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Abstract. This paper shows that a finite-horizon version of the robust control
criterion appearing in recent papers by Hansen, Sargent, and their coauthors can
be described as recursive utility, which in continuous time takes the form of the
Stochastic Differential Utility (SDU) of Duffie and Epstein (1992). While it has
previously been noted that Bellman equations arising in robust control settings are
of the same form as Bellman equations arising from SDU maximization, here this
connection is shown directly without reference to any underlying dynamics, or
Markov structure.
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1 Introduction

This paper characterizes a robust control criterion recently introduced in economics
by Anderson et al. (2000) as a form of the Stochastic Differential Utility (SDU) of
Duffie and Epstein (1992). Maenhout (1999) and Hansen et al. (2001) note that the
Bellman equation obtained in certain robust control specifications takes the same
form as one would obtain for corresponding SDU specifications. Here this con-
nection is shown directly without reference to any underlying dynamics, or indeed
any Markov structure. Existence and the basic properties of the SDU obtained have

The paper has benefited from discussions with Ali Lazrak, Hong Liu, Lars Hansen, Larry Ep-
stein, and Mark Schroder. Any errors are my own. The latest version of this paper is available at
http://www.kellogg.nwu.edu/faculty/skiadas/home.htm.

Manuscript received: July 2002; final version received: November 2002



476 C. Skiadas

been shown by Schroder and Skiadas (1999). Increasing robustness corresponds to
higher risk aversion and preference for earlier resolution of uncertainty. Extensions
of the main result that include Maenhout’s (1999) formulation are also presented.

In order to introduce the robust control criterion analyzed in the main part of
the paper, consider an agent with time-additive expected utility over consumption-

rate paths: E
[∫ T

0 e−βtu (ct) dt
]
. (The case of recursive utility is outlined in the

last section.) The underlying filtration is generated by some Brownian motion B
under some underlying probabilityP . Suppose now that the agent contemplates the
possibility that the underlying probability is not P , but some other probability P x

that is equivalent toP , meaning that it defines the same zero-probability events. It is
well-known that one can find a process x such thatBx

t = Bt−
∫ t

0 xs ds is Brownian
motion under P x. The relative entropy of P x with respect to P is a measure of
how “close” P x is to P and is defined quite generally in terms of the density of P x

with respect to P in the following section. In terms of x, the relative entropy can

be expressed as the quadratic Rx = Ex
[∫ T

0 e−βt |xt|2 dt
]
, where Ex denotes an

expectation under P x. The robust control criterion we consider is of the form

V̂0 = inf
x

{
Ex

[∫ T

0
e−βtu (ct) dt

]
+ θRx

}
,

for some positive constant θ. For infinite θ, the infimum is achieved by the original
measure P.As θ decreases, the agent assumes that the underlying probability could
be one of increasingly larger relative entropy. We refer to Hansen et al. (2001), and
Hansen and Sargent (2001) for further related discussion. The use of relative entropy
as a measure of “distance” is motivated by tractability rather than some compelling
decision theoretic foundation. Maenhout (1999) allows θ to be a function of the
continuation utility, a case that will be covered in the last section of this paper.

Our main conclusion will be that V̂0 = V0, where the process V is the unique
(in a properly defined space) solution to the recursion

