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ABSTRACT 
Accurate and rapidly produced 3D models of the as-built environment can be significant 

assets for a variety of Civil Engineering scenarios. Starting with a point cloud of a scene –
generated using laser scanners or image-based reconstruction method– the user must first 
identify collections of points that belong to individual surfaces, and then, fit surfaces and solid 
geometry objects appropriate for the analysis. When performed manually, this task is often 
prohibitively time consuming and, in response, several research groups have recently focused on 
developing methods for automating the modeling process. Due to the limitations of the data 
collection processes as well as the complexity of as-built scenes, automated 3D modeling still 
presents many challenges. To overcome existing limitations, in this paper, we propose a new 
region growing method for robust context-free segmentation of unordered point clouds based on 
geometrical continuities. In our method, only one parameter is required to be set by the user to 
account for the desired level of abstraction. Preliminary experimental results from two 
challenging scenes of the built environment demonstrate that our method can account for 
variability in point cloud density, surface roughness, curvature, and clutter within a single scene. 
 

INTRODUCTION 
3D modeling of the as-built environment is used by the AEC industry in a variety of 

engineering analysis scenarios. Significant applications include progress monitoring of 
construction sites, quality control of fabrication and on-site assembly, energy performance 
assessment, and structural integrity evaluation. In recent years, point clouds have become the 
predominant data type collected on site and used as a basis for modeling. This data can originate 
from image-based 3D reconstruction methods using images or videos, as well as structured light 
methods, mainly laser scanners. The process of generating 3D models from point cloud data 
involves two steps: 1) identifying collections of points that belong to each surface, and 2) fitting 
geometry (meshes, primitives, NURBS, subdivision) to them. This process is manual and very 
time-consuming. In response, several research groups (e.g., Xiong et al. 2013, Zhang et al. 2013) 
have recently focused on developing methods for automated modeling. 

Although, the type of geometry to be fitted is heavily dependent on a specific analysis, 
the common task in Civil Engineering scenarios is the segmentation of point clouds into 
identifiable surfaces. Figure 1 shows examples of the use of automated segmentation to identify 
specific elements that need to be modeled. The complexity of as-built scenes produces 
significant challenges for automated segmentation: 

1) Density: Point cloud models exhibit locally variable densities based on 
orientation and distance from the capture device. Furthermore, occlusions from surface 
irregularities and adjacent objects produce regions with missing data.    
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2) Surface Roughness: the physical texture of common surfaces can range from smooth 
(steel, marble) to very irregular (grass, crushed stone). Because a given scene can contain a wide 
range of surface roughnesses, no priors about noise levels can be reliably used.  

3) Curvature: surfaces can be flat, single curved, double curved, or have undulations at 
multiple scales, making boundaries hard to define. 

4) Clutter: a scene can be made up of multiple objects in close proximity, making feature 
detection difficult. 

5) Abstraction: 3D modeling is inherently a process of abstraction. This required that 
some decisions have to be made by the user. In consequence, automation needs to balance 
flexibility with the ease of use. 

In this paper, we present a segmentation method that addresses these challenges. We test 
the performance of the proposed method on two challenging point cloud models that are 
generated using multiple laser scans of the built environments.  

 

 
 

Figure 1. Example result of our automated segmentation method in a challenging point 
cloud including various structural and MEP/FP elements:      a) flat segments for the 
purposes of architectural modeling; b) pipe segments of similar diameter for the purposes 
of MEP modeling. 
 

RELATED WORK 
Recent automated segmentation strategies for the purposes of geometric modeling (Tang 

et al. 2010) fall into two families:  
1) Surface based methods (e.g., Zhang et al. 2013, Reisner-Kollmann et al. 2012, Li et al. 

2011, Borrmann et al. 2011, Deschaud et al. 2010) attempt to find sets of points in the scene that 
fit planes and primitives. These methods are generally able to identify surfaces in cluttered 
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scenes. However, they leverage expectations of the types of surfaces to be modeled and are thus 
context specific. They also work best when prior knowledge of the surface roughness is available 
to define the inlier/outlier thresholds. In Zhang et al. (2013), these thresholds take the form of 
global parameters for a Maximum Likelihood Estimator Sample Concensus (a probabilistic 
approach to the RANSAC paradigm).  

