∈ V , we impose the following assumption, which will be
our standing assumption throughout the rest of the paper.

Assumption. (i) For all i, j ∈ V , aij(t) and wi(t) are continuous functions on
[0,∞) except for at most a set with measure zero; (ii) aii(t) ≡ 0 ∀ i; (iii) there exists a

constant M0 > 0 such that
∫ t2
t1

aij(s)ds ≤ M0|t2 − t1| ∀ i, j ∈ V and 0 ≤ t1 < t2 < ∞.
Under this assumption the set of discontinuity points for the right-hand side

of (3.1) has measure zero. Therefore, the Caratheodory solutions of (3.1) exist for
arbitrary initial conditions, and they are absolutely continuous functions that satisfy
(3.1) for almost all t on the maximum interval of existence [10, 7]. In the following,
each solution of (3.1) is considered in the sense of Caratheodory without explicit
mention. Moreover, note that our assumption also allows the weight functions aij(t)
to be unbounded, which generalizes the model discussed in [20].

3.2. Arcs, graph, and connectivity. Naturally the node dynamics (3.1) cor-
responds to a time-varying, directed underlying communication graph, defined as
follows.

Definition 3.1. The underlying communication graph of system (3.1) at time t
is defined as weighted graph GA(t) =

(V , Et, A(t)), where ∀i, j ∈ V, (j, i) ∈ Et if and
only if aij(t) > 0.

This graph GA(t) characterizes all the information exchange among the nodes and
therefore plays a fundamental role in the evolution of the node states. In light of the
definition of δ-graphs in [20], we introduce the following definition on the connectivity
of GA(t).

Definition 3.2. Let δ > 0 be a given constant.

(i) An arc (i, j) is said to be a δ-arc of GA(t) on time interval [t1, t2) if
∫ t2
t1

aji(t) ≥
δ. A path is said to be a δ-path of GA(t) on time interval [t1, t2) if every arc
is a δ-arc in this path.
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(ii) GA(t) is said to be uniformly quasi-strongly δ-connected if there exists a con-
stant T > 0 such that for any t ≥ 0, the δ-arcs of GA(t) on time interval
[t, t+ T ) form a quasi-strongly connected graph on node set V.

(iii) GA(t) is said to be infinitely jointly quasi-strongly δ-connected if for any t ≥ 0,
the δ-arcs of GA(t) on time interval [t,∞) form a quasi-strongly connected
graph on node set V.

Remark 3.3. Consider the time-varying graph Gt = (V , Et) ignoring the arc
weights. Then we see that Gt is not necessarily piecewise constant since infinite
switches are allowed for aij(t), i, j ∈ V in a bounded interval for the considered model.

3.3. The robust consensus problem. Denote x(t) = (x1(t), . . . , xN (t))T .
Consider system (3.1) with initial condition x(t0) = x0 ∈ RN . Let

�(t)
.
= max

i∈V
{xi(t)}, �(t)

.
= min

i∈V
{xi(t)}

be the maximum and minimum state value at time t, respectively. Denote H(x(t)) .
=

�(t)− �(t) which serves as a metric of consensus for the considered system.
Introduce F .

= {z : R≥0 → RN : ‖z‖∞ < ∞, and z continuous except for at
most a set with measure zero}. Inspired by the concepts of ISS and iISS [37, 36], we
introduce the following definition.

Definition 3.4.

(i) System (3.1) achieves global robust consensus if there exist a KL-function β
and a K-function γ such that ∀ w ∈ F , initial time t0 ≥ 0, and initial state
x(t0) = x0, it holds that

(3.2) H(x(t)) ≤ β
(H(x0), t

)
+ γ(‖w‖∞), t ≥ 0.

(ii) System (3.1) achieves global integral robust consensus if there exist a KL-
function β and a K-function γ such that ∀ w ∈ F , initial time t0 ≥ 0, and
initial state x(t0) = x0, it holds that

(3.3) H(x(t)) ≤ β
(H(x0), t

)
+

∫ t

0

γ(|w(s)|)ds, t ≥ 0.

We also introduce the following definition on consensus.
Definition 3.5.

(i) System (3.1) achieves global consensus if for any initial condition x(t0) =
x0 ∈ RN , we have limt→∞ H(x(t)) = 0.

(ii) Assume that F0 ⊆ F . System (3.1) achieves global asymptotic consensus
with respect to F0 if ∀x0 ∈ RN , ∀w ∈ F0, ∀ε > 0, ∀c > 0, ∃T > 0 such that
∀t0 ≥ 0,

H(x0) ≤ c =⇒ H(x(t)) ≤ ε ∀t ≥ t0 + T.

In [31], a set tracking problem is studied for multiagent systems guided by multiple
leaders. However, the convergence results in [31] cannot be applied to the system
discussed in this paper. In the leader-follower model, the leader can always be treated
as a center node and therefore the network has a very special topology. The main
difficulty in this paper lies in that the center node may be different for different time
intervals and that its dynamics is influenced by other nodes. As will be shown in the
following discussions, the symmetry in the structure of H(t) plays a key role in the
convergence analysis. Hence, the contribution of this paper is far beyond [31].
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We conclude this section with a few remarks. System (3.1) is a basic model for
continuous-time distributed consensus, and it serves as a basic method for cooperative
control of multiagent systems [25, 30, 31, 19, 29, 15]. The consensus convergence of
system (3.1) or its nonlinear variations for the noiseless case has been extensively
studied in existing works [25, 20, 28, 30, 18]. Compared to these previous works, the
model considered in this paper is quite general for the reasons that we do not impose
piecewise continuous switching for node dynamics with or without dwell time, nor the
bounded arc weights of the information flow. Moreover, the consensus metric H(x(t))
is also used in [20, 18], which turns out to be a suitable measure for consensus under
directed and switching node interactions. In fact, the idea of introducing H(x(t))
are consistent with the analysis of Markov chains in classical works [12]. The target
of the paper is to investigate the role of the underlying communication graph and
the presence of noise in robust consensus. The analysis essentially relies on a careful
characterization for the convergence rates of system (3.1) in the absence of noise.

