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Abstract 

The primary disadvantage of current design techriiques for xriodel predictive control (MPC) 
is their inability to deal explicitly with plant model uncertainty. In this paper, we present a 
new approacli for robust MPC synthesis which allows explicit irlcorporation of the description 
of pla,nt uricertainty in the problem formulation. The uncertainty is expressed both in the 
time domain and the frequency domain. The goal is to design, at each time step, a state- 
feedbaclr coritrol law which minimizes a "worst-case" infinite horizon objective function, subjec-t 
to constraints on thc control input arid plant output. Using standard techniques, the problem of 
minimizing an upper bound on the "worst-case" objective fu~iction, subject to input and output 
constraints, is reduced to a convex optimizatiori involving linear matrix inequalities (LMIs). It 
is shown that the feasible receding horizon state-feedback co~ltrol design robustly stabilizes the 
set of uncertairi plants under consideration. Several extensions, such as applicatiori to systems 

with time-delays and problems involving constant set-point tracking, trajectory tracking and 
disturbance rejection, which follow naturally from our formulation, are discussed. The co~~troller 
design procedure is illustrated with two examples. Finally, conclusions are presented. 

1 Introduction 

Model Predictive Control (MPC), also known as Moving Horizon Control (I\/IIIC) or Receding 

Horizon Control (RHC), is a popular technique for the control of slow dynamical systems, such as 

those encountered in chemical process control in the petrochemical, pulp and paper industries, and 

in gas pipeline control. At every time instant, MPC requires the on-line solution of a n  optimization 

problem t o  cornpute optimal control inputs over a fixed xsurnber of future time instants? known 
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as the "time horizon". Although more than one control move is generally calculated, only the 

first one is implemented. At the next sampling time, the optimization problem is reformulated 

and solved with new measurements obtained from the system. The on-line optimization can be 
typically reduced to either a linear program or a quadratic program. 

Using MPC, it is possible to handle inequality constraints on the manipulated and controlled 

variables in a systematic manner during the design and implementation of the controller. Moreover, 

several process models as well as many performance criteria of significance to the process industries 

can be handled using MPC. A fairly complete discussion of several design techniques based on 

MPC and their relative merits and demerits can be found in the review article by Garcia et al. 

(1989) [15]. 

Perhaps the principal shortcoming of existing MPC-based control techniques is their inability 

to explicitly incorporate plant model uncertainty. Thus, nearly all known formulations of MPC 

minimize, on-line, a nominal objective function, using a single linear time-invariant model to predict 

the future plant behavior. Feedback, in the form of plant measurement at the next sampling time, 

is expected to account for plant model uncertainty. Needless to say, such control systems which 

provide "optimal" performance for a particular model may perform very poorly when implemented 

on a physical system which is not exactly described by the model (for example, see [31]). Similarly, 

the extensive amount of literature on stability analysis of MPC algorithms [24, 19, 25, 30, 29, 28, 

9, 8, 121 is by and large restricted to the nominal case, with no plant-model mismatch; the issue of 

the behavior of MPC algorithms in the face of uncertainty, i.e., "robustness", has been addressed 

to a much lesser extent. Broadly, the existing literature on robustness in MPC can be summarized 

as follows: 

Analysis of robustness properties of MPC. Garcia and Morari [12, 13, 141 have analyzed the 

robustness of unconstrained MPC in the framework of internal model control (IMC) and 

have developed tuning guidelines for the IMC filter to guarantee robust stability. Zafiriou 

(1990) [28] and Zafiriou and Marchal (1991) [29] have used the contraction properties of MPC 

to develop necessary/sufficient conditions for robust stability of MPC with input and output 

constraints. Given upper and lower bounds on the impulse response coeficients of a single- 

input-single-output (SISO) plant with Finite Impulse Responses (FIR), Genceli and Nikolaou 

(1993) [16] have presented robustness analysis of constrained el-norm MPC algorithms. Polak 

and Yang (1993) [22,23] have analyzed robust stability of their MHC algorithm for continuous- 

time linear systems with variable sampling times by using a contraction constraint on the 

state. 

MPC with explicit uncertainty description. The basic philosophy of MPC-based design algo- 

rithms which explicitly account for plant uncertainty [7, 2, 311 is the following: 

Modify the on-line minimization problem (minimizing some objective function sub- 

ject to input and output constraints) to a min-max problem (minimizing the worst- 

case value of the objective function, where the worst-case is taken over the set of 

uncertain plants). 

Based on this concept, Campo and Morari (1987) [7], Allwright and Papavasiliou (1992) [2] 

and Zheng and Morari (1993) [31] have presented robust MPC schemes for SISO FIR plants, 

given uncertainty bounds on the impulse response coefficients. For certain choices of the 

objective function, the on-line problem is shown to be reducible to a linear program. 



One of the problems with this linear programming approach is that to simplify the on-line 

computational complexity, one must choose simplistic, albeit unrealistic model uncertainty 

descriptions, for e.g., fewer FIR coefficients. Secondly, this approach cannot be extended to 

unstable systems. 

From the preceding review, we see that there has been progress in the analysis of robustness 

properties of MPC. But robust synthesis, i.e., the explicit incorporation of realistic plant uncertainty 

description in the problem formulation, has been addressed only in a restrictive framework for FIR 

models. There is a need for computationally inexpensive techniques for robust MPC synthesis 

which are suitable for on-line implementation and which allow incorporation of a broad class of 

model uncertainty descriptions. 

In this paper, we present one such MPC-based technique for the control of plants with uncer- 

tainties. This technique is motivated by recent developments in the theory and application (to 

control) of optimization involving Linear Matrix Inequalities (LMIs) [5] .  There are two reasons 

why LMI optimization is relevant to MPC. First, LMI-based optimization problems can be solved 

in polynomial-time, often in times comparable to that required for the evaluation of an analytical 

solution for a similar problem. Thus, LMI optimization can be implemented on-line. Secondly, it is 

possible to recast much of existing robust control theory in the framework of LMIs. The implication 

is that we can devise an MPC scheme where at each time instant, an LMI optimization problem 

(as opposed to conventional linear or quadratic programs) is solved, which incorporates input and 

output constraints and a description of the plant uncertainty and guarantees certain robustness 

properties. 

The paper is organized as follows: In $2, we discuss background material such as models of 

systems with uncertainties, LMIs and MPC. In $3, we formulate the robust unconstrained MPC 

problem with state-feedback as an LMI problem. We then extend the formulation to incorporate 

input and output constraints, and show that the feasible receding horizon control law which we 

obtain is robustly stabilizing. In 54, we extend our formulation to systems with time-delays and to 

problems involving trajectory tracking, constant set-point tracking and disturbance rejection. In 55, 

we present two examples to illustrate the design procedure. Finally, in $6, we present concluding 

remarks. 

2 Background 

2.1 Models for uncertain systems 

We present two paradigms for robust control which arise from two different modeling and identifica- 

tion procedures. The first is a "multi-model" paradigm, and the second is the more popular "linear 

system with a feedback uncertainty" robust control model. Underlying both these paradigms is a 

linear time-varying (LTV) system 

where u(k) E Rnu is the control input, x(k) E Rnx is the state of the plant and y(k) E R n y  is the 

plant output, and 0 is some prespecified set. 



