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Abstract—With the advantages of comfortable wearing and 
outdoor usage, the myoelectric gesture recognition techniques 
have gained much attention in the field of human-machine 
interaction (HMI). The purpose of this study is to optimize model 
structure and transfer generalized features to improve the 
robustness of myoelectric hand motion decoding. We derived 
the hand motion recognition framework from the muscle 
synergy theory, which is formulated as a temporal convolutional 
(TC) model of array sEMG signals, then a hierarchical 
myoelectric decoding model was proposed to predict 
simultaneous and continuous hand motion. The model was 
trained by the methods of unsupervised low-level feature 
learning and automated data labeling to minimize training 
supervision. Extensive experiments on the public sEMG database (17 subjects in Biopatrec) show that the TC model 

can extract muscle synergy features with higher fidelity (𝑹𝟐=0.85±0.23) than the traditional instantaneous mixture 

model, the results of online test demonstrate robust myoelectric decoding on multiple simultaneous and continuous 
hand motions. More importantly, the analysis of weights visualization shows that the low-level feature representation 
layer of TC model can be migrated across the individuals, which provides a transferrable feature extraction layer for 
generalized hand motion decoding. 

 
Index Terms—Muscle Synergies, sEMG Array, Hand Motion Prediction, Generalization, Myoelectric Decoding Model 

 

I. INTRODUCTION 

UMAN hand, by the unparalleled ability of dexterous 

manipulation, has attracted large numbers of researchers 

to explore its principle of neuromuscular interface with the help 

of sensor technology. Surface electromyography (sEMG) 

sensor can noninvasively detect the electrophysiological signals 

of the muscles from the skin. Therefore, the hand motions 

originated from the co-contraction of the forearm muscles could 

be recognized by placing an array of sEMG sensors on the skin 

surface of the forearm. With the advantages of comfortable 

wearing and outdoor usage, compared to data glove[1, 2] and 

computer vision[3], the sEMG based gesture recognition 

techniques have gained much attention in the field of HMI. 

The discrete gestures classification based on pattern 

recognition and continuous hand motions decoding based on 

regression model are two main research directions of 

myoelectric control. With the help of deep learning, the discrete 

gestures classification supports recognizing more gesture 

categories[4], while the state-of-art continuous hand motion 

decoding methods realize both the gesture recognition and 

continuous force or kinematic estimation[5]. From the 

perspective of realizing natural human-computer interaction, 

the continuous hand motion decoding method contributes to a 

more intuitive interaction experience. 

Despite decades of efforts have brought about great progress 

on myoelectric control, there are still some challenges to be 

solved: 1) Currently it is still difficult to decode dexterous 

gestures from sEMG signals, and the predicting accuracy 

decreases with an increase in the number of gestures to be 

recognized. 2) The relatively consistent and reproducible input 

features contribute to a reliable prediction for machine learning 

based decoding model, whereas many studies have shown that 

electrode shifts and long-term usage could shift the input 

features, degrading the online recognition performance. 

To address the above issues, Hahne et al.[6] verified the 

robust recognition of linear regression models for non-training 

set gestures (i.e., simultaneous gestures). Lin et al.[7] and Yang 

et al.[8] proposed the regression model that optimized the 

model calibration method to improve the predicting accuracy of 

continuous hand motions. Muceli et al.[9] proposed the NMF 

method that verified the robustness against electrode offsets. He 

et al.[10] proposed the electrode calibration framework PV, 

which maintains the recognition performance in long time 

usage scenarios. Currently, most of the myoelectric decoding 

methods are based on the instantaneous mixture estimation 
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model, where the input is the instantaneous activation signals 

of sEMG array sensors. This estimation is based on the 

assumption that the volume conductor from muscle units to 

each electrode is estimated as a linear transformation, so it may 

ignore certain latent nonlinear relationships between some 

complex gestures and corresponding sEMG signals. Besides, 

Muceli et al.[9] pointed out that the prediction of wrist rotation 

increases the nonlinearity of the model. Therefore, it is 

important to verify the model robustness when the number of 

gestures to be predicted increases. 

In this paper, we mainly focused on three key issues of 

myoelectric control for the practical application of HMI: 1) We 

proposed a novel nonlinear temporal convolutional (TC) model 

to robustly recognize simultaneous and continuous hand 

motions that outside the training set. 2) We designed an 

automated data labeling method to streamline the difficulties in 

training set collection. 3) To further enhance the generalized 

recognition across the subjects, we extracted the transferrable 

low-level representation layer from the TC model. The 

experimental results show that the TC model can extract muscle 

synergy features with higher fidelity than the traditional 

instantaneous mixture model. In addition, the low-level feature 

representation layer of TC model can be migrated across the 

individuals, which provides a transferrable feature extraction 

layer for generalized hand motion decoding. 