4. Directed graphs. For directed communication graphs, we present the fol-
lowing results.

Theorem 4.1. System (3.1) achieves global robust consensus if and only if there
exists a constant δ > 0 such that the underlying communication graph GA(t) is uni-
formly quasi-strongly δ-connected.

Theorem 4.2. System (3.1) achieves global integral robust consensus if there ex-
ists a constant δ > 0 such that the underlying communication graph GA(t) is uniformly
quasi-strongly δ-connected.

It has been shown in [36] that ISS implies iISS. Now combining Theorems 4.1
and 4.2, we see that robust consensus implies a uniformly quasi-strongly δ-connected
communication graph, which further implies integral robust consensus. Thus, robust
consensus and integral robust consensus are consistent with the ISS and iISS prop-
erties. Moreover, it is worth pointing out that Theorem 4.2 is not conservative since
simple examples can show that uniformly jointly quasi-strong δ-connectivity is not
necessary for integral robust consensus.

In this section, we first establish two technical lemmas, followed by the proofs of
Theorems 4.1 and 4.2.

4.1. Key lemmas. We first establish the following lemma indicating that the
Dini derivative of �(t) is bounded above by |w(t)|, and the Dini derivative of �(t) is
bounded below by −|w(t)|.

Lemma 4.3. For all t ≥ t0 ≥ 0, we have

D+
�(t)| ≤ |w(t)|; D+�(t) ≥ −|w(t)|.

Proof. We prove D+
�(t) ≤ |w(t)|. The other part can be proved similarly.

Let I(t) represent the set containing all the agents that reach the maximum in
the definition of �(t) at time t, i.e., I(t) = {i ∈ V| xi(t) = �(t)}. Then according to
Lemma 2.1, we obtain

D+
�(t) = max

i∈I(t)
ẋi(t)

= max
i∈I(t)

[ ∑
j∈Ni(σ(t))

aij(t)
(
xj(t)− xi(t)

)
+ wi(t)

]
≤ max

i∈I(t)
wi(t) ≤ |w(t)|,

which completes the proof.
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Suppose there exists a constant δ > 0 such that the underlying communication
graph GA(t) is uniformly quasi-strongly δ-connected. Define a set-valued function

f : Z+ → 2{1,...,N}, where 2{1,...,N} represents the power set containing all the subsets
of {1, . . . , N}:

f(s) =
{
j : there is a δ-path from j to every other nodes over [(s− 1)T, sT )

}
,

where s = 1, 2, . . . . In other words, f(s) is a set consisting of all nodes that are center
nodes for the graph of δ-arcs on time interval [(s − 1)T, sT ). The following lemma
holds.

Lemma 4.4. Suppose there exists a constant δ > 0 such that the underlying
communication graph GA(t) is uniformly quasi-strongly δ-connected. Then for any
t = 1, 2, . . . and any integer D > 0, there exists k0 ∈ {1, 2, . . . , N} such that k0 ∈ f(s)
at least D times for s = t, t+ 1, . . . , t+ (d0 − 1)N .

Proof. Suppose k ∈ f(s) for less than D times (i.e., less than or equal to D − 1)
during [t, t+ (D − 1)N ] ∀ k ∈ {1, 2, . . . , N}. Then, the total number of the elements
of all the preimages of f on interval s ∈ [t, t+ (D− 1)N ] is no larger than (D− 1)N .
However, on the other hand, there are at least (D− 1)N+1 elements (counting times
for the same node) belonging to f(s) during s ∈ [t, t + (d0 − 1)N ] since f(ς) = ∅
∀ ς = 1, 2, . . . . Then we get a contradiction and the conclusion is proved.

4.2. Proof of Theorem 4.1.

4.2.1. Necessity. Suppose there is no δ > 0 such that the underlying commu-
nication graph GA(t) is uniformly quasi-strongly δ-connected. Then ∀δ > 0, ∀T∗ > 0,

there exists t∗ ≥ 0 such that the graph G∗ = (V , E∗), with E∗ defined by E∗ =
{
(i, j) :∫ t∗+T∗

t∗
aji(t)dt ≥ δ

}
containing all the δ-arcs on time interval [t∗, t∗ + T∗), is not

quasi-strongly connected.

Consequently, there exist two distinct nodes i and j such that V̄1 ∩ V̄2 = ∅,
where V̄1 = {nodes from which i is reachable in G∗} and V̄2 = {nodes from which j
is reachable in G∗}. Let wi(t) ≡ 0 for i ∈ V̄1 and wi(t) ≡ 1 for i ∈ V \ V̄1 when
t ∈ [t∗, t∗+T∗]. Let the initial time be t∗ with xi(t∗) = 0 ∀i ∈ V so that H(x(t∗)) = 0.