Vt = Et

[∫ T

t

e−β(s−t)
(
u (cs) ds− 1

2θ
d [V ]s

)]
,

where [V ] denotes the quadratic variation process of V . This is an example of
the stochastic differential utility (SDU) of Duffie and Epstein (1992), the specific
functional form being analyzed by Schroder and Skiadas (1999). (For bounded u,
existence also follows from Kobylanski 2000.) It offers the alternative view that
robustness corresponds to a utility penalty that is proportional to the quadratic
variation of the continuation utility. The higher θ, the higher this penalty. As Duffie
and Epstein (1992) show, θ is also a measure of comparative risk-aversion: the
higher θ, the more risk-averse the utility. Moreover, clearly θ has no effect on how
the agent ranks deterministic consumption plans. Yet another interpretation of θ
is provided in Skiadas (1998), where it is shown that the fact that θ is positive
corresponds to the monotonicity of the utility in the underlying filtration. That is,
more and earlier information increases the agent’s utility.
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The above recursive formulation allows the direct reinterpretation of avail-
able solutions for recursive utility in terms of robustness, to the extent that ro-
bustness is captured by the above criterion. For purposes of illustration, suppose
u (ct) = log (ct) , and consider the Merton (1971) problem of selecting an optimal
lifetime consumption/portfolio strategy in a complete securities market. For the
specific SDU form, a complete solution to this problem, under essentially arbi-
trary price dynamics, is provided by Schroder and Skiadas (1999). Assume first a
constant investment opportunity set (that is, i.i.d. instantaneous returns). If θ = 0,
it is well-known that one obtains a myopic solution in which it is optimal to in-
vest a fixed proportion of one’s wealth in a mean-variance efficient mutual fund
throughout one’s life. However, if θ > 0, Theorem 2 of Schroder and Skiadas
(1999) shows that the time-t investment in the mutual fund must be scaled by the
factor βθ/

(
1 + βθ − e−β(T−t)

)
. As a result the investor increases the proportion

of wealth invested in risky assets with age, as a direct implication of robustness
considerations. Such a conclusion is of course a consequence of the specific pa-
rameterization of the utility function.1

A non-zero value of θ also has a strong effect on the composition of an op-
timal portfolio given a stochastic investment opportunity set, reflecting the well-
documented predictability in asset returns and stochastic volatility. In the bench-
mark case of θ = 0, the myopic nature of the solution implies that the agent
will still invest in an instantaneously mean-variance efficient portfolio, despite the
fact that the investment opportunity set may change stochastically over time. For
θ > 0, however, the optimal portfolio composition deviates from instantaneous
mean-variance efficiency by an additional hedging term given in Theorem 3 of
Schroder and Skiadas (1999). Moreover, the calibration of Campbell et al. (2001)
shows that the additional hedging term is significant from a practical investment
viewpoint. Further related results on portfolio selection under recursive utility can
be found in Campbell and Viceira (2002), and Schroder and Skiadas (2002a).

The specific logarithmic SDU form is also adopted by Duffie et al. (1997) in
a setting of imperfect information in which equilibrium state prices and the term
structure of interest rates are computed in closed form, showing their dependence
on the rate of information. Reinterpreting the model in terms of the robust control
criterion provides an example in which equilibrium prices do not depend on the
timing of resolution of uncertainty if there are no robustness concerns (θ = ∞),
but they do otherwise (θ < ∞).

The robust control criterion analyzed in this paper differs only slightly from that
discussed by Hansen et al. (2001) in the following ways. First, we adopt a finite
horizon, the advantage of which is illustrated in the discussion of the lifetime port-
folio selection problem. Taking a limit as the horizon stretches to infinity presents
no problems. Second, we will allow a general stochastic discount process (in place
of the constant β above), a generality that comes at small cost to the complexity of

1 For time-additive expected utility and complete markets, Gollier and Zeckhauser (2000) relate the
age-dependence of one’s optimal allocation between a riskless and a risky asset to the curvature of the
coefficient of absolute risk tolerance. Allowing θ to depend on the continuation utility, as in Maenhout
(1999), can also result in different qualitative conclusions. Finally, all of these arguments do not cover
the consequences of a nontradeable income stream.
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the exposition. Third, Hansen et al. (2001) consider absolutely continuous alterna-
tive probabilities, and not just equivalent ones, but as will be noted in the following
section this has no effect on the utility value. Finally, the technical construction
of distributions is accomplished somewhat differently in Hansen et al. (2001). The
two approaches are equivalent, and their exact relationship is spelled out in Chapt. 7
of Lipster and Shiryaev (2001).

Maenhout (1999) considered a variant of the above robust control formulation
in which the parameter θ is stochastic and proportional to the continuation utility,
and noted that the Bellman equation matches the one of the problem considered in
Schroder and Skiadas (1999) (for different parameter values than those considered
in the above discussion). In particular, with u (c) being power utility, one obtains
a reinterpretation of the remaining parametric solutions to the Merton problem in
Schroder and Skiadas (1999). An extension of the main argument that includes
Maenhout’s setting, as well as a more general recursive utility specification, is
outlined at the end of this paper.