II. METHODS 

A. Continuous Myoelectric Decoding Model 

The muscle synergy theory, which has been progressively 

acknowledged over the past decades[11-15], shows that the 

high-dimensional muscle groups are coordinated by low-

dimensional functional modules. In this paper, the mapping 

relationship between the control signals and the sEMG array 

signals was studied on the basis of the muscle synergy 

framework, aiming to improve the robustness of myoelectric 

control by extracting more generalized muscle synergies. 

According to the muscle synergy theory, motor unit action 

potentials (MUAP) transmitted from the spinal cord commonly 

drive multiple muscles[16], which can be formulated in 

Equation 1. The independent components among all MUAP can 

be seen as muscle synergy features 𝑓𝑛(𝑡) with a number of N. 

Let the activation function of the mth muscle (the sum of all 

muscle unit action potentials generated from the same motor 

neural pool) is 𝑥𝑚(𝑡), so it can be seen as a linear representation 

of N muscle synergy features [𝑓1(𝑡),⋯ , 𝑓𝑛(𝑡)]: 𝑥𝑚(𝑡) = ∑ 𝑠𝑛𝑚 ⋅ 𝑓𝑛(𝑡)𝑁
𝑛=1 (1) 

where 𝑠𝑛𝑚  is the weights for different muscle synergies. 

Since we used non-invasive electrodes attached to the skin of 

the forearm to acquire sEMG, the signal transmitted from the 

muscles to the electrode can be seen as a mixture of multiple 

muscle sources underlying the detecting electrode, and being 

filtered by tissue and skin conduction[9] (commonly referred to 

volume conductor), which is expressed in Equation 2: 𝑧𝑘(𝑡) = ∑ ∑𝑔𝑚𝑘(𝑙)𝐿
𝑙=0

𝑀
𝑚=1 ⋅ 𝑥𝑚(𝑡 − 𝑙) 

= ∑ 𝑔𝑚𝑘(𝑡)𝑀
𝑚=1 ∗ 𝑥𝑚(𝑡) (2) 

It shows that instantaneous sEMG signal acquired by the kth 

electrode 𝑧𝑘(𝑡) is contributed by all N muscles. Meanwhile, the 

contribution of each muscle is the convolution between the 

muscle unit potential sequence with the length of L and volume 

conductor function 𝑔𝑚𝑘(𝑡) . Equation 2 depicts an encoding 

process from 𝑥𝑚(𝑡)  to  𝑧𝑘(𝑡) , in order to obtain the inverse 

decoding expression, the Fourier transform is applied to 

Equation 2, which gives Equation 3: 𝑧𝑘(𝜔) = ∑ 𝑔𝑚𝑘(𝜔)𝑀
𝑚=1 ⋅ 𝑥𝑚(𝜔) 

= [𝑥1(𝜔),⋯ , 𝑥𝑚(𝜔)] ⋅ [𝑔1𝑘(𝜔)𝑔2𝑘(𝜔)⋮𝑔𝑚𝑘(𝜔)] (3) 

where the convolution on the time domain becomes the 

multiplication on the frequency domain. Due to its linearity 

property, it can be expressed in a matrix form, as given in 

Equation 4: [𝑧1(𝜔),⋯ 𝑧𝑘(𝜔)] = [𝑥1(𝜔),⋯ 𝑥𝑚(𝜔)] ⋅ 𝐺𝑀×𝐾 (4) [𝑥1(𝜔),⋯𝑥𝑚(𝜔)] = [𝑧1(𝜔),⋯ 𝑧𝑘(𝜔)] ⋅ 𝐺𝐾×𝑀+ (5) 

It shows that, on the frequency domain, the vector of muscle 

activation function [𝑥1(𝜔),⋯ 𝑥𝑚(𝜔)] can be transformed into 

sEMG array signals [𝑧1(𝜔),⋯ 𝑧𝑘(𝜔)] by matrix 𝐺𝑀×𝐾  (Unless 

otherwise specified, the capital italic symbols indicate matrices 

and the subscripts indicate their dimensions). Therefore, by 

computing the pseudo-inverse matrix of 𝐺, i.e., 𝐺+ in Equation 

5,  𝑥𝑚(𝜔)  can be linearly represented by  [𝑧1(𝜔),⋯ 𝑧𝑘(𝜔)] , 

where the column vector [𝑔′1𝑚(𝜔),⋯𝑔′𝑘𝑚(𝜔)]𝛵 in Equation 6 

denotes the column vector weights of 𝐺+ in the mth column. 