Now define

�∗(t)
.
= max

i∈V̄1

{xi(t)}, �∗(t)
.
= min

i∈V̄2

{xi(t)},

and then H∗(t) = �∗(t) − �∗(t). Following Lemma 4.3, it is easy to obtain that
∀ t ∈ [t∗, t∗ + T∗),

�(t) ≥ 0; �(t) ≤ T∗.(4.1)

We denote Θ(t) =
∑

(j,i)/∈E∗ aij(t). With (4.1) and according to the definition of V̄1

and V̄2, a analysis similar to the proof of Lemma 4.3 leads to

D+
�∗(t) ≥ 1−Θ(t)�∗(t), D+�∗(t) ≤ Θ(t)

(
T∗ − �∗(t)

)
,(4.2)

for t ∈ [t∗, t∗ + T∗), which yields

D+H∗(t) ≥ 1−Θ(t)
(
H∗(t)− T∗

)
, t ∈ [t∗, t∗ + T∗).(4.3)
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This implies

H∗(t∗ + T∗) ≥
∫ t∗+T∗

t∗
e−

∫
t∗+T∗
t

Θ(s)dsdt−
(
1− e−

∫
t∗+T∗
t∗ Θ(s)ds

)
T∗(4.4)

≥ e−
∫ t∗+T∗
t∗ Θ(s)dsT∗ −

(
1− e−

∫ t∗+T∗
t∗ Θ(s)ds

)
T∗

≥ (2e−E0δ − 1)T∗

from Grönwall’s inequality, where E0 is an integer denoting the number of all possible
arcs on node set V , and the last inequality holds from the definition of E∗ and Θ(t).

Now noticing that δ and T∗ can be arbitrary positive numbers in (4.4), we see
that H(x(t∗ +T∗)) cannot be bounded above by γ(1) for any fixed K-function γ since
apparently H(x(t∗ + T∗)) ≥ H∗(t∗ + T∗). Hence, global robust consensus cannot be
achieved and this completes the proof for the necessity statement of Theorem 4.1.

4.2.2. Sufficiency. Suppose there is a constant δ > 0 such that the underlying
communication graph GA(t) is uniformly quasi-strongly δ-connected. Let d0 be the

(generalized) diameter of Gδ
∞, where Gδ

∞ is the graph containing all the δ-arcs present
over the time intervals [(s − 1)T, sT ), s = 1, 2, . . . . Let the initial time be t0 = 0
for simplicity. The analysis of H(x(t)) will be carried out on time intervals t ∈
[sK0, (s+ 1)K0] for s = 0, 1, 2, . . . , where K0 = [(d0 − 1)N + 1]T .

Based on Lemma 4.3, we see that ∀ t ∈ [sK0, (s+ 1)K0],

(4.5) �(t) ≤ �(sK0) + ‖w‖∞K0; �(t) ≥ �(sK0)− ‖w‖∞K0.

We divide the rest of the proof into three steps, in which convergence bounds
are established over the network node by node on time intervals [sK0, (s+1)K0], s =
0, 1, . . . .

Step 1. According to Lemma 4.4, we can choose i0 ∈ V such that there is a δ-path
from i0 to every other nodes over each of the d0 time intervals [jmT, (jm +1)T ),m =
1, 2, . . . , d0, with [jmT, (jm + 1)T ) ⊆ [sK0, (s+ 1)K0] for every m. Assume that

(4.6) xi0 (sK0) ≤ 1

2
�(sK0) +

1

2
�(sK0).

In this step, we bound xi0(t) on time interval [sK0, (s+ 1)K0].

Denote Yi(t) =
∑N

j=1 aij(t) for every node i ∈ V . With (4.5), we have

d

dt
xi0 (t) ≤ −Yi0(t)

(
xi0(t)− �(sK0)−K0‖w‖∞

)
+ |w(t)|, t ∈ [sK0, (s+ 1)K0],

(4.7)

which implies

xi0 (t) ≤
[
1− e

− ∫
t
sK0

Yi0 (τ)dτ
]
(�(sK0) +K0‖w‖∞)(4.8)

+ e
− ∫

t
sK0

Yi0 (τ)dτxi0 (sK0) +K0‖w‖∞
≤ 1

2
e
− ∫

t
sK0

Yi0 (τ)dτ�(sK0) +
[
1− 1

2
e
− ∫

t
sK0

Yi0 (τ)dτ
]
�(sK0) + 2K0‖w‖∞

≤ ξ0�(sK0) + (1− ξ0)�(sK0) + 2K0‖w‖∞, t ∈ [sK0, (s+ 1)K0],
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where ξ0 = e−(N−1)K0M0/2 with M0 defined in our standing assumption. Here the
first inequality of (4.8) follows from Grönwall’s inequality, and the last one holds based
on the simple fact that �(t) ≤ �(t) ∀ t. We denote χ

.
= e−(N−1)K0M0 .

Step 2. Since there is a δ-path from k0 to every other node over time interval
[j1T̂ , (j1 + 1)T̂ ), we can define a set

V1
.
=
{
j : there exists a δ-arc from k0 to j for GA(t) on interval [j1T, (j1 + 1)T )

}
.