Polytopic or multi-model paradigm 

For polytopic systems, the set R is the polytope 

where Co refers to the convex hull. In other words, if [A B] E R, then for some nonnegative 

X I ,  X2,. . . , XL summing to one, we have 

When L = 1, we have a linear time-invariant system, which corresponds to the case when there is 

no plant-model mismatch. 

Polytopic system models can be developed as follows. Suppose that for the (possibly nonlinear) 

system under consideration, we have input/output data sets at different operating points, or at 

different times. From each data set, we develop a number of linear models (for simplicity, we 

assume that the various linear models involve the same state vector). Then, it is reasonable to 

assume that any analysis and design methods for the polytopic system ( I ) ,  (2) with vertices given 

by the linear models will apply to the real system. 

Alternatively, suppose the Jacobian 
af af 
[a, ,I of a nonlinear discrete time-varying system 

x(k + 1) = f (x(k), u(k), k) is known to lie in the polytope R. Then it can be shown that every 

trajectory (x, u) of the original nonlinear system is also a trajectory of (1) for some LTV system 

in R [18]. Thus, the original nonlinear system can be approximated (possibly conservatively) by a 

polytopic uncertain linear time-varying system. Similarly, it can be shown that bounds on impulse 

response coefficients of SISO FIR plants can be translated to a polytopic uncertainty description 

on the state-space matrices. Thus, this polytopic uncertainty description is suitable for several 

problems of engineering significance. 

Structured feedback uncertainty 

A second, more common paradigm for robust control consists of a linear time-invariant system with 

uncertainties or perturbations appearing in the feedback loop (see Figure 1-B): 

The operator A is block diagonal: 



Figure 1: (A) Graphical representation of polytopic uncertainty; (B) Structured uncertainty. 

with Ai : Rni + Rni. A can represent either a memoryless time-varying matrix with I(Ai(lc)l12 -. 
iF(Ai(k)) 5 1, i = 1 . , r, k 2 0; or a convolution operator (for e.g., a stable linear time- 

invariant (LTI) dynamical system) with the operator norm induced by the truncated e2-norm less 

than 1, i.e., 

Each Ai is assumed to be either a repeated scalar block or a full block 1211 and models a number of 

factors, such as nonlinearities, dynamics or parameters, that are unknown, unmodeled or neglected. 

A number of control systems with uncertainties can be recast in this framework [21]. For ease of 

reference, we will refer to such systems as systems with structured uncertainty. Note that in this 

case, the uncertainty set R is defined by (3) and (4). 

When Ai is a stable LTI dynamical system, the quadratic sum constraint (5) is equivalent to 

the following frequency domain specification on the z-transform &(z) 

Thus, the structured uncertainty description is allowed to contain both LTI and LTV blocks, with 

frequency domain and time-domain constraints respectively. We will, however, only consider the 

LTV case since the results we obtain are identical for the general mixed uncertainty case, with 

one exception, as pointed out in 53.2.2. The details can be found in [5, Sec. 8.21 and will be 



omitted here due to lack of space. For the LTV case, it is easy to show through routine algebraic 

manipulations that system (3) corresponds to system (1) with 

fl = { [ A + BpACq B + BpADqu ] : A satisfies (4) with *(Ai) 5 1) 

The case where A -- 0, p(k) E 0, k 2 0, corresponds to the nominal system, i.e., no plant-model 

mismatch. 

The issue of whether to model a system as a polytopic system or a system with structured 

uncertainty depends on a number of factors, such as the underlying physical model of the system, 

available model identification and validation techniques etc. For example, nonlinear systems can 

be modeled either as polytopic systems or as systems with structured perturbations. We will not 

concern ourselves with such issues here; instead we will assume that one of the two models discussed 

thus far is available. 

2.2 Model Predictive Control 

Model Predictive Control is an open-loop control design procedure where at each sampling time k, 

plant measurements are obtained and a model of the process is used to predict future outputs of 

the system. Using these predictions, m control moves u(k + ilk), i = 0,1,.  . . , m - 1 are computed 

by minimizing a nominal cost Jp(k) over a prediction horizon p as follows: 

min 
u(k+ilk),i=O,l, ..., m-1 

JP (k) 1 

subject to constraints on the control input u(k + ilk), i = O,1,. . . , m - 1 and possibly also on the 

state x(k + ilk) and the output y(k + ilk), i = 0, 1, . . . ,p. Here 

x(k + ilk), y(k + ilk) : state and output respectively, at time k + i, predicted based 

on the measurements at time k; x(klk) and y(k)k) refer re- 

spectively to the state and output measured at time k. 

u(k + ilk) : control move at time k + i, computed by the optimization 

problem (7) at time k;  u(klk) is the control move to be im- 

plemented at time k. 

p : output or prediction horizon 
m : input or control horizon. 

It is assumed that there is no control action after time k + m - 1, i.e., u(k +ilk) = 0, i 2 m. In 

the receding horizon framework, only the first computed control move u(kJk) is implemented. At 

the next sampling time, the optimization (7) is resolved with new measurements from the plant. 

Thus, both the control horizon m and the prediction horizon p move or recede ahead by one step 

as time moves ahead by one step. This is the reason why MPC is also sometimes referred to 

as Receding Horizon Control (RHC) or Moving Horizon Control (MHC). The purpose of taking 

new measurements at each time step is to compensate for unmeasured disturbances and model 

inaccuracy both of which cause the system output to be different from the one predicted by the 

model. We assume that exact measurement of the state of the system is available at each sampling 

time k, i.e., 

x(klk) = x(k). (8) 



Several choices of the objective function Jp(k) in the optimization (7) have been reported [16, 19, 

15, 291 and have been compared in [6]. In this paper, we consider the following quadratic objective: 

P 

Jp(k) = ( ~ ( 8  + i l k ) T ~ i x ( k  +ilk) + u(k + i l k ) T ~ u ( k  + ilk)) , 
i=o 

where Q1 > 0 and R > 0 are symmetric weighting matrices. In particular, we will consider the 

case p = GO which is referred to as the infinite horizon MPC (IH-MPC). Finite horizon control 

laws have been known to have poor nominal stability properties [3, 241. Nominal stability of finite 

horizon MPC requires imposition of a terminal state constraint (x(k + ilk) = 0, i = m) and/or use 

of the contraction mapping principle [28, 291 to tune Q1, R, m and p for stability. But the terminal 

state constraint is somewhat artificial since only the first control move is implemented. Thus, in 

the closed loop, the states actually approach zero only asymptotically. Also, the computation of 

the contraction condition [28, 291 at all possible combinations of active constraints at the optimum 

of the on-line optimization can be extremely time consuming, and as such, this issue remains 

unaddressed. On the other hand, infinite horizon control laws have been shown to guarantee 

nominal stability [24, 191. We therefore believe that rather than using the above methods to "tune" 

the parameters for stability, it is preferable to adopt the infinite horizon approach to guarantee at 

least nominal stability. 

In this paper, we consider Euclidean norm bounds and component-wise peak bounds on the 

input u(k + ilk), given respectively as 

and 

Iuj(k+ilk)l < U ~ , ~ , X ,  k, i 2 0 ,  j = l , 2  , . . . ,  nu. 