This paper is also closely related to Chen and Epstein (2001), who relate a
multiple priors utility to recursive utility. Finally, Geoffard (1996) and Dumas et
al. (2000) consider a dual formulation of recursive utility that results in a minmax
criterion. The minimization in their case is over stochastic discount factors, and not
over alternative probabilities. There is a formal sense, however, in which all of the
above papers can be viewed as instances of a general equivalence between minmax
criteria and recursive utility.

The remainder of the paper is organized in five sections. Section 2 formally de-
fines the robust control criterion. Section 3 computes the relative entropy quadratic
expression summarized above. Section 4 presents the paper’s main result, and Sec-
tion 5 gives its proof. Finally, Sect. 6 presents extensions of the main result, includ-
ing Maenhout’s (1999) formulation.

2 The robust control criterion

We consider a finite time horizon [0, T ] , and a probability space (Ω,F , P ) sup-
porting a n-dimensional Brownian motion B = {Bt : t ∈ [0, T ]}. All stochastic
processes are assumed progressively measurable relative to the augmented filtration
generated by B, denoted {Ft : t ∈ [0, T ]}. We assume F = FT . The expectation
operator under P is denoted E, while the conditional expectation under P given
Ft is denoted Et.

We define the set of real-valued progressively measurable processes:

Dexp
1 =

{
x : E

[
exp

(
α

∫ T

0
|xt| dt

)]
< ∞ for all α ∈ R+

}
,

and we take as primitive the following quantities:

1. A process, U ∈ Dexp
1 , representing a felicity process associated with a given

consumption plan (suppressed in the notation). For example, in a time-additive
specification, one could take Ut = e−δtu (ct), where ct is the time-t consump-
tion rate, and u is a real-valued felicity function on R+. More generally, U
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can be any function of the entire consumption plan, allowing, for example, the
modeling of habits or durability.

2. A bounded process β such that βt ≥ 0 a.s. for all t.
3. A nonnegative constant θ ∈ R+.

Let P be the set of all probabilities on (Ω,F) that are equivalent to P (that is, they
define the same null events as P ). Given P x ∈ P , the expectation operator under
P x is denotedEx, withEx

t being the corresponding time-t conditional expectation
given Ft. For eachP x ∈ P , we define the conditional density process, a martingale,
by

ξx
t = Et

[
dP x

dP

]
, t ∈ [0, T ] . (1)

The following well-known change of measure formula will be useful, where the
notation Y − refers to the negative part of a process Y , that is, Y −

t = max {−Yt, 0}.

Lemma 1 Suppose P x ∈ P and Y is a progressively measurable process. Then

Ex
[∫ T

0 Y −
s ds+ Y −

T

]
< ∞ if and only if E

[∫ T

0 Y −
s ξx

s ds+ Y −
T ξx

T

]
< ∞, in

which case

Ex
t

[∫ T

t

Ysds+ YT

]
=

1
ξx
t

Et

[∫ T

t

Ysξ
x
s ds+ YT ξ

x
T

]
, t ∈ [0, T ] .

Letting φ : (0,∞) → R be the function φ (α) = α log (α), we define the
relative entropy process corresponding to P x ∈ P by

Rx
t = Et

[∫ T

t

βse
− ∫ s

t
βτ dτφ

(
ξx
s

ξx
t

)
ds+ e− ∫ T

t
βτ dτφ

(
ξx
T

ξx
t

)]

= Ex
t

[∫ T

t

βse
− ∫ s

t
βτ dτ log

(
ξx
s

ξx
t

)
ds+ e− ∫ T

t
βτ dτ log

(
ξx
T

ξx
t

)]
, t ∈ [0, T ] .

The second equality is a consequence of Lemma 1, assuming the first integral is
well-defined.

Proposition 2 Rx
t is well-defined and almost surely valued in [0,∞].

Proof The function φ is convex with φ (1) = 0 and φ′ (1) = 1. The supporting line
at α = 1 gives φ (α) ≥ α − 1. This shows that the integrand in the definition of
relative entropy is bounded below by an integrable process, and therefore relative
entropy is well-defined, although possibly infinite. The lower bound on φ can also

be used to show non-negativity of Rx
t , as follows. Letting Bt = exp

(
− ∫ t

0 βu du
)

,

and using Lemma 1,

BtRx
t ≥ 1

ξx
t

Et

[∫ T

t

βsBsξ
x
s ds+ BT ξ

x
T

]
− Et

[∫ T

t

βsBs ds+ BT

]

= Ex
t

[∫ T

t

−dBs + BT

]
− Et

[∫ T

t

−dBs + BT

]
= 0.