In this step, we will establish an upper bound for xi1(t), i1 ∈ V1.
Take i1 ∈ V1 and define Ŷi1(t) = Yi1 (t)− ai1i0 (t). Now denoting B1

.
= �(sK0) +

K0‖w‖∞ and B2 = ξ0�(sK0) + (1− ξ0)�(sK0) + 2K0‖w‖∞, for t ∈ [j1T, (j1 + 1)T )),
we have

d

dt
xi1(t) ≤ Ŷi1 (t)

(
B1 − xi1 (t)

)
+ ai1i0(t)

(
B2 − xi1(t)

)
+ wi1 (t).(4.9)

Using Grönwall’s inequality, we thus obtain

xi1

(
(j1 + 1)T

)
(4.10)

≤ e−
∫ (j1+1)T

j1T Yi1 (t)dtxi1(j1T ) +B1

∫ (j1+1)T

j1T

e−
∫ (j1+1)T
t Yi1 (τ)dτ Ŷi1(t)dt

+B2

∫ (j1+1)T

j1T

e−
∫ (j1+1)T
t Yi1 (τ)dτai1i0(t)dt+K0‖w‖∞

≤
(
ξ0

∫ (j1+1)T

j1T

e−
∫ (j1+1)T
t Yi1 (τ)dτai1i0(t)dt

)
�(sK0)

+

(
1− ξ0

∫ (j1+1)T

j1T

e−
∫ (j1+1)T
t Yi1 (τ)dτai1i0(t)dt

)
�(sK0) + 3K0‖w‖∞,

where the second inequality follows from the fact that xi1(j1T ) ≤ �(sK0) +K0‖w‖∞
and some simple algebra based on

∫ (j1+1)T

j1T

e−
∫ (j1+1)T
t Yi1 (τ)dτYi1 (t)dt = 1− e−

∫ (j1+1)T

j1T Yi1 (t)dt.

Furthermore, noticing that

∫ (j1+1)T

j1T

e−
∫ (j1+1)T
t Yi1 (τ)dτai1i0(t)dt(4.11)

=

∫ (j1+1)T

j1T

e−
∫ (j1+1)T
t Ŷi1 (τ)dτ · e−

∫ (j1+1)T
t ai1i0 (τ)dτai1i0(t)dt

≥ e−
∫ (j1+1)T

j1T Ŷi1 (τ)dτ
∫ (j1+1)T

j1T

e−
∫ (j1+1)T
t ai1i0 (τ)dτai1i0(t)dt

≥ e−(N−2)M0T
(
1− e−

∫ (j1+1)T

j1T ai1i0 (t)dt
)

≥ e−(N−2)M0T
(
1− e−δ

)
.
= ζ,
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we conclude from (4.10) that

xi1

(
(j1 + 1)T

) ≤ ζξ0�(sK0) + (1− ζξ0)�(sK0) + 3K0‖w‖∞.(4.12)

Applying inequality (4.7) on xi1(t) for t ∈ [(j1 +1)T, (s+1)K0], it turns out that

(4.13) xi1 (t) ≤ ξ1�(sK0) + (1− ξ1)�(sK0) + 4K0‖w‖∞, t ∈ [(j1 + 1)T, (s+ 1)K0],

∀ i1 ∈ V1, where ξ1 = ζχ2/2.
Step 3. Continuing the analysis on time interval [j2T̂ , (j2+1)T̂ ), we can similarly

define

V2
.
=
{
j : there exists a δ-arc from V1 to j for GA(t) on interval [j2T, (j2 + 1)T )

}
.

Repeating the analysis in Step 2, we have

(4.14) xi2(t) ≤ ξ2�(sK0) + (1− ξ2)�(sK0) + 8K0‖w‖∞, t ∈ [(j2 + 1)T, (s+ 1)K0],

∀ i2 ∈ V2, where ξ2 = ζ2χ3/2.
Recall that d0 is the (generalized) diameter of G([0,+∞)

)
. We can proceed with

the analysis on time intervals [jmT̂ , (jm+1)T̂ ) for m = 3, . . . , d0, and V3, . . . ,Vz can
be defined for some z ≤ d0, respectively, until we obtain V =

⋃z
i=1 Vi. Moreover, we

have

(4.15) xi

(
(s+ 1)K0

) ≤ ξd0�(sK0) + (1 − ξd0)�(sK0) + 4d0K0‖w‖∞, i = 1, . . . , N,

where

ξd0 = ζd0χd0+1/2.(4.16)

This leads to

H(x((s+ 1)K0)
)

(4.17)

≤ ξd0�(sK0) + (1− ξd0)�(sK0) + 4d0K0‖w‖∞ − (�(sK0)− ‖w‖∞K0)

= (1 − ξd0)H
(
x(sK0)

)
+ (4d0 + 1)K0‖w‖∞.

For the opposite case of (4.6) with xi0(sK0) >
1
2�(sK0) +

1
2�(sK0), we see that

(4.17) also holds using a symmetric argument by investigating the lower bound for
�
(
(s+ 1)K0

)
.

Since s is arbitrarily chosen in (4.17), we have

H(x(nK0)
) ≤ (1− ξd0)

nH(x0) +

n−1∑
j=0

(1− ξd0)
j(4d0 + 1)K0‖w‖∞

≤ (1− ξd0)
nH(x0) +

(4d0 + 1)K0

ξd0

· ‖w‖∞

for any n = 0, 1, 2, . . . . From (4.5), we also know

(4.18) H(x(t)) ≤ H(x(nK0)
)
+ 2K0‖w‖∞, t ∈ [nK0, (n+ 1)K0).

The desired robust consensus inequality is therefore obtained by

(4.19) β
(H(x0), t

)
= (1− ξd0)

� t
K0

	H(x0), γ(‖w‖∞) =

(
2 +

4d0 + 1

ξd0

)
K0 · ‖w‖∞,

where � t
K0

� denotes the largest integer no greater than t
K0

. The proof is completed.
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4.3. Convergence time. Let us present some discussions on the convergence
rate of system (3.1) in the absence of noise. We introduce the following definition.