Similarly, for the output, we consider the Euclidean norm constraint and component-wise peak 

bounds on y(k + ilk), given respectively as 

and 

lyj(k+iIk)l I Y ~ , ~ ~ ,  k 2 0 ,  i 2 1 ,  j = 1 , 2  ,..., ny. (12) 

Note that the output constraints have been imposed strictly over the future horizon (i.e., i 2 1) 

and not at the current time (i.e, i = 0). This is because the current output cannot be influenced 

by the current or future control action and hence imposing any constraints on y at the current 

time is meaningless. Note also that (11) and (12) specify "worst-case" output constraints. In 

other words, (11) and (12) must be satisfied for any time-varying plant in R used as a model for 

predicting the output. 

Remark 1 Constraints on the input are typically hard constraints, since they represent limitations 

on process equipment (such as valve saturation) and as such cannot be relaxed or softened. Con- 

straints on the output, on the other hand, are often performance goals; it is usually only required 

to make y,,, and yi,,,, as small as possible, subject to the input constraints. 



2.3 Linear Matrix Inequalities 

We give a brief introduction to Linear Matrix Inequalities and some optimization problems based 

on LMIs. For more details, we refer the reader to the book [5]. 

A linear matrix inequality or LMI is a matrix inequality of the form 

where XI ,  2 2 ,  . . . , xl are the variables, Fi = F: E Rnxn are given, and F(x)  > 0 means that F(x)  

is positive definite. 

Multiple LMIs F1 (x) > 0, . . . , Fn(x) > 0 can be expressed as the single LMI 

Therefore we will make no distinction between a set of LMIs and a single LMI, i.e., "the LMI 

Fl (x) > 0, . . . , Fn (x) > 0" will mean "the LMI diag(Fl (x), . . . , Fn (x)) > 0". 

Convex quadratic inequalities are converted to LMI form using Schur complements: Let Q(x) = 

Q ( x ) ~ ,  R(x) = R ( x ) ~ ,  and S(x) depend affinely on x. Then the LMI 

is equivalent to the matrix inequalities 

R(x) > 0, Q(x) - s(x)R(x)-~s(x)~ > 0 

and Q(x) > 0, R(x) - S(X)~Q(X)-~S(X)  > 0 

We often encounter problems in which the variables are matrices, for example, the constraint 

P > 0, where the entries of P are the optimization variables. In such cases we will not write out 

the LMI explicitly in the form F(x) > 0, but instead make clear which matrices are the variables. 

The LMI-based problem of central importance to this paper is that of minimizing a linear 

objective subject to LMI constraints: 

minimize cTx 

subject to F(x)  > 0 

Here, F is a symmetric matrix that depends affinely on the optimization variable x, and c is a real 

vector of appropriate size. This is a convex nonsmooth optimization problem. For more on this 

and other LMI-based optimization problems, we refer the reader to [5]. 

The observation about LMI-based optimization that is most relevant to us is that 

LMI problems are tractable. 

LMI problems can be solved in polynomial time, which means that they have low computational 

complexity; from a practical standpoint, there are effective and powerful algorithms for the solution 

of these problems, that is, algorithms that rapidly compute the global optimum, with non-heuristic 

stopping criteria. Thus, on exit, the algorithms can prove that the global optimum has been 

obtained to within some prespecified accuracy [20, 4, 26, 11. Numerical experience shows that these 

algorithms solve LMI problems with extreme efficiency. 

The most important implication from the foregoing discussion is that LMI-based optimization 

is well-suited for on-line implementation which is essential for MPC. 



3 Model Predictive Control using Linear Matrix Inequalities 

In this section, we discuss the problem formulation for robust MPC. In particular, we modify 

the minimization of the nominal objective function, discussed in 52.2, to a minimization of the 

worst-case objective function. Following the motivation in 52.2, we consider the infinite horizon 

MPC (IH-MPC) problem. We begin with the robust IH-MPC problem without input and output 

constraints and reduce it to a linear objective minimization problem. We then incorporate input 

and output constraints. Finally, we show that the feasible receding horizon state-feedback control 

law robustly stabilizes the set of uncertain plants R. 

3.1 Robust Unconstrained IH-MPC 

The system is described by (1) with the associated uncertainty set R (either (2) or (6)). Analogous to 

the familiar approach from linear robust control, we replace the minimization, at each sampling time 

k, of the nominal performance objective (given in (7) ) ,  by the minimization of a robust performance 

objective as follows: 

min max 
u(k+ilk),i=O,l, ..., m [A(lc+i) B(k+i)]€R,  i>0 

Jm (k), 

ca 

where Jm(k) = (x(k + i l k ) T ~ l x ( k  + ilk) + u(k + i l k ) T ~ ~ ( k  + ilk)) . 
(15) 

i=O 

This is a "min-max" problem. The maximization is over the set R and corresponds to choosing 

that time-varying plant [A(k + i) B(k + i)] E R, i 2 0 which, if used as a L'model" for predictions, 

would lead to the largest or "worst-case" value of Jm(k) among all plants in R. This worst-case 

value is minimized over present and future control moves u(k + ilk), i = 0,1, . . . , m. This min-max 

problem, though convex for finite m, is not computationally tractable, and as such has not been 

addressed in the MPC literature. We address problem (15) by first deriving an upper bound on the 

robust performance objective. We then minimize this upper bound with a constant state feedback 

control law u(k + ilk) = Fx(k + ilk), i 2 0. 

Derivation of the upper bound 

Consider a quadratic function V(x) = xTpx, P > 0 of the state x(klk) = x(k) (see (8)) of the 

system (1) with V(0) = 0. At sampling time k, suppose V satisfies the following inequality for all 

x(k +ilk), u(k +ilk), i 2 0 satisfying (I),  and for any [A(k +i) B(k + i)] E R, i > 0 : 

V(x(k + i + Ilk)) - V(x(k + ilk)) 

5 - ( ~ ( k  + ilk)TQ1x(k + ilk) + u(k + i l k ) T ~ u ( k  + ilk)) 

For the robust performance objective function to be finite, we must have x(oolk) = 0 and hence, 

V(x(oo1k)) = 0. Summing (16) from i = 0 to i = oo, we get 

Thus, 

max 
[A(k+i) B(k+i)]€R,  i>O 

Jm(k) I V(x(klk)). 



This gives an upper bound on the robust performance objective. Thus, the goal of our robust MPC 

algorithm has been redefined to synthesize, at each time step k ,  a constant state-feedback control 

law u ( k  + i l k )  = F x ( k  + i lk)  to minimize this upper bound V(x(k1k) ) .  As is standard in MPC, 

only the first computed input u(k lk )  = Fx(k1k) is implemented. At the next sampling time, the 

state x ( k +  1)  is measured and the optimization is repeated to recompute F. The following theorem 

gives us conditions for the existence of the appropriate P > 0 satisfying (16) and the corresponding 

state feedback matrix F .  

Theorem 1 Let x ( k )  = x(k lk )  be the state of the uncertain system (1) measured at sampling time 

k .  Assume that there are no constraints on the control input and plant output. 