Finally, by applying Fourier inverse transform on Equation 6, 

we got Equation 7: 

𝑥𝑚(𝜔) = [𝑧1(𝜔),⋯ 𝑧𝑘(𝜔)] ⋅ [   
 𝑔′1m(𝜔)𝑔′2𝑚(𝜔)⋮𝑔′𝑘𝑚(𝜔)]   

 
 

= ∑ 𝑔′𝑘m(𝜔)𝐾
𝑘=1 ⋅ 𝑧𝑘(𝜔) (6) 

𝑥𝑚(𝑡) = ∑ 𝑔′𝑘m(𝑡)𝐾
𝑘=1 ∗ 𝑧𝑘(𝑡) (7) 

Equation 7 shows that the muscle activation function 𝑥𝑚(𝑡) 

can be obtained by convolving 𝑧𝑘(𝑡) and 𝑔′𝑘m(𝑡) by channel-

wise, and then summing them together. Through combining 

Equation 7 with Equation 1, the complete decoding model from 

the sEMG array signals [𝑧1(𝑡),⋯ 𝑧𝑘(𝑡)]𝛵  to muscle synergy 

features [𝑓1(𝑡),⋯𝑓𝑁(𝑡)]𝛵 was obtained. 

 Based on the above formulations, the framework of the 

proposed myoelectric decoding model can be expressed in 

Figure 1. In this study, the method of root means square, which 

is generally estimated to extract the activation signal in 

literature, was used at first on K channels of sEMG array 

sensors. During the real-time myoelectric control, a sliding 

window with a length of L was used to intercept the sequence 
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of sEMG array signals, i.e., 𝑍𝐾×𝐿 . The rows of  𝑍𝐾×𝐿  contain 

the time-domain features and the columns contain the spatial-

domain features. According to Equation 6, we performed the 

convolution operation on the sEMG sequence of each channel 

(i.e.  𝐶𝐾×1 ). After that, a linear transformation  𝑋𝑀×1  was 

performed. Further,  𝑋𝑀×1 was linearly transformed into 𝐹𝑁×1 

according to Equation 1. Finally, muscle synergy features were 

converted into the desired hand motion intentions  𝐻3×1, which 

represents the number of degrees of freedom (DOFs) to be 

identified as three. 

Through the optimization of the model structure, the 

instantaneous linear mixing model was transformed into the 

temporal convolutional model. Due to the combination of 

temporal features, this method may has the potential to extract 

more effective muscle synergy features from complex and 

dexterous gestures. The experimental validation of robust 

feature extraction and motion recognition is described in 

Section III. The following subsections introduce the training 

methods of the temporal convolutional model.  

B. Unsupervised Training for Decoding Model 

In order to train the regression model presented in Figure 1, 

the researchers used various dimensionality reduction (DR) 

algorithms to extract latent motion intentions such as principal 

component analysis (PCA)[17], non-negative matrix 

factorization (NMF)[18, 19], and autoencoder (AEN)[12, 14]. 

The advantage of these algorithms lies that they can train the 

feature representation layer, such as 𝐶𝐾×1,  𝑋𝑀×1 or  𝐹𝑁×1, with 

an unsupervised fashion. However, it is difficult to directly 

obtain the desired motion intent output, i.e.,  𝐻3×1 , by self-

learning of the machine. As Vujaklija et al.[12] pointed out, it 

required multiple training sessions to obtain the desired 

decoding model, thus reducing the efficiency of model training. 

The muscle synergy features can be seen as a weakly labeled 

sequence[20-22], our aim is to determine the correct position of 

the known hand motion categories in the sequence. To combine 

the advantages of unsupervised learning with the correct 

mapping of motion intentions, we designed an automated data 

labeling method to minimize manual intervention. 

The training flow chart of the model is shown in Figure 2. 

Firstly, a convolution kernel matrix was operated on each 

myoelectric channel. With the advantages of unsupervised 

learning and computational efficiency, PCA can be used to 

obtain  𝑐𝑘 by extracting the first principal component of sEMG 

sequence, which is equivalent to perform a convolution 

operation on the input signal. Figure 1 shows only one 

component for each channel, but as the first feature extraction 

layer, the number of retained components was determined by 

the explained variance, which should above 90%. Additionally, 

inspired by the multilayer cylindrical model of volume 

conductor proposed by Farina et al.[23], the volume conductor 

effect was approximately the same for different electrode 

channels. Therefore, the PCA matrix was consistent on all 

channels.  

