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Abstract: This paper considers the problem of robust control for a class of uncertain
state-delayed singularly perturbed systems with norm-bounded nonlinear
uncertainties. The system under consideration involves state time delay and norm-
bounded nonlinear uncertainties in the slow state variable. It is shown that the state
feedback gain matrices can be determined to guarantee the stability of the closed-
loop system for all ),0( ∞∈ε and independently of the time delay. Based on this key
result and some standard Riccati inequality approaches for robust control of
singularly perturbed systems, a constructive design procedure is developed. We
present an illustrative example to demonstrate the applicability of the proposed
design approach.  Copyright © 2002 IFAC
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1. INTRODUCTION

Singularly perturbed systems often occur naturally
because of the presence of small parasitic
parameters multiplying the time derivatives of
some of the system states. Singularly perturbed
control systems have been intensively studied for
the past three decades; see, (for example,
Kokotovic, et al., 1986). A popular approach
adopted to handle these systems is based on the
so-called reduced technique (OMalley, 1974). The
composite design based on separate designs for
slow and fast subsystems has been systematically
reviewed by Saksena, et al. (1984). Recently, the
robust stabilization of singularly perturbed
systems based on a new modeling approach has

been investigated by Karimi and Yazdanpanah
(2000).

The stability problem (ε-bound problem) in
singularly perturbed systems differs from
conventional linear systems, which can be
designed as: characterizing an upper bound 0ε of
the positive perturbing scalar ε such that the
stability of a reduced-order system would
guarantee the stability of the original full-order
system for all ),0( 0εε ∈ (Chen and Lin, 1990). It is
known, by the lemma of Klimushchev and
Krasovskii (OMalley, 1974; Kokotovic, et al.,
1986), that if the reduced-order system is an
asymptotically stable, then this upper bound
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0ε always exists. Researchers have tried various
ways to find either the stability bound 0ε or a less
conservative lower bound for 0ε , see (Chen and
Lin, 1990; Kokotovic, et al., 1986; Tsai, et al.,
1991). Also, Shao and Rowland (1994)
considered a linear time-invariant singularly
perturbed system with single time delay in the
slow states. Then, the research on time-scale
modeling was extended to include singularly
perturbed systems with multiple time delays in
both slow and fast states (Pan, et al., 1996).
Recently, the problem of robust stabilization and
disturbance attenuation for a class of uncertain
singularly perturbed systems with norm-bounded
nonlinear uncertainties has been considered by
Karimi and Yazdanpanah (2001b). Also, the
robust stability analysis and stability bound
improvement of perturbed parameter )(ε in the
singularly perturbed systems by using linear
fractional transformations and structured singular
values approach ( µ ) has been investigated by
Karimi and Yazdanpanah (2001a).

Continuing the work of Karimi and Yazdanpanah
(2001b), this paper presents new results on control
synthesis for robust stabilization and robust
disturbance attenuation for linear state-delayed
singularly perturbed systems with norm-bounded
nonlinear uncertainties. The class of plants
considered in this paper consists of systems in
state-space form with linear nominal parts and
norm-bounded nonlinear uncertainties only in the
slow state variable. Robust stabilization and
disturbance attenuation of such systems is
investigated using the Hamiltonian approach. The
state feedback gain matrices can be constructed
from the positive definite solutions to a certain
Riccati inequality. Another advantage to this
approach is that we can preserve the characteristic
of the composite controller, i.e., the whole-
dimensional process can be separated into two
subsystems (Chiou, et al., 1999; Cheng, et al.,
1992). Moreover, the presented stabilization
design insures the stability for all ),0( ∞∈ε  and
independently of the time delay.

2. PROBLEM FORMULATION

Consider a linear time-invariant state-delayed
singularly perturbed system with norm-bounded
nonlinear uncertainties in the form:
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where 1
1

nRx ∈ , 2
2

nRx ∈ , n( 21 nn += ) is the order of
the whole system, mRu∈ , kRw∈ , lRz∈ are
control vector, disturbance and controlled output,
respectively, )2,1()( 1 =∆ ixi are nonlinear terms
of the uncertainty space. The certain matrices

11
11

nnRa ×∈ , 21
12

nnRa ×∈ , 12
21

nnRa ×∈ , 22
22

nnRa ×∈ ,
mnRb ×∈ 1

1 , mnRb ×∈ 2
2 , knRd ×∈ 1

1 , knRd ×∈ 2
2 ,

11
1

nnRr ×∈ and 12
2

nnRr ×∈ are constant and 0≥ε is
scalar and real. For a vector ν, Tv is its transpose,
and v is its Euclidean norm and 2L is the
Lebesque space of square integrable functions.
We shall make the following assumption for
system (1).

Assumption 1. There exist the known real
constant matrixes 1G , 2G  such that the known
nonlinear uncertainties )2,1())(( 1 =∆ itxi  satisfy
the following bounded condition,

1
111 )()())(( n

ii RtxtxGtx ∈∀≤∆            (4)

Denote the corresponding uncertainty set by

)2,1(})())((:))(({)( 1111 =≤∆∆=Ξ itxGtxtxx iiii                                
(5)

Definition 1.  
1) A state feedback 2211 xkxku −−= , 1

1
nmRk ×∈ ,

2
2

nmRk ×∈  is said to achieve robust global
asymptotic stability if for 0=w and any

)2,1()()( 11 =Ξ∈∆ ixx ii the closed-loop system
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is globally asymptotically stable in the Lyapunov
sense for all ),0( ∞∈ε and independently of the
time delay )(h .