(A) Suppose the uncertainty set R is defined by a polytope as in (2). Then, the state feedback 

matrix F in  the control law u ( k  + i lk)  = F x ( k  + i l k ) ,  i > 0 which minimizes the upper bound 

V ( x ( k 1 k ) )  on the robust performance objective function at sampling time k is given by 

where Q > 0 and Y are obtained from the solution (if it exists) to the following linear objective 

minimization problem (this problem is of the same form as problem ( Id ) ) :  

min y 
7 ,  Q ,  Y 

subject to 

and 

( B )  Suppose the uncertainty set R is defined by a structured norm-bounded perturbation A as in  (6). 

In this case, F is given by 

F = Y Q - I ,  (21) 

where Q > 0 and Y are obtained from the solution ( i f  it exists) to the following linear objective 
minimization problem with variables y ,  Q ,  Y and A: 

min y 
7 ,  Q,  Y, A 

subject to 



and 

where 

Proof. See Appendix A. 

Remark 2 Strictly speaking, the variables in the above optimization should be denoted by Qk, 

Fk, Yk etc. to emphasize that they are computed at time k. For notational convenience, we omit 

the subscript here and in the next section. We will, however, briefly utilize this notation in the 

robust stability proof (Theorem 3). Closed loop stability of the receding horizon state-feedback 

control law given in Theorem 1 will be established in 83.2. 

Remark 3 For the nominal case, (L = 1 or A(k) = O,p(k) = 0, k > 0), it can be shown that we 

recover the standard discrete-time Linear Quadratic Regulator (LQR) solution (see Kwakernaak 

and Sivan (1972) [17] for the standard LQR solution). 

Remark 4 The previous remark establishes that for the nominal case, the feedback matrix F 

computed from Theorem 1 is constant, independent of the state of the system. However, in the 

presence of uncertainty, even without constraints on the control input or plant output, F can show 

strong dependence on the state of the system. In such cases, using a receding horizon approach and 

recomputing F at each sampling time shows significant improvement in performance as opposed to 

using a static state feedback control law. 

Remark 5 Traditionally, feedback in the form of plant measurement at each sampling time k is 

interpreted as accounting for model uncertainty and unmeasured disturbances (see 52.2). In our 

robust MPC setting, this feedback can now be reinterpreted as potentially reducing the conservatism 

in our worst-case MPC synthesis by recomputing F using new plant measurements. 

Remark 6 The speed of the closed-loop response can be influenced by specifying a minimum decay 

rate on the state x (IIx(k)II 5 cpkllx(0)ll, 0 < p < 1) as follows: 

for any [A(k + i) B(k + i)] E 0, i 2 0. This implies that 

Following the steps in the proof of Theorem 1, it can be shown that requirement (26) reduces to 

the following LMIs for the two uncertainty descriptions: 



Polyt opic uncertainty 

Structured uncertainty 

where A > 0 is of the form (25). 

Thus, an additional tuning parameter p E ( 0 , l )  is introduced in the MPC algorithm to influence 

the speed of the closed-loop response. Note that with p = 1, the above two LMIs are trivially 

satisfied if (20) and (24) are satisfied. 

3.2 Robust Constrained IH-MPC 

In the previous section, we formulated the robust MPC problem without input and output con- 

straints, and derived an upper bound on the robust performance objective. In this section, we 
show how input and output constraints can be incorporated as LMI constraints in the robust MPC 

problem. As a first step, we need to establish the following lemma which will also be required to 

prove robust stability. 

Lemma 1 (Invariant ellipsoid) Consider the system ( I )  with the associated uncertainty set a. 

(A) Let fl be a polytope described by (2). At  sampling time k ,  suppose there exist Q > 0,  y and 

Y = F Q  such that (20) holds. Also suppose that u ( k  + i lk)  = F x ( k  + i l k ) ,  i 2 0. 

Then i f  

x ( k l k ) ' ~ - ' x ( k l k )  < 1 (or  equivalently, x ( k l k ) ' ~ x ( k l k )  < y with P = yQ- l ) ,  

then 

max x ( k  + i l l ~ ) ~ ~ - l x ( k  + i lk)  < 1, i 2 1, 
[A(k+j)  B ( k + j ) ] € R ,  j 1 0  

(29) 

or equivalently, 

max x ( k  + i l k ) ' ~ x ( k  +i lk )  < y ,  i 2 1. 
[A(k+j)  B ( k + j ) ] € R ,  j>O 

Thus, E = { z l z ' ~ - ' z  2 1) = { z l z ' ~ z  2 y }  is an invariant ellipsoid for the predicted states of 

the uncertain system. 

( B )  Let fl be described by (6) in  terms of a structured A block as in  (4). A t  sampling time k ,  
suppose there exist Q > 0,  y ,  Y = F Q  and A > 0 such that (24) and (25) hold. If u ( k  + i lk)  = 

F x ( k  + i l k ) ,  i 2 0,  then the result in  (A) holds as well for this case. 



Figure 2: Graphical representation of the state-invariant ellipsoid E in 2-dimensions 

Remark 7 The maximization in (29) and (30) is over the set R of time-varying models that can be 

used for prediction of the future states of the system. This maximization leads to the "worst-case" 

value of x(k + ilk)TQ-lx(k + ilk) (equivalently, x(k + il k ) T ~ x ( k  + ilk)) at every instant of time 

k + i ,  i 2 1. 

Proof. (A)  From the proof of Theorem 1, Part (A), we know that 

(20) ++ (44) e (43) + (16). 

Thus, 

x(k + i + 11k)~px(k + i + Ilk) - x(k + i ~ k ) ~ P x ( k  + ilk) 

I -x(k + i l k ) T ~ l x ( k  +ilk) - u(k + i l k ) T ~ u ( k  + ilk) 

< 0 since Q1 > 0. 

Therefore, 

x(k + i + I / ~ ) ~ P x ( ~  + i + Ilk) < x(k + i l , ~ ) ~ P x ( k  + ilk), i 2 0, (x(k + ilk) # 0). (31) 

Thus, if x ( ~ I k ) ~ P x ( k l k )  < y, then ~ ( k + l l k ) ~ ~ x ( k + l l k )  < y. This argument can be continued 

for x(k + 21k), x(k + 31k), . . . and this completes the proof. 

(B) From the proof of Theorem 1, Part (B), we know that: 

(24), (25) - (47), (48) + (45), (46) - (16). 

Arguments identical to case (A) then establish the result. 

3.2.1 Input Constraints 

Physical limitations inherent in process equipment invariably impose hard constraints on the manip- 

ulated variable u(k). In this section, we show how limits on the control signal can be incorporated 

into our robust MPC algorithm as suficient LMI constraints. The basic idea of the discussion that 

follows can be found in Boyd et al. (1994) [5] in the context of continuous time systems. We present 



it here to clarify its application in our (discrete-time) robust MPC setting and also for complete- 

ness of exposition. We will assume for the rest of this section that the postulates of Lemma 1 are 

satisfied so that E is an invariant ellipsoid for the predicted states of the uncertain system. 