��
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The robust control criterion at time t is defined as

V̂t = ess inf {V x
t : P x ∈ PU} ,

where

V x
t = Ex

t

[∫ T

t

e− ∫ s
t

βuduUs ds

]
+ θRx

t

and PU is the set of measures P x ∈ P such that Ex
[∫ T

0 |Ut| dt
]
< ∞. For

example, if U is bounded, then PU = P .

Remark 3 The value V̂ does not change if, as in Hansen et. al. (2001), one takes an
infimum over probabilities that are absolutely continuous with respect to P . Given
any probability P x that is absolutely continuous relative to P , one can define the
sequence of measures P x(n) = n−1P +

(
1 − n−1

)
P x, n = 1, 2, . . . , each one

of which is equivalent to P . It is then not hard to show that, for every t, V x(n)
t

converges to V x
t almost surely.

3 An expression for relative entropy

Fixing some P x ∈ P , in this section we derive a convenient expression for Rx.
Let L2 be the set of n-dimensional progressively measurable processes x such that∫ T

0 x′
sxsds < ∞ a.s. By the martingale representation theorem (see, for example,

Protter (1990): Chapt. IV, Corollary 4 of Theorem 42), there exists x ∈ L2 such
that dξx

t = ξx
t x

′
tdBt, ξx

0 = 1, or equivalently

ξx
t = exp

(∫ t

0
x′

s dBs − 1
2

∫ t

0
x′

sxs ds

)
, t ∈ [0, T ] . (2)

Conversely, let X be the set of all x ∈ L2 such that the process ξx defined by (2)
is a martingale. Then x defines the probability P x ∈ P by P x (F ) = E [1F ξ

x
T ] for

every F ∈ F , and ξx satisfies (1). By Girsanov’s theorem, for every x ∈ X ,

Bx
t = Bt −

∫ t

0
xs ds, t ∈ [0, T ] , (3)

defines a Brownian motion under P x. Note that

ξx
t = exp

(∫ t

0
x′

s dB
x
s +

1
2

∫ t

0
x′

sxs ds

)
, t ∈ [0, T ] . (4)

The following proposition extends a result by Hansen et al. (2001). Note that the
claimed equation holds whether the quantities involved are finite or infinite.

Proposition 4 For every x ∈ X ,

Rx
t =

1
2
Ex

t

[∫ T

t

e− ∫ u
t

βτ dτx′
uxu du

]
, t ∈ [0, T ] .
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Proof Fixing x ∈ X and t < T , we first consider the event

F =

{
Ex

t

[∫ T

t

x′
uxu du

]
< ∞

}
.

We use the notation ξx
t,s = ξx

s /ξ
x
t and Bt,s = exp

(− ∫ s

t
βu du

)
. Noting that∫ T

s
βuBt,u du+ Bt,T = Bt,s, the definition of relative entropy implies

Bt,s

(Rx
s + log

(
ξx
t,s

))
= −

∫ s

t

βuBt,u log
(
ξx
t,u

)
du+Ms on F, s ≥ t,

where

Ms = Ex
s

[
1F

(∫ T

t

βuBt,u log
(
ξx
t,u

)
du+ Bt,T log

(
ξx
t,T

))]
.

From Eq. (4) and the definition of F , it follows that {Ms : s ≥ t} is a martingale
under P x. Applying integration by parts, we find that on the event F , and for s ≥ t,

−βsBt,s

(Rx
s + log

(
ξx
t,s

))
ds+ Bt,sd

(Rx
s + log

(
ξx
t,s

))
= −βsBt,s log

(
ξx
t,s

)
ds+ dMs.

Using Eq. (4), the above expression simplifies to

dRx
s = −

(
1
2
x′

sxs − βsRx
s

)
ds+ d (martingale under P x) on F, s ≥ t.