According to Figure 1, the transformation from  𝐶𝐾×1  to  𝐹𝑁×1  was achieved by linear matrix, according to existing 

studies[24], AEN was adopted to estimate the muscle synergy 

features. One of the most significant features in AEN is its input 

neurons are the same as the output neurons, and the number of 

hidden layer neurons is smaller than the neurons at both ends of 

AEN. Therefore, the value of the hidden layer can be seen as 

the potential low-dimensional representation features of the 

input layer. AEN is also an unsupervised neural network, as is 

shown in Figure 3(a), the process from the input layer to the 

hidden layer is called “encoding” (circled with a blue box), and 

the process from the hidden layer to the output layer is called 

“decoding”. We used the encoding process as a low-level 

feature representation layer, where the input is the 

spatiotemporal features  𝐶𝐾×1 , and the output is the low-

dimensional muscle synergy features  𝐹𝑁×1 . To obtain non-

negative muscle synergy features, the ReLU function was 

adopted as the activation function in the encoding process. 

Since  𝐶𝐾×1  may contain negative components, the Tanh 

 

Fig. 2. The training flow chart of myoelectric decoding model 

 
Fig. 1. The framework of temporal convolution based myoelectric decoding model.  
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function was adopted in the decoding process to recover 

negative features of the output neurons. The cross-entropy 

function was used as the loss function of AEN; the weight 

matrix of AEN was initialized using the Xavier method; the 

dropout method was adopted during the iterative training 

process to prevent over-fitting; the training speed was 

accelerated by ADAM method and Mini-Batch method. The 

number of neurons in the hidden layer of AEN was also 

determined by the explained variance, which should above 85%. 

As a result, the method of PCA and AEN achieve the low-level 

feature representation in an unsupervised fashion. Meanwhile, 

each module can learn the representation independently, 

making it easier to fine-tune the hyper-parameters on each 

network layer.  

C. Automated Data Labeling 

In order to estimate the continuous motions without the 

external kinematic or kinetic measurements, inspired by the 

method of force estimation based on motor unit discharge rate 

[25], we proposed the method of automated data labeling 

(ADL)[26]. The process of labeling a training set of six gestures 

by ADL is shown in Figure 3(b), they are wrist flexion (WF), 

wrist pronation (WP), hand closed (HC), wrist extension (WE), 

wrist supination (WS) and hand open (HO), each gesture is 

repeated for three times. ADL takes the sequences of multi-

dimensional muscle synergy features (upper left box) as input. 

We firstly sum these sequences up (right box), the blue 

sequence represents the oscillation of muscle activation from 

relaxing to maximum force and back to relaxing. Since we 

know the order of the collected gestures and the number of 

repetitions in the data collection procedure, we calculated the 

start and endpoints of each specific gesture by searching for the 

minimum (red dots) of this summed sequence and then 

constructed the gesture label through sequence segmentation. 

To decode the simultaneous gestures in real-time, we 

constructed the gesture label as a three-element list, which 

denotes the continuous motion of three DOFs controlled by 

three pairs of antagonistic muscles (i.e. HO and HC, WF and 

WE, WP and WS). The label value of the rest gesture is zero, 

and the label value of the two directions within the same DOF 

is distinguished by the positive or negative value. Since fewer 

muscle groups are controlling the wrist rotation compared to 

other DOFs, its peak value in the summed muscle synergy 

sequence is lower than other gestures. Therefore, we 

normalized the label value of each DOF into [-1,1] to debias the 

force level of different DOFs. Finally, the multi-dimensional 

muscle synergy features extracted by AEN and the motion label 

generated by ADL constituted the Feature-Label pairs, then 

they were feed into a regression neural network (RNN) to learn 

the potential mapping. The RNN was designed with single 

hidden layer. We adopted ReLU as the activation function, and 

ADAM method as the solver for weight optimization. The size 

of the hidden layer and L2 penalty (regularization term) 

parameter were determined by the preliminary validation test, 

which was set as 50 neurons and 0.001 respectively. 

D. Hypothesis of Robust Myoelectric Decoding 

Several studies have reported the robust myoelectric 

decoding, where the robustness is defined both in terms of 

reliable recognition on simultaneous gestures outside the 

training set[6, 9, 19], as well as the general myoelectric 

decoding that can adapt to different subjects [27]. One of the 

reasonable explanations for the robust myoelectric decoding is 

that the low-level representation layer of the decoding model 

has a robust feature extraction capability, which can stably 

retain the effective muscle synergy features. Comparing to a 

deep learning based specific-subject decoding model that solely 

relies on the terminal-to-terminal estimation, the physiological-

inspired hierarchical model can better avoid overfitting to the 

training set. To verify the above hypothesis, the model 

robustness analysis was studied to test the generalization 

extraction ability of the low-level representation layers of TC 

model, i.e., PCA layer and AEN layer. The specific 

experimental protocol was described in detail in Section III. 