At sampling time k, consider the Euclidean norm constraint (9): 

The constraint is imposed on the present and the entire horizon of future manipulated variables, 

although only the first control move u(klh) = u(k) is implemented. Following [5], we have 

Using (13), we see that Ilu(k +ilk)llz < u % ~ ~ ,  i 2 0 if 

This is an LMI in Y and Q. Similarly, let us consider peak bounds on each component of u(k +ilk) 

at sampling time k (10): 

Now, 

rqax ly(k + ilk)12 = max I (YQ- 'x(~  + ilk)) . l 2  
220 i20 3 

< m u  I ( Y Q - ~ )  , l 2  - 
Z E E  3 

2 1 1  (YQ-b) , / I f  (using the Cauchy Schwarz inequality) 
3 

= (YQ-lyT) . 
jj 

Thus, the existence of a symmetric matrix X such that 

2 0, with Xjj 5 u;,rnax, j = 1,2,.  . . ,nu ,  
[ y T  Q l  

guarantees that Iuj(k + ilk)/ 5 uj,rnax, i 2 0, j = 1,2,.  . . ,nu .  These are LMIs in X, Y and Q. 
Note that (33) is a slight generalization of the result derived in [5 ] .  

Remark 8 Inequalities (32) and (33) represent sufficient LMI constraints which guarantee that 

the specified constraints on the manipulated variables are satisfied. In practice, these constraints 

have been found to be not too conservative, at least in the nominal case. 



3.2.2 Output Constraints 

Performance specifications impose constraints on the process output y(k). As in $3.2.1, we derive 

sufficient LMI constraints for both the uncertainty descriptions (see (2) and (3),(4)) which guarantee 

that the output constraints are satisfied. 

At sampling time Ic, consider the Euclidean norm constraint ( (11)): 

max I IY(~  +i l~) l l2  I Y ~ W ,  i 2 1- 
[A(k+j) B(k+j)]€R, j2O 

As discussed in $2.2, this is a worst-case constraint over the set R and is imposed strictly over the 

future prediction horizon (i 2 1). 

Polytopic uncertainty 

In this case, R is given by (2). As shown in Appendix B, if 

then 

max I I Y ( ~  + ilk)ll2 I ymax, i 2 1. 
[A(k+j) B(k+j)]€R, j>O 

Condition (34) represents a set of LMIs in Y and Q > 0. 

Structured uncertainty 

In this case, R is described by (3), (4) in terms of a structured A block. As shown in Appendix B, 

Y ~ ~ X Q  (CqQ+DquY)T (AQ+BY)TCT 

CqQ + DquY T-I 0 ] LO (35) 
C(AQ + BY) 0 I - CB,T-IB,TC~ 

with 

then 

rnax 
[A(k+j) B(k+j)]ER, j>O 

I IY(~ +ilk)ll2 5 ymax, i > 1. 

Condition (35) is an LMI in Y, Q > 0 and T-I > 0. 

In a similar manner, component-wise peak bounds on the output (see (12)) can be translated 

to sufficient LMI constraints. The development is identical to the preceding development for the 

Euclidean norm constraint if we replace C by Cl and T by 3, 1 = 1,2, .  . . , ng in (34), (35), where 



Tl is in general different for each 1 = 1,2 , .  . . , ny. 

Note that for the case with mixed A blocks, we can satisfy the output constraint over the 

current and future horizon max Ily(k+ilk) [ I 2  < y,, and not over the (strict) future horizon (i  2 1 )  
220 

as in (11) .  The corresponding LMI is derived as follows: 

Thus, CQCT < y k , ~  + Ily(k + ilk)l12 5 ymax, i 2 0.  For component-wise peak bounds on the 

output, we replace C by Cl, 1 = 1 , .  . . , n y .  

3.2.3 Robust Stability 

We are now ready to state the main theorem for robust MPC synthesis with input and output 

constraints and establish robust stability of the closed-loop. 

Theorem 2 Let x ( k )  = x ( k l k )  be the state of the uncertain system ( I )  measured at  sampling t ime 

k .  

(A) Suppose the uncertainty set R is defined by a polytope as i n  (2). Then,  the state feedback 

matrix F in the control law u ( k  + i l k )  = F x ( k  + i l k ) ,  i 2 0 ,  which minimizes the upper bound 

V ( x ( k 1 k ) )  o n  the robust performance objective function at sampling t ime  k and satisfies a set of 

specified input  and output constraints is given by 

where, Q > 0 and Y are obtained from the solution (if it exists) to  the following linear objective 

minimization problem: 

min { y  I y ,  Q ,  Y and variables in the LMIs  for input and output constraints) ,  

subject to  (19), (20), either (32) or (33), depending o n  the input constraint to  be imposed, and 

(34) with either C and T ,  or Cl and q, 1 = 1 ,2 , .  . . , ny, depending o n  the output constraint to  be 

imposed. 

( B )  Suppose the uncertainty set R is defined by (6) i n  terms a structured perturbation A as i n  
(4). I n  this case, F i s  given by 

F = Y Q - I ,  

where, Q > 0 and Y are obtained from the solution ( i f  it exists) to  the following linear objective 

minimization problem: 

min{y I y ,Q ,Y ,A  and variables i n  the LMIs  for input and output constraints) 

subject t o  (23), (24), (25), either (32) or (33) depending o n  the input constraint to  be imposed, and 

(35) with either C and T ,  or Cl and Tl, 1 = 1 , 2 , .  . . ,ny, depending o n  the output constraint to  be 

imposed. 



Proof. From Lemma 1, we know that (20) and (23,24) imply respectively for the polytopic and 

structured uncertainties, that E is an invariant ellipsoid for the predicted states of the uncertain 

system (1). Hence, the arguments in $3.2.1 and 53.2.2 used to translate the input and output 

constraints to sufficient LMI constraints hold true. The rest of the proof is similar to the proof of 

Theorem 1. 
In order to prove robust stability of the closed loop, we need to establish the following lemma. 

Lemma 2 (Feasibility) Any feasible solution of the optimization in Theorem 2 at time k is also 

feasible for all times t > k. Thus, if the optimization problem in Theorem 2 is feasible at time k, 

then it is feasible for all times t > k. 

Proof. Let us assume that the optimization problem in Theorem 2 is feasible at sampling time k. 

The only LMI in the problem which depends explicitly on the measured state x(klk) = x(k) of the 

system is the following 

[ x ( , k )  "y" ] 2 0. 

Thus, to prove the lemma, we need only prove that this LMI is feasible for all future measured 

states x(k + ilk + i) = x(k + i ) , i  2 1. 

Now, feasibility of the problem at time k implies satisfaction of (20) and (23,24), which, using 

Lemma 1, in turn imply respectively for the two uncertainty descriptions that (29) is satisfied. 

Thus, for any [A(k + i) B(k + i)] E R, i 2 0 (where R is the corresponding uncertainty set), we 

must have 

x(k + i l k )T~- lx (k  +ilk) < 1, i 2 1. 

Since the state measured at k + 1, that is, x(k + 1 lk + 1) = x(k + 1), equals (A(k) + B(k) F) x(klk) 

for some [A(k) B(k)] E R, it must also satisfy this inequality, i.e., 

Thus, the feasible solution of the optimization problem at time k is also feasible at time k+l.  Hence, 

the optimization is feasible at time k + 1. This argument can be continued for time k + 2, k + 3,. . . 
to complete the proof. 

Theorem 3 (Robust stability) The feasible receding horizon state feedback control law obtained 

from Theorem 2 robustly asymptotically stabilizes the closed loop system. 

Proof. In what follows, we will refer to the uncertainty set as R since the proof is identical for the 

two uncertainty descriptions. 