Applying integration by parts again and integrating, we obtain

Rx
t =

1
2
Ex

t

[∫ T

t

e− ∫ u
t

βτ dτx′
uxu du

]
on F.

There remains to show that Rx
t = ∞ a.s. on F c (the complement of F ). For

each n = 1, 2, . . . , we define the stopping time

τn = min
{
s ≥ t :

∫ s

t

x′
uxu du = n or s = T

}
.

The definition of relative entropy and the law of iterated expectations implies

Rx
t = Ex

t

[∫ τn

t

βuBt,u log
(
ξx
t,u

)
du+ Bt,τn

(
log
(
ξx
t,τn

)
+ Rx

τn

)]
.

Since Rx is nonnegative,

Rx
t ≥ Rn

t � Ex
t

[∫ τn

t

βuBt,u log
(
ξx
t,u

)
du+ Bt,τn log

(
ξx
t,τn

)]
.

The same argument used above, but with τn in place of T , gives

Rx
t ≥ Rn

t =
1
2
Ex

t

[∫ τn

t

e− ∫ u
t

βτ dτx′
uxu du

]
.
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Monotone convergence implies

Rx
t ≥ 1

2
Ex

t

[∫ T

t

e− ∫ u
t

βτ dτx′
uxu du

]
.

Therefore, Rx
t = ∞ a.s. on the event F c. ��

4 Main result

Letting

XU =

{
x ∈ X : Ex

[∫ T

0
|Ut| dt

]
< ∞

}
,

the robust control criterion can be reformulated as

V̂t = ess inf {V x
t : x ∈ XU} ,

where

V x
t = Ex

t

[∫ T

t

e− ∫ s
t

βudu

(
Us +

θ

2
x′

sxs

)
ds

]
. (5)

The paper’s main result is stated below, while extensions are outlined in the last
section. We use the space of progressively measurable processes

Dexp
0 = {x : E [exp (α ess supt |xt|)] < ∞ for all α ∈ R+} ,

and the spaceDn of all Rn-valued progressively measurable processes x such that

E
[∫ T

0 x′
txt dt

]
< ∞.

Theorem 5 There exists a unique pair (V, σ) ∈ Dexp
0 ×Dn such that

dVt = −
(
Ut − βVt − 1

2θ
σ′

tσt

)
dt+ σ′

t dBt, VT = 0. (6)

For every x ∈ XU ,

V x
t = Vt +

θ

2
Ex

t

[∫ T

t

e− ∫ s
t

βu du

(
xs +

1
θ
σs

)′(
xs +

1
θ
σs

)
ds

]
. (7)

Finally, if x̂ = −θ−1σ, then x̂ ∈ XU , and

V̂ = V x̂ = V.
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From now on, (V, σ) are the processes characterized in the above theorem. The
detailed proof of the theorem is provided in the following section. The claim on
the existence and uniqueness of a solution to Eq. (6) follows from Theorem A1 of
Schroder and Skiadas (1999), after a simple rescaling. The same theorem implies
that the solution V as a function of the parameterU is monotonically increasing and
concave, and, by Lemma A3 of Schroder and Skiadas (1999), V is bounded if U is
bounded. (For the case of bounded U , existence and uniqueness also follows from
Kobylanski’s 2000 results. Note that the functional form considered violates the
technical restrictions imposed by Pardoux and Peng 1990 and Duffie and Epstein
1992.)

Another useful characterization of V , proved as part of Lemma A1 of Schroder
and Skiadas (1999), is that V is the unique process in Dexp

0 that solves

Vt = −θ log

(
Et

[
exp

(
−1
θ

∫ T

t

(Us + βsVs) ds

)])
, t ∈ [0, T ] .

This equation delivers a closed-form expression for the case of no discounting:

Vt = −θ log

(
Et

[
exp

(
−1
θ

∫ T

t

Us ds

)])
, if β = 0.

Yet another characterization ofV (with or without discounting) is obtained after
the monotone transformation

Yt = θ

(
1 − exp

(
−1
θ
Vt

))
.

Applying Ito’s lemma gives the recursion:

Yt = Et

[∫ T

t

(
1 − 1

θ
Ys

)(
Us + θβt log

(
1 − 1

θ
Ys

))
ds

]
.