Definition 4.5. Suppose w ≡ 0. An exponential consensus is achieved for system
(3.1) if there exist two constants C,α > 0 such that H(x(t)) ≤ Ce−α(t−t∗)H(x0) for
t ≥ t∗ given initial condition x(t∗) = x0.

A direct corollary follows from Theorem 4.1.
Corollary 4.6. Suppose w ≡ 0. System (3.1) achieves an exponential consensus

if and only if there exists a constant δ > 0 such that the underlying communication
graph GA(t) is uniformly quasi-strongly δ-connected.

The sufficiency part of Corollary 4.6 holds directly from the robust consensus
inequality, and the necessity claim holds essentially from the linear node dynamics
and can be proved by a simple variation of the necessity proof of Theorem 4.1. The
details of the proof are therefore omitted.

We can use the concept of ε-convergence time to present a more precise character-
ization to the convergence rate of system (4.1). Bounds on ε-convergence time have
been extensively established in the literature for discrete-time dynamics [2, 4, 26, 23].
Now let us introduce the following definition of convergence time as the corresponding
continuous-time version.

Definition 4.7. Suppose w(t) ≡ 0. The ε-convergence time of system (3.1) is
defined as

TN (ε) = sup
x0∈RN , H(x0) 
=0

min

{
t :

H(x(t))
H(x0)

≤ ε

}
.(4.20)

From (4.19), if GA(t) is uniformly quasi-strongly δ-connected, we have

H(x(t)) ≤ (1 − ξd0)
� t
K0

	H(x0) ≤ (1− ξd0)
t

K0
−1H(x0) =

1

1− ξd0

e−λ0tH(x0),(4.21)

where λ0 = 1
K0

log 1
1−ξd0

. Hence, simple computation leads to an upper bound for the

ε-convergence time as follows:

TN (ε) ≤ log
(
(1− ξd0)ε

)−1

λ0
= O

(
K0

[
log
(
1− ξd0

)−1
]−1
)
log ε−1,(4.22)

where by definition aN = O(bN ) means that limN→∞ aN

bN
is a nonzero constant.

Remark 4.8. The sufficiency statement of Corollary 4.6 is consistent with the
result given in [20]. Compared to [20], our results are based on relaxed conditions, both
on the weight functions as boundedness is no longer critical and on the generalized
connectivity conditions as the graphs formed by δ-arcs on different time intervals no
longer need to share a common center node.

Remark 4.9. Compared to the results for discrete-time consensus dynamics with
uniformly jointly strongly connected graphs [26, 23], the convergence time given in
(4.22) is relatively conservative. We believe that there exist sharper bounds for the
convergence time. However, there might be some fundamental difference for the con-
vergence time between strong connectivity and quasi-strong connectivity as well as
between discrete-time dynamics and continuous-time dynamics.

4.4. L∞-vanishing noise. Consider a set defined by

F1
.
=
{
z ∈ F : lim

t→∞ z(t) = 0
}
,
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and let F0
1 ⊆ F1 be a subset with limt→∞ supz∈F0

1
|z(t)| = 0. Then the following

conclusion holds based on our robust consensus analysis.
Proposition 4.10.

(i) System (3.1) achieves global consensus for any w ∈ F1 if there exists a con-
stant δ > 0 such that the underlying communication graph GA(t) is uniformly
quasi-strongly δ-connected.

(ii) System (3.1) achieves global asymptotic consensus with respect to F0
1 if and

only if there exists a constant δ > 0 such that the underlying communication
graph GA(t) is uniformly quasi-strongly δ-connected.

Proof.
(i) Suppose β and γ are defined as (4.19). Let w0 ∈ F1 be a fixed function.

Then, ∀ε > 0, ∃T (ε) > 0 such that |w0(t)| < γ−1(ε) ∀t ≥ T (ε). Thus,
applying Theorem 4.1 to system (3.1) with t0 = T (ε), we obtain

(4.23) H(x(t)) ≤ β
(H(x(T (ε))), t− T (ε)

)
+ ε.

Since ε can be arbitrarily small, the global consensus follows immediately by
taking t → ∞ in (4.23).

(ii) (Sufficiency.) Suppose β and γ are defined as (4.19). Then ∀ε > 0, ∃T̃ (ε) > 0
such that |w(t)| ≤ γ−1( ε2 )∀t ≥ T̃ (ε)∀w ∈ F0

1 . Denote

ω∗ = sup
t∈[t0,T̃ ]

{ sup
z∈F0

1

|z(t)|}.

There will be two cases:
• When t0 < T̃ (ε), one has ∀t ≥ t0,

H(x(t)) ≤ β
(H(x(T̃ (ε))), t− T̃ (ε)

)
+

ε

2

≤ β
(
β
(H(x0) + γ(ω∗), T̃ (ε)− t0

)
, t− T̃ (ε)

)
+

ε

2

≤ β
(
β
(H(x0) + γ(ω∗), 0

)
, t− T̃ (ε)

)
+

ε

2
.(4.24)

Furthermore, ∀c > 0, ∃T1(c, T̃ (ε)) > 0 such that

β
(
β
(
c+ γ(ω∗), 0

)
, t− T̃ (ε)

) ≤ ε

2
∀t ≥ T1.