  
Fig. 3. (a) The structure of auto-encoder. (b) The flow chart of automated data labelling 
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III. EXPERIMENTS 

A. Data Preprocessing 

As is shown in Figure 1, the raw sEMG signal was firstly 

preprocessed to obtain the smoothed sEMG envelope, then it 

was packaged into a fixed-length sequence. The sampling 

frequency was decreased to 20 Hz to reduce the redundant  

training samples. According to the research on the effect of the 

length of sEMG array sequence to the classification accuracy 

presented by Betthauser et al.[28], we set the sliding time-step 

as 50ms (equals to sampling frequency) and the length of the 

window (L in Equation 2) as 20 (one second). The sEMG 

envelope was normalized from zero to one. Here the 

normalization factor was consistent on all channels, so that the 

relative activation variation of different muscle groups during 

the motion can be retained.  

B. Evaluation Criteria 

 The decoding performance of the model was evaluated at 

two different levels. The first is the commonly used predicting 

accuracy, which is evaluated by the coefficient of determination 

(denoted as 𝑅𝟐) on each gesture. The two measured variables in 𝑅𝟐
 were the expected labels estimated by ADL and the 

predicted value of the myoelectric decoding model. The second 

is the reconstruction goodness of muscle synergy. Since the 

decoding model was trained by the unsupervised learning 

algorithm, the corresponding reconstruction matrix was trained 

along with the decoding matrix. Here the reconstructed sEMG 

signals from the muscle synergy features and the sEMG signals 

before the reconstruction were compared using 𝑅𝟐̅̅̅̅ , which is the 

averaged coefficient of determination among subjects, gestures 

and channels. Once the extracted muscle synergy features could 

restore the original input with higher fidelity, it indicates that 

most of the latent features were preserved for the higher level 

of motion intention mapping. Whereas in the case of poor 

reconstruction, some of the latent features may be lost during 

the transmission of the low-level layer, which degrades the 

robustness of feature extraction.  

C. Experimental Protocol 

The experiments consist of both offline and online tests. In 

the offline test, we used a publicly available dataset 

“6mov8chUFS” from "Biopatrec"[29] to fully validate the 

robustness of the proposed decoding model, which contains six 

basic hand and wrist motions from 17 intact subjects, as well as 

20 possible simultaneous gestures of the basic motions. In the 

online test, we used MYO (Thalmic Labs), a commercial 

myoelectric armband with eight bipolar dry electrode channels, 

to perform real-time continuous hand motion recognition. The 

detailed description of the experimental protocol is shown in 

Table I. The "Session" column indicates the purpose of each 

test, the "Comparison" lists all the items to be compared, 

"Details" complements the requirements of model parameters 

and training methods, "Data" specifies the source of the training 

set and test set, and "Indicator" specifies the evaluation criteria.  

The difference in the myoelectric decoding model was tested 

in Session I, it was assumed that the proposed temporal 

convolutional model (TC) could extract muscle synergy 

features with higher fidelity than the instantaneous linear 

mixing model (IM). The weights of TC and IM were trained in 

a specific-subject manner, and the training set only contains 

single DOF gestures. In “6mov8chUFS”, all the subjects 

performed three repetitions on each gesture. Unless otherwise 

specified, we took the sEMG array sequences of the first two 

rounds of single DOF gestures as the training set, and took the 

last round of single DOF gesture and all the simultaneous 

gestures as the test set. Since the differences between the two 

decoding models mainly focused on the feature extraction layer 

(differ from feature mapping of RNN), the reconstruction 

goodness of muscle synergy was adopted as the evaluation 

criteria, which was tested on both single DOF and simultaneous 

gestures 

The generalization of the unsupervised feature extraction 

layers was tested in Session II, where the data from one of the 

17 subjects was selected as the training set and the data from 

the other 16 subjects were used as the test set. Since it was 

aimed at evaluating the process of muscle synergy extraction, 

so the same evaluation approach as in Session I was adopted.  

In Session III, 10 able-bodied subjects participated in the 

online test, the informed consent form was obtained from all the 

participated subjects, all the experiments were approved by the 

Ethical Committee of the university and conformed to the 

Declaration of Helsinki. The myoelectric decoding model was 

designed to recognize six gestures originated from three DOFs 

of the wrist and hand, they were wrist flexion (WF), wrist 

extension (WE), wrist pronation (WP) and wrist supination 

(WS). The low-level representation layer of the temporal 

convolutional decoding model was migrated from the result of 

Session II. The training set of RNN contained three repetitions 

on each single DOF gestures, and the online predicting 

accuracy was tested on both single DOF and simultaneous 

gestures. 