The details of this argument are as in the proof of Theorem 1 of Schroder and
Skiadas (1999).

As noted in the introduction, as θ increases the SDU becomes comparatively
more risk averse (Duffie and Epstein 1992). Another interesting property concerns
preferences toward the timing of resolution of uncertainty. Kreps and Porteus (1978)
first introduced the idea that an agent with recursive utility (in discrete time) may
have preferences for earlier or later resolution of uncertainty, depending on the
curvature of an intertemporal aggregator. This idea is extended in Skiadas (1998),
where a utility is defined to exhibit preferences for early (late) resolution, or more
generally preferences for more (less) information, if the utility is monotonically in-
creasing (decreasing) in the underlying information filtration (partially ordered by
inclusion of the corresponding sigma algebras). Skiadas (1998) also characterizes
this property of an SDU in terms of the convexity or concavity of the intertemporal
aggregator. The particular recursive utility form introduced above exhibits pref-
erences for more information, and hence early resolution of uncertainty, whether
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or not there are any planning advantages from more information. This is a conse-
quence of the convexity of the integrand in the last expression relative to Y . (The
proof of this claim follows easily along the lines of the proof in Skiadas, 1998,
using the comparison lemmas of Schroder and Skiadas, 1999.) Duffie et al. (1997)
illustrate the role of preferences for the timing of resolution of uncertainty in an
equilibrium setting using an SDU of the form introduced above.

5 Proof of main result

This section contains a proof of the main theorem. It can be skipped without loss
of continuity.

Lemma 6 For any x ∈ XU with finite entropy, Eq. (7) holds.

Proof We fix any x ∈ XU with finite relative entropy, or equivalently

Ex

[∫ T

0
x′

txt dt

]
< ∞.

Given any process X , we let X̃ denote the discounted version:

X̃t = exp
(

−
∫ t

0
βs ds

)
Xt,

and we also let θ̃t = exp
(
− ∫ t

0 βs ds
)
θ. By Ito’s lemma, Eq. (6) implies

dṼt = −
(
Ũt − 1

2θ̃t

σ̃′
tσ̃t

)
dt+ σ̃′

t dBt

= −
(
Ũt − 1

2θ̃t

σ̃′
tσ̃t − σ̃′

txt

)
dt+ σ̃′

t dB
x
t .

Note that, given any x ∈ XU with finite entropy, Eq.(5) and the martingale
representation theorem imply that there exists a σx ∈ L2 such that

dV x
t = −

(
Ut +

θ

2
x′

txt − βtV
x
t

)
dt+ σx′

t dBx
t .

Therefore,

dṼ x
t = −

(
Ũt +

θ̃t

2
x′

txt

)
dt+ σ̃x′

t dBx
t .

Combining the dynamics for Ṽ and Ṽ x, we obtain

d
(
Ṽ x

t − Ṽt

)
= − θ̃t

2

(
xt +

1
θ
σt

)′(
xt +

1
θ
σt

)
dt+ dMt,

where Mt =
∫ t

0 (σ̃x
s − σ̃s)

′
dBx

s . We fix some time t ∈ [0, T ]. Since M is a
local martingale under P x, we can select an increasing sequence of stopping times
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{τn : n = 1, 2, . . . } such that τn ≥ t a.s., limn→∞ τn = T a.s., and the stopped
process {Ms∧τn : s ≥ t} is a martingale under P x. Integrating the dynamics of
Ṽ x − Ṽ from t to τn, and applying the operator Ex

t , we obtain

Ṽ x
t − Ṽt = Ex

t

[∫ τn

t

θ̃s

2

(
xs +

1
θ
σs

)′(
xs +

1
θ
σs

)
ds

]
+ Ex

t

[
Ṽ x

τn
− Ṽτn

]
.

