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Abstract. The design and analysis of steer-by-wire systems at the actuation and operational level is explored. At

the actuation level, robust force feedback control using inverse disturbance observer structure and active observer

algorithm is applied to enhance the robustness vs non-modelled dynamics and uncertain driver bio-impedance.

At the operational level, the robustness aspects vs parameter uncertainties in vehicle dynamics and driver bio-

impedance are issued and for a given target coupling dynamics between driver and vehicle the design task is

converted to a model-matching problem. H∞ techniques and active observer algorithms are used to design the

steer-by-wire controller. Robustness issues at both levels are covered by mapping stability bounds in the space of

physical uncertain parameters.

Keywords: steer-by-wire, robust control, force control, inverse disturbance observer, active observer, model-

matching, robustness analysis

1. Introduction

Vehicle steering technology is evolving by substituting

the mechanical and hydraulic subsystems with elec-

trical equivalents to boost performance and enhance

safety. The steer-by-wire technology provides essential

advantages, such as simplified construction and higher

design flexibility at the price of redundancy and safety

measures. It introduces a complex steering technology

consisting of computing units, sensors and actuators.

Thereby the mechanical interface (steering column) be-

tween driver and vehicle is replaced by two electrical

actuators which are coupled by a controller to provide

the driver a desired steering feeling and the vehicle a

desired steering response.

Apart from torque ripple and friction compensa-

tion, at the force feedback actuation level, the main

challenge is to provide robustness with respect to

uncertainties of the driver arms stiffness and iner-

tia, and torque signals produced at the driver mus-

cles, (Bajçinca et al., 2003a, 2003b). In order to

cope with modelling errors, disturbances and pa-

rameter uncertainties, two novel control structures

have been investigated: (a) inverse disturbance ob-

server (IDOB), (Bajçinca and Bünte, 2005), a two

degree-of-freedom structure which combines feedfor-

ward inversion and high-gain feedback, and (b) active

observers (AOB), (Cortesão, 2003), a special model-

reference adaptive control structure based on Kalman

filtering.
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A steer-by-wire system is a typical master-slave sys-

tem with neglectable time delay communication be-

tween the master and slave loop. Hence, it is natu-

ral to consider the transfer of the master-slave tech-

nology control to the steer-by-wire one. In this pa-

per it will be shown that yet new design challenges

emerge since: (a) the so-called intervening impedance

between the driver (operator) and the vehicle (environ-

ment) has a relatively complex dynamics and it may

include static nonlinearities (power assisted steer-by-

wire), and (b) the environment of steer-by-wire vehicles

is non-passive, thus putting obstacles within the pas-

sivity design framework, which has been almost the

traditional approach in master-slave system design.

Other contributions in this paper are: (a) model-

matching solution of the design problem using

H∞ techniques and AOB formalism (Cortesão and

Bajçinca, 2004) and (b) analysis of robust stability of a

steer-by-wire system w.r.t main parametric uncertain-

ties of the environment (driver arms stiffness, vehicle

speed and tyre-road friction). It is shown that the lateral

vehicle impedance is not robust passive for a non-zero

vehicle speed. The output passivity excess of the con-

troller may not compensate for the passivity shortage

of the lateral vehicle dynamics. Thus, for a given target

dynamics, passivity requirements may not be achiev-

able. Yet the performance requirements may still be met

while keeping robust stability. The robustness analysis

methods in the presence of static sector non-linearities

(boost-curve) are provided based on solving for the

bounds of positive-realness of transfer matrix functions

in parameter space. The latter approach may be use-

ful for tuning of the power assistance boost-curve to

guarantee robust absolute stability.

The paper is organized as follows. In Section 2 the

basic coupling structure between the actuation and

driver loop is investigated, a linear actuator model is

presented, and robustness issues with respect to main

uncertainties are tasked. Section 3 reveals the basic idea

Figure 1. Coupling of actuation and driver loop.

and features of the inverse disturbance control, shows

its application on force feedback design, and finally

provides a robustness analysis in parameter space of

the operator bio-impedance. Section 4 gives a brief

introduction of the active observer algorithms. Sec-

tion 5 presents validation data for the force feedback

controllers obtained by simulation and experimental

tests. Section 6.1 steps in the operational (functional)

level by discussing the target dynamics of steer-by-

wire systems. Section 6.2 discusses its environment,

namely bio-mechanics of the driver arms and lateral

vehicle dynamics. Section 6.3 describes the open-loop

of a steer-by-wire system at the operational level. Sec-

tion 6.4 presents the model-matching synthesis of a

steer-by-wire controller using H∞ techniques and Sec-

tion 6.5 using AOB formalism. Section 6.6 collects sim-

ulation results and finally, Section 7 provides the analy-

sis of robust stability in the space of physical uncertain

parameters.

2. Steer-by-Wire Actuation

2.1. Actuation Modelling

The interaction between the driver and a steer-by-

wire system can be realized in two different ways. In

an admittance-like steer-by-wire control structure (the

driver input is torque) the driver is provided force feed-

back in a direct way by a force-control loop. On the

contrary, in an impedance-like controller structure (the

driver input is steering-wheel angle) the interaction is

realized by a position-control loop. While theoretically

both of the schemes are equivalent, the direct force

feedback scheme is more intuitive and is preferred in

this article.