To prove asymptotic stability, we will establish that V(x(k1k)) = ~ ( k l k ) ~ ~ ~ x ( k l  k), where Pk > 0 

is obtained from the optimal solution at time k, is a strictly decreasing Lyapunov function for the 

closed-loop. 

First, let us assume that the optimization in Theorem 2 is feasible at time k = 0. Lemma 2 then 

ensures feasibility of the problem at all times k > 0. The optimization being convex, therefore, has 

a unique minimum and a corresponding optimal solution (7, Q, Y) at each time k 2 0. 



Next, we note from Lemma 2 that y, Q > 0, Y (or equivalently, y, F = YQ-', P = yQ-I > 0) 

obtained from the optimal solution at time k are feasible (of course, not necessarily optimal) at 

time k + 1. Denoting the values of P obtained from the optimal solutions at time k and k + 1 

respectively by Pk and Pk+1 (see Remark 2), we must have 

This is because Pk+1 is optimal whereas Pk is only feasible at time k + 1. 

And lastly, we know from Lemma 1 that if u(k + ilk) = Fkx(k + ilk), i 2 0 (Fk is obtained 

from the optimal solution at time k), then for any [A(k) B(k)] E 0, we must have 

x(k + l ~ k ) ~ P k x ( k  + Ilk) < x ( ~ ~ ( k ) ~ ~ ~ x ( k / k ) ,  (x(k1k) # 0) (37) 

(see (31) with i = 0). 

Since the measured state x(k + 1 Ik + 1) = x(k + 1) equals (A(k) + B(k)Fk]) x(kl k) for some 

[A(k) B(k)] E R, it must also satisfy inequality (37). Combining this with inequality (36) we 
conclude that 

Thus, x (k 1 (k 1 k) is a strictly decreasing Lyapunov function for the closed-loop. We therefore 

conclude that x(k) -+ 0 as k + oo. 

Remark 9 The proof of Theorem 1 (the unconstrained case) is identical to the preceding proof if 

we recognize that Theorem 1 is only a special case of Theorem 2 without the LMIs corresponding 

to input and output constraints. 

4 Extensions 

The presentation up to this point was restricted to the infinite horizon regulator with a zero target. 

In this section, we extend the preceding development to several standard problems encountered in 

practice. 

4.1 Reference Trajectory Tracking 

In optimal tracking problems, the system output is required to track a reference trajectory y,(k) = 

C,x,(k) where the reference states x, are computed from the following equation 

The choice of J, (k) for the robust trajectory tracking objective in the optimization (15) is the 

following 

03 

J,(k) = ( ( ~ x ( k  +ilk) - C,x,(k + i))T QI (Cx(k + ilk) - C,x,(k + i)) 
i = O  

+u(k + i l k ) ~ ~ u ( k  + ilk)) , Ql > 0, R > 0. 

As discussed in [17], the plant dynamics can be augmented by the reference trajectory dynamics 

to reduce the robust reference trajectory tracking problem (with input and output constraints) to 

the standard form as in 53. Due to space limitations, we will omit these details. 



4.2 Constant Set-point Tracking 

For uncertain linear time-invariant systems, the desired equilibrium state may be a constant point 

x,, us (called the set-point) in state-space, different from the origin. Consider (1) which we will 

now assume to represent an uncertain linear time-invariant system, i.e., [A B] E R are constant 

unknown matrices. Suppose that the system output y is required to track the target vector yt by 

moving the system to the set-point x,, us where 

We assume that x,, us, yt are feasible, i.e., they satisfy the imposed constraints. The choice of 

J,(k) for the robust set-point tracking objective in the optimization (15) is the following: 

00 

J c o ( ~ )  = ( ( c x ( ~  + ilk) - C X , ) ~  QI (Cx(k + ilk) - Cx,) 
i=O 

+(u(k + ilk) - U , ) ~ R ( U ( I C  + ilk) - us)) , Q1 > 0, R > 0 

As discussed in [17], we can define a shifted state 5(k) = x(k) - x,, a shifted input ii(k) = u(k) -us 

and a shifted output c(k) = y(k) - yt to reduce the problem to the standard form as in $3. 

Component-wise peak bounds on the control signal u can be translated to constraints on ii as 

follows: 

Constraints on the transient deviation of y(k) from the steady state value yt, i.e., y(k) can be 

incorporated in a similar manner. 

4.3 Disturbance Rejection 

In all practical applications, some disturbance invariably enters the system and hence it is mean- 

ingful to study its effect on the closed-loop response. Let an unknown disturbance e(k), having the 

property lim e(k) = 0 enter the system (1) as follows 
k+00 

A simple example of such an asymptotically vanishing disturbance is any energy bounded signal 
00 

(x e(i)Te(i) < m). Assuming that the state of the system x(k) is measurable, we would like to 
i=O 

solve the optimization problem (15). We will assume that the predicted states of the system satisfy 

the following equation 

As in $3, we can derive an upper bound on the robust performance objective (15). The problem 

of minimizing this upper bound with a state-feedback control law u(k + ilk) = Fx(k + ilk), i > 0, 



at the same time satisfying constraints on the control input and plant output, can then be reduced 

to a linear objective minimization as in Theorem 2. The following theorem establishes stability of 

the closed-loop for the system (39) with this receding horizon control law, in the presence of the 

disturbance e(k) . 

Theorem 4 Let x(k) = x(k1k) be the state of the system (39) measured at sampling time k and 

let the predicted states of the system satisfy (40). Then, the feasible receding horizon state feed- 

back control law obtained from Theorem 2 robustly asymptotically stabilizes the system (39) in  the 

presence of any asymptotically vanishing disturbance e(k). 

Proof. It is easy to show that for sufficiently large time k > 0, V(x(k1k)) = ~ ( k l k ) ~ ~ x ( k l k ) ,  where 

P > 0 is obtained from the optimal solution at time k, is a strictly decreasing Lyapunov function 

for the closed-loop. Due to lack of space, we will skip these details. 

4.4 Systems with delays 

Consider the following uncertain discrete-time linear time-varying system with delay elements, 

described by the following equations: 

m 

x(k + 1) = A O ( ~ ) X ( ~ )  + C ~ i ( k ) x ( k  - ~ i )  + ~ ( k ) u ( k  - r ) ,  
i=l 

~ ( k )  = Cx(k) 
(41) 

with [Ao (k) (k) . . . Am (k) B(k)] E 

We will assume, without loss of generality, that the delays in the system satisfy 0 < r < 71 < . . . < 
7,. At sampling time k 2 7, we would like to design a state-feedback control law u(k + i - rlk) = 

Fx(k  + i - r [ k ) , i  2 0, to minimize the following modified infinite horizon robust performance 

objective 

max 
[A(k+i) B(k+i)]€R, i > O  

JCO (k), (42) 

where 
CO 

Jm(k) = C (x(k + i l k ) T ~ l x ( k  + ilk) + u(k + i - ~ l k ) ~ ~ u ( k  + i - ~ / k ) )  , 
i=O  

subject to input and output constraints. Defining an augmented state 

which is assumed to be measurable at  each time k 2 7, we can derive an upper bound on the 

robust performance objective (42) as in 53. The problem of minimizing this upper bound with the 

state-feedback control law u(k + i - rlk) = Fx(k  + i - rlk), 1; 2 7, i 2 0, subject to constraints 

on the control input and plant output, can then be reduced to a linear objective minimization as 

in Theorem 2. These details can be worked out in a straightforward manner and will be omitted 

here. Note, however, that the appropriate choice of the function V(w(k)), satisfying an inequality 



of the form (16) is the following 

i=Tm-l +l 

= w (klT PW (k) 

where P is appropriately defined in terms of Po, P,, PTl . . . , PTm. The motivation for this modified 

choice of V comes from [lo] where such a V is defined for continuous time systems with delays, 

and is referred to as a Modified Lyapunov-Krasovskii (MLK) functional. 