TABLE I 
DETAILS OF EXPERIMENTAL PROTOCOL 

 Session Comparison Details Data Indicator 

Offline 

Tests 

I. Model 
(a)Instantaneous Linear 

Specific-subject training 

Biopatrec 

Reconstruction 

of Muscle 

Synergy 

(b)Temporal Convolution 

II. Training Set 
(a) Specific-subject The same framework  as in the 

previous test (b) General-subject 

Online 

Tests 

III. Motion 

Decoding  

(a) Instantaneous Linear The same training set  as in 

the previous test 

MYO 

Armband 

Predicting 

Accuracy (b) Temporal Convolution 
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IV. RESULTS AND DISCUSSIONS 

A. Results of Model Comparison 

 Firstly, we compared the performance of muscle synergy  

extraction using Instantaneous Mixing Model (IM) and 

Temporal Convolutional Model (TC) respectively. According 

to the experimental protocol described in Section III.C, the 

sEMG sequences were divided by different subjects, gestures, 

and channels, then 𝑅𝟐  was calculated at each interval. 

Therefore, the sample capacity for each treatment group was 

3536 (17×26×8), the results of statistics, such as mean (𝑅𝟐̅̅̅̅ ) and 

standard deviation (SD) are shown in Table II. 

For the sEMG array sensor with eight channels, the 

compression ratio of IM is limited (ranging from one to seven). 

We evaluated the compression range from seven components 

compression ratio), as is shown in the first row of Table II. The 

statistic results show that even with the lowest achievable 

compression ratio (13.5%), IM achieves minimum reconstruct-

ion goodness of -15.72 and SD of 0.4352, indicating that it is 

difficult to obtain the stable reconstruction performance across 

all gestures and channels as more gestures needed to be 

recognized.  

The second row of Table II shows the reconstruction 

goodness of the sEMG sequence intervals about the number of 

the retained time-domain components extracted by PCA. The 

results show that when the compression ratio is at 80% (i.e. a 

sliding window sequence of length 20 is compressed to four 

components), 𝑅𝟐̅̅̅̅
 is close to IM at 0.9302, but the minimum and 

SD are better than IM. Further, we used the same data 

compression ratio as in IM to compare the reconstruction 

 
Fig. 5. (a) The distribution of the standard deviation of the reconstruction 
goodness at the compression ratio of 87.5%. (b) The intervals with the 
worst reconstruction goodness by IM and TC. The upper interval is the 
reconstruction on the 4th of channel, 2nd of gesture and 3rd of subject 
by TC; the lower interval is on the 6th of channel, 26nd of gesture and 
7rd of subject by IM. 

TABLE II 
DESCRIPTIVE STATISTICS OF RECONSTRUCTION GOODNESS 

 

 Number of Components 

 (Compression Ratio) 
Minimum Maximum Range Mean(𝑅𝟐̅̅̅̅ ) Std. Deviation 

IM: NMF 

4 (50.0%) -39.76 1.00 40.76 0.45 1.764 

5 (37.5%) -45.62 1.00 46.62 0.68 1.474 

6 (25.0%) -23.11 1.00 24.11 0.86 0.727 

7 (13.5%) -15.72 1.00 16.72 0.93 0.435 

1
st

 Layer of TC: 

PCA 

1 (95.0%) -2.39 0.88 3.27 0.68 0.165 

2 (90.0%) -1.82 0.97 2.79 0.85 0.143 

3 (85.0%) 0.25 0.98 0.74 0.90 0.091 

4 (80.0%) 0.35 0.99 0.64 0.93 0.071 

2
nd

 Layer of TC: 

AEN 

 (1
st

 CR=80%) 

16 (50.0%) -19.00 0.98 19.98 0.70 0.706 

20 (37.5%) -37.60 0.98 38.58 0.78 0.768 

24 (25%) -5.72 0.99 6.71 0.83 0.293 

28 (13.5%) -4.92 0.99 5.92 0.86 0.233 
 

 
Fig. 4. Model comparison based on the Biopatrec dataset. (a) Comparison of reconstruction goodness using the instantaneous mixing model (IM) 
and the temporal convolutional model (TC) at different compression ratios. (b) The comparison of the reconstruction goodness on different channels 
at compression ratio of 87.5%. (c) The cross section of the forearm. The black rectangles denote the distribution of the sEMG array sensors in " 
6mov8chUFS", the index of the electrode correspond to the horizontal coordinates in the left panel. 
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goodness of the muscle synergy features extracted by AEN in 

TC, the statistics results is shown in the third row of Table II,  

and Figure 4(a) was plotted based on the above statistical results. 