• When t0 ≥ T̃ (ε), one has ∀t ≥ t0,

H(x(t)) ≤ β(H(x0), t− t0) +
ε

2
.(4.25)

Then ∀c > 0, ∃T2(c) > 0 such that β(H(x0), t− t0) ≤ ε
2 ∀t ≥ T2.

Taking T = max{T1, T2}, we obtain

H(x0) ≤ c ⇒ H(x(t)) ≤ ε ∀t ≥ t0 + T, ∀w ∈ F0
1 .

Hence the sufficient part is proved.
(Necessity.) Suppose we cannot find a constant δ > 0 such that the underly-

ing communication graph GA(t) is uniformly quasi-strongly δ-connected. First ∀ε >
0, ∀T∗ > 0, ∃W > 0, such that |w(t)| ≤ ε

2T∗
∀t ≥ W . Then we define V̄1 and V̄2 in

the same way as the necessity proof of Theorem 4.1 and let the initial condition be
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t0 = t∗ with xi(t∗) = 0 ∀i ∈ V̄1 and xi(t∗) = c ∀i /∈ V̄1 for some c > 0. Repeating
the same argument as the proof of the necessity of Theorem 4.1 leads to that a global
asymptotic consensus cannot be achieved.

Remark 4.11. Proposition 4.10(ii) is consistent with the main result in [18],
where asymptotic consensus was discussed for a nonlinear variation of system (3.1)
under directed switching graphs with dwell time.

4.5. Proof of Theorem 4.2. The proof follows the same line as the proof of
Theorem 4.1. We will bound H(x(t)) on time intervals t ∈ [sK0, (s + 1)K0] for

s = 0, 1, . . . . Denote ηs =
∫ (s+1)K0

sK0
|w(t)|dt. Then based on Lemma 4.3, for any

t ∈ [sK0, (s+ 1)K0], we have

(4.26) xi(t) ∈ [�(sT̂ )− ηs, �(sT̂ ) + ηs], i = 1, . . . , N.

Suppose k0 is a node as defined in the proof of Theorem 4.1. Provided, without
loss of generality, that xk0 (sK0) ≤ 1

2�(sK0) +
1
2�(sK0) and as that

d

dt
xk0(t) ≤ −Yk0(t)

(
xk0(t)− �(sK0)− ηs

)
+ |w(t)|, t ∈ [sK0, (s+ 1)K0],(4.27)

which implies

xk0 (t) ≤
[
1− e

− ∫
t
sK0

Yk0
(τ)dτ

]
(�(sK0) + ηs) + e

− ∫
t
sK0

Yk0
(τ)dτ

xk0 (sK0)(4.28)

+

∫ t

sK0

e
− ∫

z
sK0

Yk0
(τ)dτ |w(z)|dz

≤ ξ0�(sK0) + (1− ξ0)�(sK0) + 2ηs, t ∈ [sK0, (s+ 1)K0],

where the second inequality follows from the simple fact that 0 < e
− ∫ t

sK0
Yk0

(τ)dτ ≤ 1.
Therefore, similar to the proof of Theorem 4.1, the analysis can be carried on for

the node sets V1,V2, . . . , and we can eventually arrive at

H(x((s+ 1)K0)
) ≤ (1− ξd0)H

(
x(sK0)

)
+ (4d0 + 1)ηs.(4.29)

Consequently, for any n = 0, 1, 2, . . . , it holds that

H(x(nK0)
) ≤ (1− ξd0)

nH(x0) + (4d0 + 1)
n−1∑
j=0

(1− ξd0)
n−1−jηj(4.30)

≤ (1− ξd0)
nH(x0) + (4d0 + 1)

n−1∑
j=0

ηj .

Thus, together with the observation that

(4.31) H(x(t)) ≤ H(x(nK0)
)
+

∫ t

nK0

|w(τ)|dτ, t ∈ [nK0, (n+ 1)K0),

the following integral robust consensus inequality is obtained:

(4.32) H(x(t)) ≤ (1 − ξd0)
� t
K0

	H(x0) + (4d0 + 1)

∫ t

0

|w(τ)|dτ.

This completes the proof.
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5. K-bidirectional graphs. In this section, we consider bidirectional node in-
teractions. We introduce the following definition.

Definition 5.1. The underlying communication graph GA(t) is K-bidirectional if
there exists a constant K ≥ 1 such that

K−1aij(t) ≤ aji(t) ≤ Kaij(t)

∀ i, j ∈ V and t ≥ 0.
Intuitively, K-bidirectional graphs mean that the information flow between two

nodes should be balanced from one node to the other by a bounded proportion K.
Note that a 1-bidirectional graph corresponds to conventional bidirectional graphs
[15, 25]. For K-bidirectional graphs, we present the following result.

Theorem 5.2. Assume that GA(t) is K-bidirectional. System (3.1) achieves global
integral robust consensus if and only if there exists a constant δ > 0 such that GA(t)

is infinitely jointly quasi-strongly δ-connected.
We introduce a partition, 0 = T0 < T1 < T2 < . . . , for the time-axis.

Let T0 = 0. Then Tk, k = 1, 2, . . . , can be defined by induction as

Tk = inf{t ≥ Tk−1 : the δ-arcs of GA(t) on time interval [Tk−1, t)(5.1)

form a quasi-strongly connected graph on V}.

Note that that when there exists a constant δ > 0 such that Gσ(t) is infinitely jointly
quasi-strongly δ-connected, Tk is finite ∀ k = 1, 2, . . . .

We can thus define

J(t) = max{k : t > Tk}.