2) Region growing methods (Son et al. 2013, Rabbani et al. 2006) are graph based and to 
not constrain the user to modeling with primitives. They rely on some formulation of 
connectivity between points and a measure of similarity. Similarity is generally derived from 
local features extracted from a neighborhood around each point. Surface normal (Klasing et al. 
2009, Dey et al. 2005), and curvature are the most commonly used features. Curvature estimation 
can depend on normal estimation and orientation (Kalogerakis et al. 2009) to produce detailed 
features (principal curvature vectors) or use points alone to provide an indirect measure (Mérigot 
et al. 2011, Pauly et al. 2003). Alternatively, local NURBS fitting can be used (Son et al. 2013), 
with the assumption that curvatures are relatively low, and a surface does not fold on to itself 
(e.g., small diameter pipe). Similarity measures based on local features used in this family of 
research works assume a locally manifold (non-self-intersecting) surface. However, when 
multiple objects are in close proximity, the point clouds describe effectively non-manifold 
surfaces and thus these features become unreliable. Figure 1 and Figure 4a show cluttered scenes 
can render this approach ineffective. 

 

METHOD 
We propose a context-free method for segmentation of unordered point clouds in .  No 

prior assumptions are made about the intent of the segmentation process as it applies to a larger 
context of engineering analysis. In particular, there are no priors about 1) possible types of 
shapes in the scene or the surface models used to describe them (e.g., primitives, NURBS, 
subdivision surfaces, meshes); 2) materials, surface roughness, object proximity and clutter, or 
noise levels; and 3) the completeness of the scene, the point cloud density, or other constraints 
stemming from the sensing process. Our method requires only one parameter to be set by the 
user, the radius of interest . This parameter provides a “soft” upper bound on the amount of 
detail that is to be considered, and allows segmentation to account for local context. For 
example, a single wood plank on a concrete floor should be segmented as one element, while 
collections of planks (e.g., formwork, decking, fences) should be considered as singular textured 
materials and would be grouped together. Thus, we consider  as a locally adaptive threshold, 
allowing the capture of the representative scales of various surfaces in the scene. Furthermore, 
the process is able to dynamically reevaluate local features during segmentation, thus mitigating 
unreliability in regions where multiple objects are near one another. The method starts with a 
pre-processing stage that subsamples the point cloud. A multi-scale feature detection stage 
follows, describing surface roughness and curvature around each 3D point. Finally a seed finding 
and region growing stage segments the points. Figure 2 shows an overview of the entire 
segmentation process. 

 
Pre-processing 

A point cloud  is subsampled to one point per voxel of size , generating point cloud 

, such that . An upsample data structure is kept to map each point  to the set of 
removed points from its representative voxel. 
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Figure 2. The automated segmentation process. 
 

Multi-Scale Feature Detection 
A point  has a full neighborhood  where all  and are within 

distance  of . A partial neighborhood  is defined as the set of at most  points 

sampled uniformly from all points in  with a distance to smaller than 

. 

For each point , scale-dependent features  are computed based 

on a neighborhood of points , where  is the local orthonormal 

basis represented by the unit surface normal , and unit directions of max and min curvatures 

, ;  and  are the absolute valued max and min curvatures, and  is the 

surface roughness. 
First, a rough estimate of the surface normal is computed based on a Principal 

Component Analysis (PCA) on all points in . Next, to compute surface roughness and 

curvature, a set of planes passing through  and rotating uniformly around the 
surface normal are generated. 