5 Numerical Examples 

In this section, we present two examples which illustrate the implementation of the proposed robust 

MPC algorithm. The examples also serve to highlight some of the theoretical results in the paper. 

For both these examples, the software LMI-Lab [ll] was used to compute the solution of the linear 

objective minimization problem. 

5.1 Example 1 

The first example is a classical angular positioning system adapted from [17]. The system (see 

Figure 3) consists of a rotating antenna at the origin of the plane, driven by an electric motor. The 

control problem is to use the input voltage to the motor (u volts) to rotate the antenna so that it 

always points in the direction of a moving object in the plane. We assume that the angular positions 

of the antenna and the moving object (0 and 0, radians respectively) and the angular velocity of the 

antenna (6 rad/sec) are measurable. The motion of the antenna can be described by the following 

discrete-time equations obtained from their continuous-time counterparts by discretization, using 

a sampling time of 0.1 sec and Euler's first-order approximation for the derivative 

= 0.787 rad/(volts sec2), 0.1 sec-' 5 a(k) 5 10 sec-l. 

The parameter a(k)  is proportional to the coefficient of viscous friction in the rotating parts of the 

antenna and is assumed to be arbitrarily time-varying in the indicated range of variation. Since 

0.1 5 a(k)  5 10, we conclude that A(k) E S1 = Co{A1, A2}, where 

Thus, the uncertainty set S1 is a polytope, as in (2). Alternatively, if we define 
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x =  [ $ I  

Figure 3: Angular positioning system 

then 6(k) is time-varying and norm-bounded with 16(k)l 5 1, 5 > 0. The uncertainty can then be 

described as in (3) with 

Q = {[A + Bp6Cq] : 161 < 1) 

. Given an initially disturbed state x(k), the robust IH-MPC optimization to be solved at each 

time k is the following 

CO 

min J , ( k ) = ~ ( y ( k + i l k ) 2 + ~ u ( k + i l k ) 2 )  , R=0.00002 
u(k+i(k)=Fx(k+ilk),  i>O A(k+i)€R,  i>O 

i=o 

subject to lu(k + ilk)[ < 2 volts, i 2 0. 

No existing MPC synthesis technique can address this robust synthesis problem. If the problem 

is formulated without explicitly taking into account plant uncertainty, the output response could 

be unstable. Figure 4(a) shows the closed-loop response of the system corresponding to a(k) - 
9 sec-l, given an initial state of x(0) = [ OOo5 1. The control law is generated by minimizing a 

nominal unconstrained infinite horizon objective function using a nominal model corresponding to 

a(k)  - a,,, -. 1 sec-l. The response is unstable. Note that the optimization is feasible at each 

time k 2 0 and hence the controller cannot diagnose the unstable response via infeasibility, even 

though the horizon is infinite (see [24]). This is not surprising and shows that the prevalent notion 

that "feedback in the form of plant measurements at each time step k is expected to compensate 

for unmeasured disturbances and model uncertainty" is only an ad-hoc fix in MPC for model 

uncertainty without any guarantees of robust stability. Figure 4(b) shows the response using the 

control law derived from Theorem 1. Notice that the response is stable and the performance is 

very good. Figure 5(a) shows the closed-loop response of the system when a(k)  is randomly time- 

varying between 0.1 and 10 sec-'. The corresponding control signal is given in Figure 5(b). A 



time (see) time (see) 

(a) Using nominal MPC with ~ ( k )  - 1 seep1 (b) Using robust LMI-based MPC 

Figure 4: Unconstrained closed-loop responses for nominal plant ( a ( k )  - 9 sec-l) 

time (see) 

(a) Angular position 0 (rad) 

time (see) 

(b) Control signal u (volts) 

Figure 5: Closed-loop responses for the time-varying system with input constraint; solid: using 
robust receding horizon state-feedback; dash: using robust static state-feedback 



control constraint of lu(k)I 5 2 volts is imposed. The control law is synthesized according to 
Theorem 2. We see that the control signal stays close to the constraint boundary upto time k E 3 
sec, thus shedding light on Remark 8. Also included in Figure 5 are the response and control signal 

using a static state-feedback control law, where the feedback matrix F computed from Theorem 2 

at time k = 0 is kept constant for all times k > 0, i.e., it is not recomputed at each time k. The 

response is about four times slower than the response with the receding horizon state-feedback 

control law. This sluggishness can be understood if we consider Figure 6 which shows the norm 

of F as a function of time for the receding horizon controller and for the static state-feedback 

controller. To meet the constraint lu(k) 1 = I Fx(k) 1 1 2 volts for small k, F must be "small" since 

x(k) is large for small k. But as x(k) approaches 0, F can be made larger while still meeting the 

input constraint. This "optimal" use of the control constraint is possible only if F is recomputed 

at each time k, as in the receding horizon controller. The static state-feedback controller does not 

recompute F at each time k 2 0 and hence shows a sluggish (though stable) response. 

w ~ 1 2 3 4 5 6 7 8 9 1 0  

time (sec) 

Figure 6: Norm of the feedback matrix F as a function of time; solid: using robust receding horizon 

state-feedback; dash: using robust static state-feedback 

5.2 Example 2 

The second example is adapted from Problem 4 of the benchmark problems described in [27]. 

The system consists of a two-mass-spring system shown in Figure 7. Using Euler's first-order 

approximation for the derivative and a sampling time of 0.1 sec, the following discrete-time state- 



Figure 7: Coupled spring-mass system 

space equations are obtained by discretizing the continuous-time equations of the system (see [27]) 

Here, xl and 22 are the positions of body 1 and 2, and x3 and x4 are their velocities respectively. 

ml  and ma are the masses of the two bodies and K is the spring constant. For the nominal system, 

ml  = m2 = K = 1 with appropriate units. The control force u acts on m l .  The performance 

specifications are defined in Problem 4 of [27] as follows: 

Design a feedbacklfeedforward controller for a unit-step output command tracking problem for the 

output y with the following properties: 

1. A control input constraint of lul 5 1 must be satisfied. 

2. Settling time and overshoot are to be minimized. 

3. Performance and stability robustness with respect to m l ,  m2, K are to be maximized. 

We will assume for this problem that exact measurement of the state of the system, that is, 

[xl 22 xg x4jT is available. We will also assume that the masses ml and m2 are constant equal to 

1, and that K is an uncertain constant in the range Kmin < K < Kmax. The uncertainty in K is 

modeled as in (3) by defining 

cq = [Kdev - Kdev 0 01 , Dqu = 0 

where Knom = Kmax+Kd,  2 Kdev = Kmax- 2 Kmin 

For unit-step output tracking of y, we must have at steady state xl,  = x2s = 1, x3, = ~4~ = 

0, us = 0. As in 54.2, we can shift the origin to the steady state. The problem we would like to 

solve at each sampling time k is the following: 

min max J,(k) 
u(k+ilk)=Fx(k+ilk), i20 A(k+i)€R, i20 



subject to 1u(k + ilk) I < 1, i 2 0. Here, J, ( k )  is given by (38). Figure 8 shows the output and 

time (set) time (set) 

Figure 8: Position of body 2 and the control signal as functions of time for varying values of the 

spring constant. 

control signal as functions of time, as the spring constant K (assumed to be constant but unknown) 

is varied between Kmi, = 0.5 and K,,, = 10. The control law is synthesized using Theorem 2. An 

input constraint of lul < 1 is imposed. The output tracks the set-point to within 10% in about 25 

sec for all values of K. Also, the worst-case overshoot (corresponding to K = Kmin = 0.5) is about 

0.2. It was found that asymptotic tracking is achievable in a range as large as 0.01 5 K 5 100. 

The response in that case was, as expected, much more sluggish than that in Figure 8. 