It is shown that the reconstructed goodness of IM decreases 

significantly with increasing compression ratio, and the mean 

value of IM are close to TC when the compression ratio is less 

than 75%, but the variance of IM is significantly larger than that 

of TC. We set the compression ratio of IM to 13.5% and set the 

compression ratio of PCA and AEN in TC to 80% and 13.5%   

respectively. Figure 4(b) shows the reconstruction goodness of 

two models across each channel, where the first channel of the 

sEMG array sensor was consistently placed along the extensor 

carpi ulnaris and the rest equally spaced following the lateral 

direction around the forearm [24]. The results show that, in IM, 

the SD of reconstruction goodness on the side of extensor 

muscles is significantly larger than that of flexor muscles. 

Whereas in TC, the differences of reconstruction goodness 

among channels are not significant, indicating that all the 

sEMG sensor makes a balanced contribution to the extraction 

of muscle synergy features. The above results indicate that TC 

model is more robust to extract effective muscle synergy 

features from different gestures and channels than IM, 

demonstrating statistically superiority among all subjects.  

Figure 5(a) depicts the distribution of the SD of the 

reconstruction goodness over all subjects, it is shown that the 

fluctuations of reconstruction goodness in IM model commonly 

appear among subjects, where six out of seventeen subjects had 

a decline of SD that more than 0.1 when adopting from IM to 

TC. Among them, three subjects had a decline of more than 0.4, 

whose SD in IM was higher than the maximum of SD in TC. 

The intervals with the worst reconstruction goodness of IM    

(𝑅𝟐
 = -15.72) and TC (𝑅𝟐 = -4.92) were visualized in Figure 

5(b), which shows that IM causes a greater baseline shift than 

TC. It is also shown that the amplitude of these sEMG intervals 

is less than that in other channels and gestures (indicating fewer 

MUAPs are recruited). However, the muscle synergy features 

extracted by two methods enhance the amplitude of the 

activated intervals, where TC can better recover the trend of the 

activation signal than IM. 

The results of model comparison show that after joining more 

single DOF gestures and simultaneous gestures, IM has a 

significant decline of the reconstruction goodness on certain 

gestures and channels. However, TC can explain the variance 

of sEMG array signal in a more robust and high-fidelity way, 

contributing to a higher level of regularization for simultaneous 

gestures recognition. 

 
Fig. 6. (a) The weights distribution of the PCA layer among 17 subjects in TC. (b) The similarity matrix of the encoding layer of AEN in TC. (c) The 
encoding matrix of subject I. (d) The comparison of reconstruction goodness between the generalization model and the specific training model. 
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B. Validation on Robustness  Hypothesis 

 The weights similarity of the 17 specific-training models 

was analyzed to validate the robustness hypothesis mentioned 

in Section II.D. The weight distribution of the PCA layer is 

shown in Figure 6(a). The DR matrix of PCA (dimension:20×

4) was divided into four-column vectors, representing four  

convolution kernel function for extracting the time-domain 

features (𝑔′𝑘m(𝑡) in Equation 7). 

It is found that the weight vectors of the third and fourth 

temporal component extracted by certain subjects may opposite 

to others (e.g., the absolute values of weights are similar, but 

the signs are opposite). This difference can be seen as extracting 

features that negative to others, but it can still reconstruct the 

sEMG by changing the sign again. As a result, if the weight 

matrices trained by two subjects are only opposite in sign, their 

weights can still migrate to each other. The sign of weight 

matrices was aligned and plotted in Figure 6(a), where the 
violet strip is the error band, and the solid purple line is the 

mean of the weights. The results indicate that the weight matrix 

of the PCA layer has a high similarity across the subject.  

Then the similarity of the encoding layer of AEN was 

analyzed, we reshaped the encoding matrix into one column 

vector to compute cosine similarity, the cosine of the two-

column vectors equals one when they are the same. Figure 6(b) 

shows the similarity matrix of the encoding layer, the element 

of the matrix denotes the cosine similarity between two subjects, 

whereas it is found that the similarity of the encoding matrix 

across 17 subjects is less than 0.1. The encoding matrix of 

subject I is shown in Figure 6(c), the linear transformation 

matrix with the dimension of 28×32 is horizontally stacked on 

the left side, and the bias weight vector is on the right side with 

the dimension of 28×1. The white gap distinguishes eight 

weighting matrices, which were used to extract muscle 

synergies from different channels. It is difficult to find intuitive 

similarity between the weighting matrices of the different 

channels from Figure 6(c), indicating that the process of muscle 

synergy extraction varies across different channels 

To validate the generalization ability of the low-level feature 

representation layers, as is described in Session II of the 

experimental protocol, the reconstruction goodness of muscle 

synergy is shown in Figure 6(d). The results show that after 

migrating the weight matrix, most of the subjects experience the 

reconstruction distortion. As a result, the PCA layer of TC 

model can extract generalized features across subjects, whereas 

the encoding layer of AEN still needs to perform specific 

training to ensure high-fidelity extraction of muscle synergy 

features. 