For each neighborhood  and each plane , all points with offset smaller that 

 from plane form the plane neighborhood . These points are represented in the  

subspace formed by the plane. We fit a circle to these points using the least squares method, and 
the curvature , center , and fit error  (average and standard deviation distance 

of the points to the circle) are recorded. For each scale,  is derived from the plane with 
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maximum curvature, and  derived from the plane perpendicular to the one with maximum 

curvature. The centers recorded from these two planes are projected into the world  basis and 

the final surface normal becomes . The local basis is 

completed by finding  and , two unit vectors perpendicular to the surface normal and lying 

on the two principal planes respectively. Finally,  is computed as the mean fit error from the 

circles in the two principal planes. If no features can be computed due to insufficient neighbors, 
. The representative features for each point  is derived by finding  

such that . Figure 3 illustrates the estimated surface roughness at each scale and the 

derived representative roughness and radii for the floor in scene in Figure 1. The circular red 
zones that appear at smaller scales are zones where features cannot be found due to low point 
density. In Figure 3b, red represents zones where the feature estimation is unreliable. 

 

 
 

Figure 3. Showing estimated surface roughness for a floor surface at different scales. a) The 
representative radii per point (blue is largest, red is smallest); b) The estimated surface 
roughness from the representative features. 

 
The representative neighborhood  for each point is formed by fitting a local double 

curved surface (torus) derived from the principal curvatures and directions. From all points in , 

only those whose distance from this surface satisfies  are kept. 
 

Finding Seeds 
Each segment starts by finding one seed point that is then grown by incrementally adding 

new points to it. When growth is complete, a new seed point is needed for the growth of the next 
segment. Seed finding proceeds in successive steps, starting from the smoothest and most 
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uniform patches in the scene. Thresholds for surface roughness, , and radius, , 
are initialized. A valid seed is found by looking for an non-segmented point with minimum 
surface roughness  that satisfies  and . If no such point exists, the radius is 

incremented, . When all possible radii have been exhausted, the roughness threshold is 

incremented,  and . If the roughness threshold  reaches  and no valid seed can 

be found, the segmentation terminates. 
 
Segment Growth 

At the start of each segment growth, empty sets of candidates  and current segment 

points  are initialized. The surface roughness of the segment is initialized as 

 and . Once a seed is chosen, it is added to  and all points 

from its representative neighborhood  are added to . Then, a point from  is removed and 

examined. If its local roughness satisfies , it is added to , 

the segment roughness is updated, and all points in its representative neighborhood  

are added to . If not, this point’s features are considered unreliable, and are recomputed using 

only points from . This avoids non-manifold local neighborhoods from 

affecting segmentation as all points in  are guaranteed to belong to a manifold surface. We 
reject those points that do not meet this criteria. Finally, segmentation ends when there are no 
more points left in . Figure 4 shows how reevaluated points correspond to regions where 
multiple objects are in close proximity. 

 

 
 

Figure 4. Example segmentation of a composite pipe in a cluttered scene. a) Shows the red 
ground truth segmentation, highlighting regions where other objects are touching the pipe. 
b) During region growing, green points are accepted, blue points are reevaluated, and red 
points are rejected. c) Comparison with ground truth: red are false positives, blue are false 
negatives. 

 
EXPERIMENTAL RESULTS 
Ground truth 

The ground truth in our experiments was manually generated from point cloud scenes. 
Segments were defined based on a judgment of surface continuity and not object completeness; 
i.e., segments ignore small local features that are deemed part of an object but deviate from the 
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continuity of the overall surface. Figure 4a illustrates the ground truth of a composite pipe. The 
connection details between pipe sections– although part of the overall composite pipe object– are 
deemed to belong to surfaces that are discontinuous from the main pipe surface and are 
segmented separately. Object definition –what points belong to the same object– can be very 
subjective. By focusing on surfaces, without bias towards objects, we aim to reduce the potential 
variability of ground truth judgment by the user. 

 The ground truth segmentation of  is a set , where each  is a 

ground truth segment. Each  can belong to at most one segment. If it does not belong to any 

segment, it was dismissed as noise or there was inadequate sensing and, as a result, the user 
could not perceive a surface from that region. 

 
Validation Metrics 

The performance measure of a segmentation algorithm is derived from its ability to 
segment sets of points that properly describe the underlying shapes in the scene. In practice, 
describing the underlying shapes includes fitting surfaces to segmented sets of points. In this 
paper, no assumptions about fitting strategies are made, thus we define the proper description of 
the underlying shapes as the similarity between of the segmented point sets and the ground truth 
point sets. 