Letting n approach infinity gives

Ṽ x
t − Ṽt = Ex

t

[∫ T

t

θ̃s

2

(
xs +

1
θ
σs

)′(
xs +

1
θ
σs

)
ds

]
,

which implies the claimed equation. Taking the limit under the integral is justified
as follows. The first expectation converges by monotone convergence, since the

integrand is nonnegative. The term Ex
t

[
Ṽτn

]
converges to zero as n → ∞ almost

surely by dominated convergence, using the fact that V ∈ Dexp
0 . Finally,Ex

t

[
V x

τn

]
converges to zero as n → ∞ almost surely. This follows from the expression

Ex
t

[
Ṽ x

τn

]
= Ex

t

[∫ T

τn

(
Ũs +

θ̃s

2
x′

sxs

)
ds

]
,

and dominated convergence, since x ∈ XU implies Ex
t

[∫ T

t

∣∣∣Ũs

∣∣∣ ds] < ∞, and x

having finite entropy implies Ex
t

[∫ T

t
x′

sxs ds
]
< ∞. ��

The above lemma suggests that V x is minimized for x = −θ−1σ. This raises
the question of whether x is an element of XU . The following lemma will help us
show that it is.

Lemma 7 Let x = −θ−1σ. Then

ξx
t = exp

(
1
θ

(
V0 − Vt −

∫ t

0
(Us − βVs) ds

))
.

Proof Integrating Eq. (6) from 0 to t, and using the fact that σ = −θx, we obtain

Vt − V0 = −
∫ t

0

(
Us − βVs − 1

2θ
σ′

sσs

)
ds+

∫ t

0
σ′

s dBs

= −
∫ t

0
(Us − βVs) ds− θ

(∫ t

0
x′

s dBs − 1
2

∫ t

0
x′

sxs ds

)
.

Combining this expression with Eq. (2) gives the result. ��

Suppose now that x = −θ−1σ. There remains to show that x ∈ XU . We know
that ξx is a local martingale. Let {τn} be a corresponding increasing sequence so
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that ξx stopped at τn is a martingale. Then Eξx
τn

= 1 for every n. The last lemma
implies that there exist constants, A,B,C, such that

ξx
τn

≤ exp

(
A+B sup

t
Vt + C

∫ T

0
|Us| ds

)
, n = 1, 2, . . .

Since U ∈ Dexp
1 and V ∈ Dexp

0 , dominated convergence implies that Eξx
T = 1,

which is known to imply (see, for example, Karatzas and Shreve 1988) that ξx is a
martingale. Finally, by the Cauchy-Schwarz inequality,

Ex

[∫ T

0
|Us| ds

]
= E

[
ξx
T

∫ T

0
|Us| ds

]

≤ E
[
(ξx

T )2
] 1

2
E



(∫ T

0
|Us| ds

)2



1
2

< ∞,

where the last inequality is again a consequence of the last lemma and the fact that
U ∈ Dexp

1 and V ∈ Dexp
0 .

Remark 8 Lazrak and Quenez (2002) comment on an earlier version of this paper
by providing a variation of the proof that V̂ = V for the case of bounded U . The
difference of the two arguments is small. While in the proof of Lemma 6 we compute
the drift of Ṽ x − Ṽ , which is obviously minimized and is zero if x = −θ−1σ,
Lazrak and Quenez (2002) compute the drift of V x and use a comparison lemma by
Kobylanski (2000). The point of the above argument is that the use of a comparison
lemma becomes trivialized, while the integrated expression forV x−V is interesting
in itself. Finally, it should be noted that if we make the assumption of bounded U ,
the results of Kobylanski (2000) and Schroder and Skiadas (1999) imply that V is
also bounded, and as a result several of the technical details above simplify.

6 Generalizations

This concluding section presents a natural generalization of the utility function in
whichU and θ are replaced by, possibly time and state-dependent, functions of V x.
The paper’s main result applies with such a more general specification, with only
minor extensions to the central argument.

We begin with the special case of Maenhout (1999), who allowed the coefficient
θ (which is 1/θ in his paper) to be a function of the value function in the context
of a Bellman equation. The current setting allows us to specify Maenhout’s utility
function independently of any dynamics, and to state a general equivalence with
recursive utility.

We assume that V̂t = ess infx∈XU
V x

t , where

V x
t = Ex

[∫ T

t

e−β(s−t)Us ds

]
+ ψ (V x

t ) Rx
t ,
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for some function ψ : R → R++. Suppose also that the progressively measurable
pair (V, σ) satisfies

dVt = −
(
Ut − βVt − 1

2ψ (Vt)
σ′

tσt

)
dt+ σ′

t dBt, VT = 0.