Then J(t) characterizes how many jointly δ-connected graphs can be found during
time interval [0, t).

5.1. Proof of Theorem 5.2.

5.1.1. Necessity. Suppose GA(t) is not infinitely jointly quasi-strongly δ-connected
for any δ > 0. Then ∀δ > 0, ∃t∗ > 0 such that the graph G∗ = (V , E∗), with E∗ defined
by E∗ =

{
(i, j) :

∫∞
t∗

aji(t)dt ≥ δ
}
containing all the δ-arcs on time interval [t∗,∞), is

not quasi-strongly connected.
Consequently, there exist two distinct nodes i and j such that V̂1 ∩ V̂2 = ∅,

where V̂1 = {nodes from which i is reachable in G∗} and V̂2 = {nodes from which j
is reachable in G∗}. Let wi(t) ≡ 0 for all i ∈ V̂. Let the initial time be t∗. Take
xi(t∗) = 0, i ∈ V̂1, and xi(t∗) = 1, i /∈ V̂1, so that H(x(t∗)) = 1.

Similar to the necessity proof of Theorem 4.1, we define

l(t)
.
= max

i∈V̂1

{xi(t)}, L(t)
.
= min

i∈V̂2

{xi(t)},

and then H = L(t) − l(t). Lemma 4.3 ensures that ∀ t ∈ [t∗,∞), we have �(t) ≥
0; �(t) ≤ 1.

Denoting Θ̄(t) =
∑

(j,i)/∈E∗ aij(t), a similar analysis as the proof of Lemma 4.3
gives us

D+H(t) ≥ −Θ̄(t)
(
H(t) + 1

)
, t ∈ [t∗,∞).(5.2)
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This implies

H(t) ≥ 2e−
∫

t
t∗ Θ̄(s)ds − 1 ≥ 2e−E0δ − 1, t ∈ [t∗,∞).(5.3)

Noticing that δ can be arbitrarily small in (5.3), we see that H(x(t)) cannot be
bounded above by β(1, t) for any fixed KL-function β. Therefore, global integral
robust consensus cannot be achieved. The necessity statement of Theorem 5.2 holds.

5.1.2. Sufficiency. The proof relies on the time-axis partition defined previ-
ously. Suppose there exists a constant δ > 0 such that GA(t) is infinitely jointly
quasi-strongly δ-connected. Let 0 = T0 < T1 < T2 < · · · be the sequence of time

instants given by (5.1). Denote �0 =
∫ TN−1

T0
|w(t)|dt. Then based on Lemma 4.3, we

have

(5.4) �(t) ≤ �(T0) +�0; �(t) ≥ �(T0)−�0

∀ T0 ≤ t ≤ TN−1.
We divide the rest of the proof into four steps.

Step 1. We first define an instant t̄1 by

t̄1
.
= inf

{
t ≥ T0 : ∃i0, i1 ∈ V such that

∫ t

T0
ai0i1(s)ds ≥ δ

}
.

Then we have t̄1 ≤ T1 according to the definition of T1. Without loss of generality,
we assume that

xi0 (T0) ≤ 1

2
�(T0) +

1

2
�(T0).(5.5)

Noticing that
∫ t

T0
Yi0 (τ)dτ ≤ (N − 1)δ, t ∈ [T0, t̄1], the inequality

d

dt
xi0 (t) ≤ −Yi0(t)

(
xi0(t)− �(T0)−�0

)
+ |w(t)|, t ∈ [T0, t̄1],(5.6)

implies

xi0(t) ≤
[
1− e

− ∫
t
T0

Yi0 (τ)dτ
]
(�(T0) +�0) + e

− ∫
t
T0

Yi0 (τ)dτxi0(T0) +

∫ t

T0

|w(t)|dt
(5.7)

≤ 1

2
e
− ∫ t

T0
Yi0 (τ)dτ�(T0) +

[
1− 1

2
e
− ∫ t

T0
Yi0 (τ)dτ

]
�(T0) + 2�0

≤ m0�(T0) + (1−m0)�(T0) + 2�0

∀ t ∈ [T0, t̄1], where m0 = η/2 with η
.
= e−(N−1)δ.

Step 2. We establish a bound for xi1 (t̄1) in this step. According to the definition

of the K-bidirectional graph, we have
∫ t̄1
T0

ai1i0(t)dt ≥ δ/K. Similar to (4.9), for

t ∈ [T0, t̄1), we have

d

dt
xi1(t) ≤ Ŷi1(t)

(
�(T0) +�0 − xi1(t)

)
(5.8)

+ ai1i0(t)
(
m0�(T0) + (1−m0)�(T0) + 2�0 − xi1 (t)

)
+ wi1(t),
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which gives

xi1

(
t̄1
) ≤

(
m0

∫ t̄1

T0

e−
∫ t̄1
t Yi1 (τ)dτai1i0(t)dt

)
�(T0)(5.9)

+

(
1−m0

∫ t̄1

T0

e−
∫ t̄1
t Yi1 (τ)dτai1i0(t)dt

)
�(T0) + 4�0.

Observing that∫ t̄1

T0

e−
∫ t̄1
t Yi1 (τ)dτai1i0(t)dt ≥ e−

∫ t̄1
T0

Ŷi1 (τ)dτ
∫ t̄1

T0

e−
∫ t̄1
t ai1i0 (τ)dτai1i0(t)dt(5.10)

≥ e−(N−2)δ
(
1− e−

∫ t̄1
T0

ai1i0 (t)dt
)

≥ e−(N−2)δ
(
1− e−δ/K

)
,

we conclude from (5.7) that

(5.11) xi1(t̄1) ≤ m1�(T0) + (1 −m1)�(T0) + 4�0,

where m1 = ηϑ/2 with ϑ = e−(N−2)δ(1 − e−δ/K). Noticing m1 < m0, the right-hand
side of inequality (5.11) is also an upper bound for xi0 (t̄1).