Given a test segmentation  and a ground truth segment , we define a 

testing segment  as the union of all  with at least  points in . In our experiments, we set 

 of the number of points in . We define: true positives ( ) as the number of points in 

 and ; true negatives ( ) as the number of points not in  and not in ; false positives 

( ) as the number of points not in  and ; false negatives ( ) ad the number of points in  

and not . The performance of the segmentation per ground truth segment  is measured by: 

1- The extent at which  provides a false description of the underlying shape, using 

the false positive rate ( ), or type I error: 

 
2- The extent at which  provides an incomplete description of the underlying shape, using 

the false negative rate ( ), or type II error: 

 
3- The extent of over-segmentation of , which makes the complete underlying shape 

harder to assemble, using  as the number of  used to form . 
 
Experiments 

Experiments were run on two challenging point clouds representing two types of built 
environments. The first, the corridor data set, is a 20 million point interior scene with a lot of 
very densely packed MEP equipment.  The second, the street data set, is a 2 million point 
outdoor scene with a variety of surface roughnesses (from smooth walls to rough grass and 
bushes), as well as many invalid points produced from people and vehicles in movement during 
scanning. The corridor scene was processed with , yielding a subsampled cloud of 
950,000 points. Figure 5 shows the relationship between each metric and the mean maximum 
curvature of the segment. It indicates that all three metrics are not affected by the curvature of 
the segments, thus the algorithm performs consistently over these various surfaces. 
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Figure 5. Results from the corridor data set. Each data point represents a segment in the 
scene (red for pipe segments, black for flat segments). 

 

Overall our method results in a mean  of 0.03%, with standard deviation 0.02%. This 
means that detected segments have very little points that should not belong to them. Because 
false positives contribute to erroneous surface fitting, a very low rate is crucial in proper 
automated modeling. The mean  for all segments is 12% with standard deviation of 8%, 
meaning that most detected segments are more than 80% complete. The scene also contains 
over-segmentation of an average of 3.5 detected segments per ground truth segment. Figure 6 
shows an example from our data set where incomplete detection and over-segmentation in this 
scene is caused by insufficient sensing due to occlusions. 

 

 
 
Figure 6. a) Ground truth segmentation of two composite pipes. The red circles show areas 
with missing data due to occlusions. b) The over segmentation resulting from missing data. 

 

The use of a robust curvature feature can facilitate the classification of segments. Figure 
5 shows a clear distinction between curved and flat surfaces. This information is used in Figure 7 
to separate walls, floors and ceilings, from pipes of various diameters. The street scene was 
processed with , yielding a subsampled cloud of 930,000 points. Figure 8 shows how 
the roughness feature can be used to distinguish between smooth surfaces (street, sidewalk, 
building walls), and rough surfaces (vegetation, roof shingles, detailed molding). The data sets, 
videos, and additional results from these experiments can all be found at 
http://raamac.cee.illinois.edu/segmentation. 
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Figure 7. a) Segmentation of the corridor data set. b) Color map of mean maximum 
curvature of each segment. c) Isolation of low curvature surfaces. d) Isolation of high 
curvature surfaces (pipes). 
 

 
 
Figure 8. a) Segmentation of the street data set. b) Color map of mean surface roughness of 
each segment. c) and d) Isolation of smooth and rough surfaces. 
 

CONCLUSION 
A novel method for robust context-free segmentation of unordered point clouds was 

presented. The process can account for variability in point cloud density, surface roughness, 
curvature, and clutter within a single scene.  Only one parameter is required to be set by the user 
to account for the desired level of abstraction. Preliminary experiments result in a mean  of 
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0.03% and a mean  of 12% in challenging scenes of the built environment and demonstrate the 
potential of this method to be implemented in a variety of civil engineering analysis scenarios. 
Future work will focus on further validation and refinement of performance metrics as well as a 
reduction of computation time through implementations leveraging GPU. 
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