6 Conclusions 

Model Predictive Control (MPC) has gained wide acceptance as a control technique in the process 

industries. From a theoretical standpoint, the stability properties of nominal MPC have been 

studied in great detail in the past 7-8 years. Similarly, the analysis of robustness properties of 

MPC has also received significant attention in the MPC literature. However, robust synthesis for 

MPC has been addressed only in a restrictive sense for uncertain FIR models. In this article, 

we have described a new theory for robust MPC synthesis for two classes of very general and 

commonly encountered uncertainty descriptions. The development is based on the assumption of 

full state-feedback. The on-line optimization involves solution of an LMI-based linear objective 

minimization. The resulting time-varying state-feedback control law minimizes, at each time-step, 

an upper bound on the robust performance objective, subject to input and output constraints. 



Several extensions such as constant set-point tracking, reference trajectory tracking, disturbance 

rejection and application to delay systems complete the theoretical development. Two examples 

serve to illustrate application of the control technique. 
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A Appendix A: Proof of Theorem 1 

Minimization of V(x(k1k)) = x(kl k )T~x(k lk ) ,  P > 0 is equivalent to 

min 
Y >p 

Y 

subject to ~ ( k l k ) ~ ~ x ( k l k )  5 7. 

Defining Q = YP-' > 0 and using Lemma 1, this is equivalent to 

min 
r,Q 

Y 

which establishes (18), (19), (22) and (23). It remains to prove (17), (20), (21), (24) and (25). We 

will prove these by considering (A) and (B) separately. 

(A) The quadratic function V is required to satisfy (16). Substituting u(k+ilk) = Fx(k+ilk), i > 0 

and the state space (I) ,  inequality (16) becomes: 

+FTRF + Ql) x(k + ilk) < 0. 

This is satisfied for all i 2 0 if 

Substituting P = -yQ-l, Q > 0, pre- and post-multiplying by Q (which leaves the inequality 

unaffected), substituting Y = F Q  and using (13), we see that this is equivalent to 



Inequality (44) is affine in [A(k + i )  B ( k  + i )] .  Hence, it is satisfied for all 

[A(k + i) B ( k  + i ) ]  E R = Co{[Al B I ] ,  [A:! Bz] ,  . . - , [AL B L ] )  

if and only if there exist Q > 0, Y = FQ and y such that 

The feedback matrix is then given by F = YQ-'. This establishes (17) and (20). 

( B )  Let R be described by (3)  in terms of a structured uncertainty block A as in (4).  As in (A) ,  
we substitute u(k  +ilk)  = Fx(k  + i lk),  i  1 0 and the state space equations (3)  in (16) to get 

( A  + B F ) ~ P ( A  + B F )  - P ( A  + B F ) ~ P B ,  

B ~ ( A  + B F )  B$PB, 

with 

It is easy to see that (45) and (46) are satisfied if 3 X i ,  Ah, . . . , Xk > 0 such that 

( A  + B F ) ~ P ( A  + B F )  - P + FTRF ( A  + B F ) ~ P B ,  

+QI + (Cq + D ~ ~ F ) ~ A ' ( C ~  + DquF) ] 6 0 ,  (47) 
B ~ ( A  + B F )  B ~ B ,  - A' 

where 

= I n  I n  . .  1 > 0. (48) 

x;m, 
Substituting P = yQ-I with Q > 0, using (13) and after some straightforward manipulations, we 

see that this is equivalent to the existence of Q > 0, Y = FQ, A' > 0 such that 

Defining A = yA1-l > 0 and Xi = yXi-' > 0, i  = 1,2, . . . , r then gives (21), (24) and (25) and the 

proof is complete. 



B Appendix B: Output constraints as LMIs 

As in 53.2.1, we will assume that the postulates of Lemma 1 are satisfied so that & is an invariant 

ellipsoid for the predicted states of the uncertain system (1). 

Polytopic uncertainty 

For any plant [A(k + j )  B ( k  + j )]  E R, j 2 0, we have 

y p ~  Ily(k + ilk)llz = ypz IIC (A(k + i) + B ( k  + i ) F )  x(k + ilk)llz 
- 

5 max IIC (A(k + i) + B ( k  + i ) F )  zl12, i > 0 
zEE 

= c [ c ( A ( ~ + ~ ) + B ( ~ + ~ ) F ) Q ~ ] ,  i 2 0 .  

Thus, Ily(k +ilk)llz < ymax, i 2 1 for any [A(k + j )  B ( k  + j )]  E R, j 2 0 if 

which, in turn, is equivalent to 

Q (A(k + i )Q  + B ( k  + ~ ) Y ) ~ C ~  [ C(A(k + i )Q + B ( k  + i )Y) ~ & a x I  I LO, i L O  

(multiplying on the left and right by Q; and using (13)). 

Since the last inequality is affine in [A(k + i )  B ( k  + i)], it is satisfied for all 

[A(k + i )  B(k  + i)] E 0 = Co{[Al BI], [A2 B21, . . . , [AL BLI) 

if and only if 

Q (Aj& + B ~ Y ) ~ C ~  
2 I  1 2 0 ,  j = l , 2  , . . . ,  L. 

Ymax 

This establishes (34). 

Structured uncertainty 

For any admissible A(k + i ) ,  i > 0, we have 

We want IIC(A + B F ) Q ~ ~  + CBpp(k + ilk)llz < yma, i > 0 for allp(k + i jk) ,z satisfying 



and zTz < 1. 
This is satisfied if there exist constants t l ,  ta, . . . , t,, t,+l > 0 such that for all z,p(k + ilk) 

where 

Without loss of generality, we can choose tT+l = yk,. Then, the last inequality is satisfied for all 

z,p(k + ilk) if 

or equivalently, 

I 
(A& + B Y ) ~ C ~ C ( A Q  + BY) (AQ + B Y ) ~ c ~ C B ,  

+WqQ + D q u Y ) T ~ ( C q Q  + DquY) - yk,Q 
B P T C ( A Q  + BY) BTC~CB, - T 

I 
~ k a x Q  (CqQ + DquVT (A& + BYITCT 

cqQ + DquY T-l O 
C(AQ + BY) 0 I - CB,T-~B,TC~ 

(using (13) and after some simplification). 
This establishes (35). 
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