2) A state feedback 2211 xkxku −−=  is said to
achieve robust disturbance attenuation if under
zero initial condition there exists 0 ≤ γ < ∞ for
which the performance bound is such that:

2,1

)()(,)()( 11
2

=

Ξ∈∆∈∀<

ifor

xxLwtwtz iiγ
    (7)                                   

The main objective of the paper is to design
1

1
nmRk ×∈ , 2

2
nmRk ×∈  such that the state feedback

2211 xkxku −−=  achieves simultaneously robust
global asymptotic stability and robust disturbance
attenuation for all ),0( ∞∈ε and independently of
the time delay )(h . The main approach employed
here is the standard HJI method. Hence, we define
a quadratic energy function in the form:

∫
−

++=
t

ht

TTT dxQxxPxxPxxxE σσσε )()(),( 1122211121

                                                                             (8)
where 0,0 21 >> PP and 0>Q are to be
determined. Define the Hamiltonian function

dt

dE
wwzzxxwuH TT +−=∆∆ 2

1211 )](),(,,[ γ             (9)

where derivative of )(tE is evaluated along the
trajectory of the closed-loop system. It is well
known that a sufficient condition for achieving
robust disturbance attenuation is that the
inequality

2,1),()(,
,0)](),(,,[

11
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1211
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ixxLw

xxwuH

ii

       (10)

results in an )(xE which is strictly radially
unbounded (Wang and Zhan, 1996), )(xE may be
regulated as a Lyapunov function for the closed-
loop systems, and hence, robust stability is
guaranteed for all ),0( ∞∈ε  and independently of
the time delay )(h .
In this paper we will establish conditions under
which

2,10],,,[ 212 =<∆∆
∈Ξ∈∆ iforwuHSupSupInf

Lwiiu

  ).(:,)(: 11 xxthatsuch iiii Ξ=Ξ∆=∆                       (11)

3. MAIN RESULTS

Before deriving the main results, some

preliminary lemmas are reviewed.

Lemma 1(Zhou and Khargonekar, 1988). For any
matrices X and Y with appropriate dimensions and
for any constant 0>η , we have:

           .1
YYXXXYYX TTTT

η
η +≤+      (12)

Lemma 2. For an arbitrary positive scalar
0>iε and a positive definite 0>iP , we have:
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Proof of Lemma 2. By using assumption 1 and
lemma1, we can conclude (13).

One of the key technical contributions of this
paper is utilization of Lemma 2, which establishes
a representation of the nonlinear uncertainty set
by the certain terms. This observation leads to the
following Theorem, which is the main result of
this paper. The approach employed here is the
standard method of Riccati inequalities, which
have been used, extensively in linear control for
state-space systems (Wang and Zhan, 1996).

Theorem. Let the matrix DDT  be nonsingular. If
there exist positive scalars 21 ,εε and positive
definite solutions 0,0 21 >> PP and 0>Q  to the
Matrix inequality
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then, the control law
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achieves robust global asymptotic stability and
robust disturbance attenuation in the sense of  (6)
and (7), respectively and independently of the
time delay )(h .

Proof. We will prove the Theorem by showing
that the control law (15) will guarantee the
inequality of (10).
Noting to the expression (8) and according to (9),
we have:
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such that )(1 htxxh −∆ .
It is easy to show that the worst case disturbance
occurs when

        .)( 222111
2 xPdxPdw TT += −∗ γ             (17)

It follows that
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where
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The optimal control law, which minimizes the
right-hand side of (19), is given by
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As a result, we have:
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Consequently, if there exist positive definite
solutions 0,0 21 >> PP and 0>Q  to the Matrix
inequality

0<M
then we have
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Furthermore, by noting that the matrix Q  is
positive definite then the matrix M  is negative
definite if the following inequality holds:
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Hence, (25) completes the proof.

4. EXAMPLE

Consider a fourth-order singularly perturbed
system with time delay in the slow state variable:
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uncertainty terms )2,1()( 1 =∆ ixi , are assumed
to be norm-bounded such that the
matrixes 1G , 2G have been considered as follows:
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Consider also 1.0=γ  as the performance bound,
1.0=ε  as the perturbed parameter and 2=h

second as the time delay parameter. From (14), we
can choose the positive definite
solutions 0,0 21 >> PP and 0>Q as follows:
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Also, positive numbers of 21 ,εε  are obtained as
follows:

1,8.1 21 == εε
The required state feedback control law is given
by
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Robust stability and disturbance attenuation of the
slow and fast dynamics in the presence of
disturbance (Gussian noise) have been depicted in
Figures 1 and 2. Therefore, we conclude that
system (26) can be stabilized by the control law
(15) for all ),0( ∞∈ε  and independently of the
time delay )(h , which has been depicted in Figure
3 and the correctness of the attenuation level of
the disturbance on the controlled output has been
depicted in Figure 4.

Fig. 1. Robust stability and disturbance attenuation of
slow dynamics

Fig. 2. Robust stability and disturbance attenuation of
fast dynamics
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Fig. 3. Control law by means of state feedback

Fig. 4. Attenuation level of the disturbance on the
controlled output

5.    CONCLUSION

For a class of continuous uncertain state-delayed
singularly perturbed system, this paper has
presented a robust control design methodology to
achieve the robust stabilization and disturbance
attenuation for all ),0( ∞∈ε and independently of
time delay. Then, this paper has three major
contributions: One is that the type of norm-
bounded nonlinear uncertainties considered in this
class of systems coincides with the certain terms
by utilization of Lemma 2. The other is that the
state feedback gain matrices can be determined
independently from one certain Riccati inequality,
and the last is that the closed-loop system is stable
for all ),0( ∞∈ε  and independently of time delay.
In this paper, the results are presented on the two-
time-scale case, and the extension of results to
multiple-time-scale is a topic currently under
study.
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