Step 3. Continuing, we define t̄2 by

t̄2
.
= inf

{
t ≥ t̄1 : ∃i2 ∈ V such that max

{ ∫ t

t̄1
ai0i2 (s)ds,

∫ t

t̄1
ai1i2 (s)ds

} ≥ δ
}
.

Obviously t̄2 ≤ T2 according to the definition of T2. Now we define

P (t)
.
= max{i0(t), i1(t)}; Yi0,i1(t)

.
=

N∑
j=1

(
ai0j(t) + ai1j(t)

)
.

Then the inequality

D+P (t) ≤ −Yi0,i1(t)
(
P (t)− �(T0)−�0

)
+ |w(t)|, t ∈ [t̄1, t̄2],(5.12)

leads to

P (t) ≤ η2m1�(T0) + (1− η2m1)�(T0) + 5�0, t ∈ [t̄1, t̄2].(5.13)

Next, similar to (5.8), an upper bound for xi2(t̄2) can be presented as

(5.14) xi2(t̄2) ≤ m2�(T0) + (1 −m2)�(T0) + 6�0,

where m2 = η3ϑ2/2.
Step 4. Proceeding this analysis, t̄3, . . . , t̄N−1 can be found with t̄N−1 ≤ TN−1,

respectively, and we eventually have

(5.15) xi(t̄N−1) ≤ ηN(N−1)/2ϑN−1

2
�(T0) +

(
1− ηN(N−1)/2ϑN−1

2

)
�(T0) + 2N�0,

which implies

(5.16) H(x(TN−1)
) ≤ (1− ηN(N−1)/2ϑN−1

2

)
H(x(T0)

)
+ 2(N + 1)�0.
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Since (5.16) holds independent with the initial condition, we can further conclude
that

H(x(Tn(N−1))
) ≤ (1− ηN(N−1)/2ϑN−1

2

)n

H(x0)(5.17)

+ 2(N + 1)

n−1∑
j=0

(
1− ηN(N−1)/2ϑN−1

2

)n−1−j

�j

∀ n = 0, 1, 2, . . . , where �j
.
=
∫ T(j+1)(N−1)

Tj(N−1)
|w(t)|dt.

Therefore, the desired integral robust consensus inequality can be obtained by

(5.18) H(x(t)) ≤ (1− ηN(N−1)/2ϑN−1

2

)� J(t)
N−1 	

H(x0) + 2(N + 1)

∫ t

0

|w(τ)|dτ.

The proof is completed.

5.2. Convergence time. Suppose w(t) ≡ 0. Then (5.18) leads to

H(x(t)) ≤ (1− c∗)�
J(t)
N−1	H(x0) ≤ (1− c∗

)−1
eJ(t)

log(1−c∗)
N−1 H(x0),(5.19)

where c∗
.
= ηN(N−1)/2ϑN−1

2 .
From (5.19), when the communication graph GA(t) isK-bidirectional and infinitely

jointly quasi-strongly δ-connected, system (3.1) with bidirectional communications
and in the absence of noise will reach a consensus exponentially with respect to J(t),
i.e., the number of δ-connected graphs. Furthermore, an upper bound for the ε-
convergence time TN (ε) is obtained by

TN (ε) ≤ inf

{
t : J(t) ≤ N − 1

log(1 − c∗)
log
(
ε(1− η∗)

)}
(5.20)

≤ inf J−1

(⌈
O
(
(N − 1)

[
log(1− c∗)−1

]−1)
log ε−1

⌉)
,

where J−1(z) = {t : J(t) = z} and �z� denotes the smallest integer no smaller than
z.

5.3. L1-vanishing noise. Consider the following set:

F2
.
=

{
z ∈ F :

∫ ∞

0

|z(t)|dt < ∞
}
.

Let F0
2 ⊆ F2 be a subset of F2 with

∫∞
0 supz∈F0

2
|z(t)|dt < ∞. The following conclu-

sion holds.
Proposition 5.3.

(i) System (3.1) achieves global asymptotic consensus with respect to F0
2 if and

only if there exists a constant δ > 0 such that the underlying communication
graph GA(t) is uniformly quasi-strongly δ-connected.

(ii) Assume that GA(t) is K-bidirectional. Then system (3.1) achieves a global
consensus ∀ w ∈ F2 if and only if there exists a constant δ > 0 such that
GA(t) is infinitely quasi-strongly δ-connected.

This proposition follows straightforwardly from the integral robust consensus
property shown in Theorems 4.2 and 5.2. The proof is therefore omitted.
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6. Conclusions. This paper focused on the robustness of continuous-time con-
sensus algorithms. We provided a precise answer to how much connectivity is required
for the network to agree asymptotically despite the input noise. The idea of ISS and
iISS inspired us to our definitions of robust consensus and integral robust consen-
sus. We showed that uniformly joint connectivity is critical with respect to robust
consensus for general directed graphs; infinitely joint connectivity is critical with re-
spect to integral robust consensus for K-bidirectional graphs. Upper bounds for the
ε-convergence time were obtained as a result from the robustness analysis.
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