C. Online Myoelectric Decoding Results 

 Based on the results of the generalization experiments in 

subsection B, we migrated the weight matrix of the PCA layer 

across all the subjects, while AEN and RNN continued with 

individual training, and the training set only contained single 

DOF gestures. 

In the online test phase, ten subjects sequentially completed 

six single DOF gestures and eight commonly used synchronous 

gestures, the predicted sequence of one of the subjects whose 

recognition rate was at the average level is shown in Figure 7(a). 

As a comparison, we trained a IM model with the same training 

set, the statistic results of online test are shown in Figure 8, all 

the gestures were categorized by DOFs, they were (1) hand 

open and close (HO/HC) (2) wrist flexion and extension 

(WF/WE) (3) wrist pronation and supination (WP/WS). The 

statistical results show that in TC, the predicting accuracy of 

HO/HC is 0.65±0.23, WF/WE is  0.81±0.17, WP/WS  is 0.31

±0.58. In IM, HO/HC is 0.47±0.24, WF/WE is  0.56±0.40, 

WP/WS  is 0.03±0.66. 

D. Discussions 

In this paper, a temporal convolutional model was proposed 

for continuous hand motion recognition by array sEMG sensor. 

The experimental results demonstrate that TC has a more 

balanced restoration on the array sEMG signals on both the 

flexor and extensor side of the forearm. When TC and IM 

adopted the same compression ratio, the standard deviation of 

 
Fig. 8. Fitting accuracy of continuous hand motions measured on 𝑅𝟐. 

 
Fig. 7. Real-time continuous hand motion regression sequence of three DOFs. 
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the reconstruction goodness in TC is significantly smaller than 

that in IM, indicating that TC model improves the robust feature 

extraction and recognition for simultaneous gestures that 

outside the training set. Meanwhile, we extracted a transferable 

feature representation layer from the TC model, which helps to 

build a generalized myoelectric decoding model. 

From an intuitive point of view, the input features of IM only 

contain spatial information, whereas the first layer of TC uses 

PCA to extend the input to spatiotemporal relevant features. 

Comparing to directly feed the spatiotemporal sEMG image 

into an end-to-end neural network, TC significantly reduces the 

model complexity and the training cost of the decoding model. 

Meanwhile, Table II shows that after the dimensionality 

reduction processing by PCA and AEN, the reconstruction 

goodness was not significantly reduced, indicating that the 

latent features were effectively retained. 

In the experiment of model comparison, it is found that a 

significant distortion occurred in IM model when 

reconstructing sEMG array signals from the extracted muscle 

synergy features. As is shown in Figure 4(b), the reconstruction 

on the side of the extensor muscles appears over-fitted, but on 

the flexor side, it appears significantly under-fitted, which 

eventually produces a large reconstruction distortion. By fusing 

the time-domain features, the reconstruction goodness of TC 

model is limited within a smaller range, improving the 

regularization level of the model. 

In the online experiment, the decoding accuracy of the 

temporal convolutional model shows superiority compared to 

the instantaneous mixture model on both single DOF and 

simultaneous gestures. However, figure 7(a) also shows 

crosstalk on decoding single DOF gestures, which may result 

from the underfitting of the decoding model or the involuntary 

activation of multiple gestures simultaneously during the 

training phase. Our future work will continue to focus on 

optimizing the training efficiency of the model and improving 

the generalized feature extraction of the decoding model. 

V. CONCLUSION 

We presented a novel hierarchical myoelectric decoding 

model for continuous hand motion recognition by sEMG array 

sensor. The latent hand motion signal was formulated into the 

temporal convolutional model with respect to array sEMG 

signals according to the muscle synergy theory. With the 

method of unsupervised low-level feature learning and 

automated data labelling, the model can match the continuous 

motion label to the muscle synergy features with minimum 

supervision. The experimental results show that the proposed 

framework is able to improve the muscle synergy extraction 

with high level of regularization. More importantly, the analysis 

on weights visualization shows that the low-level feature 

representation layer can be shared across individuals, which 

enhances the capability of continuous and simultaneous hand 

motion decoding. 
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