Then the argument of Lemma 6 gives

V x
t = Vt +

ψ (V x
t )

2

Ex
t

[∫ T

t

e− ∫ s
t

βu du

(
xs +

1
ψ (V x

t )
σs

)′(
xs +

1
ψ (V x

t )
σs

)
ds

]
.

Therefore V x ≥ V for all x, and V x̂ = V if x̂t = −ψ (Vt)
−1
σt, provided that

x̂ ∈ XU . (For example, if ψ takes values in a positive interval, a simple comparison
lemma confirms this conclusion.)

Maenhout (1999) considers the case ψ (V x
t ) = ρV x

t for some positive constant
ρ, assuming Ut > 0. In this case, the BSDE defining V is also studied in Appendix
A of Schroder and Skiadas (1999) (see Theorem A2). Letting Ut = cγt / |γ| leads to
the homothetic class of SDE used by Schroder and Skiadas (1999) (see Theorem 1
and its proof), who provide optimal consumption-portfolio rules for this class of
preferences. Maenhout is therefore able to reinterpret these solutions in terms of
the robustness interpretation. An equivalent formulation is obtained in an extension
of the Chen and Epstein (2001) formulation of “κ-ignorance” in which the bound
κ is allowed to be proportional to the diffusion coefficient of the value function.

Finally, we outline the main argument for the more general utility function
V̂t = ess infx∈XU

V x
t , where

V x
t = Ex

[∫ T

t

e−β(s−t)f (s, V x
s ) ds

]
+ g (t, V x

t ) Rx
t ,

where f, g : Ω× [0, T ]×R → R are (possibly) state and time-dependent progres-
sively measurable functions of the continuation utility, such that g (ω, t, v) ≥ 0 for
all (ω, t, v), and either f (ω, t, ·) is concave for all (ω, t), or f (ω, t, ·) is convex for
all (ω, t). As always, the notation of the reference consumption plan is suppressed
here. For example, one could specify f (t, Vt) = φ (t, ct, Vt) for some function
φ : [0, T ] × R+ × R → R, where ct represents the time-t consumption rate. The
set XU is defined as the set of all x ∈ X for which the process V x is well-defined
by the above recursion. Without the relative entropy term, V x is the usual SDU
form of Duffie and Epstein (1992). The above formulation can therefore be viewed
as a robust version of SDU.

We will see that, under some regularity assumptions, V̂ equals the SDU V that
satisfies the BSDE:

dVt = −
(
f (t, Vt) − βVt − 1

2g (t, Vt)
σ′

tσt

)
dt+ σ′

t dBt, VT = 0.
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We henceforth assume that the progressively measurable pair (V, σ) solves the
above BSDE. Essentially the same argument used in Lemma 6 leads to the identity:

V x
t = Vt + Ex

t

[∫ T

t

e− ∫ s
t

βu du [f (s, V x
s ) − f (s, Vs) +Qx (s, V x

s )] ds

]
,

where

Qx (s, V x
s ) =

g (s, V x
s )

2

(
xs +

1
g (s, V x

s )
σs

)′(
xs +

1
g (s, V x

s )
σs

)
≥ 0.

We also assume that x̂t = −g−1 (t, Vt)σt defines an element of XU . Clearly,
V x̂ = V . Finally, we claim that V x

t ≥ Vt a.s. for all t, and therefore V̂ = V .
If f is convex in its utility argument, the gradient inequality and the fact that

Qx is nonnegative, gives

V x
t − Vt ≥ Ex

t

[∫ T

t

e− ∫ s
t

βu dufv (t, Vt) (V x
t − Vs) ds

]
,

where for simplicity we have assumed the derivative fv of f with respect toV exists.
Similarly, if f is concave in its utility argument, the gradient inequality implies

V x
t − Vt ≥ Ex

t

[∫ T

t

e− ∫ s
t

βu du (−fv (s, V x
s )) (V x

s − Vs) ds

]
.

In either case, the “stochastic Gronwall-Bellman inequality” (see Duffie and Epstein
1992, and Schroder and Skiadas 1999 for more general versions) implies that V x

t ≥
Vt a.s. for all t, provided the corresponding fv term is sufficiently integrable (for
example the result holds if fv is bounded).
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