Figure 1 shows schematically the interaction of the

driver and force feedback actuation loop. Note that the

two loops are coupled by the signals τ f and δ̇l . The fol-

lowing listing clarifies the notation used in this scheme:
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Td : torque generated at the driver muscles

Tl : net driver torque

δl : steering-wheel angle

τm : reference torque

τ f : torque at the actuator output shaft

Zd : driving point impedance

Yl : steering-wheel admittance (= 1/Jls)

i : motor current

If δ f is the gear rotation angle, then the transferred

torque over the gear is

τ f = Zg(δ̇ f − δ̇l) (1)

where Zg = Dg + Cg/s, and Dg and Cg stand respec-

tively for the damping and stiffness of the gear. In other

words, the motion of steering wheel induces a feedback

torque component in the actuation loop. The trouble

here is that this torque component is corrupted by large

model and parameter uncertainties of the driver loop

in addition to the injected torque Td . Torque control in

the presence of these uncertainties represents the main

challenge in this section.

A simple model for τ f lumps the net impact of the

driver loop into a single exogenous disturbance by the

following interpretation of (1)

τ f = τ f |δ̇l≡0 − Zg δ̇l = τ f,∞ + disturbance (2)

where τ f,∞ = τ f |δ̇l≡0 stands for the torque of the situ-

ation with the fixed steering wheel. This index denota-

tion addresses the corresponding fictive physical situa-

tion with infinity load, that is operator arms impedance.

The open-loop actuation can now be described by the

model

τ f = G∞i + Gl δ̇l (3)

where G∞ represents the model of the fixed steering-

wheel, and Gl the open-loop transfer function from δ̇l

to τ f . Note that Gl differs from Zg due to the internal

torque feedback within the harmonic-drive gear.

The advantage of this approach lies in the avoidance

of the uncertainties of the driver loop into the plant

model. It is also convenient that the impact of the driver

loop is described by an additive output disturbance, that

is by the term Gl δ̇l , as denoted in (2).

An alternative interesting modelling approach is to

try to discriminate the effect that result from the driver

impedance Zd by a model of the form

τ f = τ f |Zd=0 + (term due to Zd ) . (4)

The first summand corresponds to the situation of the

free (released) steering wheel. The reader may easily

check that the condition Zd = 0 is physically equiva-

lent to Tl = 0. Hence (4) the can be written as

τ f = G0i + G t Tl (5)

where G0 corresponds to the open-loop model with

zero operator impedance. Again G t Tl will be consid-

ered as an exogenous output disturbance.

The relationship between this and the model (3) can

be directly computed from Fig. 1

G0 =
G∞

1 + Yl Gl

and G t =
Yl Gl

1 + Yl Gl

. (6)

The description (5) enjoys the same advantages as (3)

with regard to uncertainties of the driver loop. How-

ever, the two models describe diametrally opposite sit-

uations: G0 the zero load (released steering wheel), and

G∞ the infinity load (fixed steering wheel).

2.2. Driver Loop

For the sake of simplicity set τm = 0 in Fig. 1. Then

the impact of the actuation loop into the driver loop for

the fixed steering wheel model (3) can be schematized

as shown in Fig. 2(a). This structure is clear, since with

τm = 0, the torque on the output shaft equals τ f =

S∞Gl δ̇l , where S∞ represents the sensitivity function

of the actuation closed loop with the description (3). In

other words, the impact of the actuation loop into the

driver loop can be weighted by its sensitivity function

S∞.

Similarly for the free steering wheel model (5), the

driver loop with τm = 0 transforms to Fig. 2(b). Here

S0 stands again for the sensitivity function from the

disturbance G t Tl to τ f in the closed loop.

The investigation of the driver loop is of interest

particularly for robust stability analysis with respect

to uncertainties in the operator bio-impedance Zd . A

simple robustness condition results from the observa-

tion that the feedback loop consisting of Yl and Zd is

naturally robust stable, irrespectively on parameter un-

certainties in Zd , since both Zd and Yl are passive. In

other words, for robust stability the condition S∞ = 0
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Figure 2. Driver loop.

in Fig. 2(a) is sufficient. The same observation holds

also for the structure Fig. 2(b) if S0 = 0. Namely, for

S0 = S∞ = 0 the two structures in Fig. 2 become iden-

tical. The operator feels then basically just the inertia

of the steering wheel and the driver loop decouples

from the actuation loop. However S∞ must increase at

higher frequencies, and the term Zd + S∞Gl may run

the loop in Fig. 2(a) unstable. It is intuitive that the situ-

ation is more critical for higher driver arms impedance

e.g. if the operator holds the steering wheel stiffer, see

Section 3.6.

Following the tradition in the teleoperation literature

the simple model for the operator arms impedance

Zd =
Cd

s
+ Dd + Jds (7)

is here accepted, where Cd , Dd and Jd are respec-

tively the stiffness, damping and inertia of the oper-

ator arms about the center of the steering wheel. We

Figure 3. Uncertain moment of inertia depending on steering wheel grasping.

expect that the main uncertainties in (7) arise in the

stiffness Cd and moment of inertia Jd . Variations in

Cd are mainly due to different neuro-muscular oper-

ator arm systems, driving style and experience, op-

erator age, driving situations etc. On the other hand,

the moment of inertia Jd is very sensitive on how the

steering wheel is held. For instance, it has been ex-

perimentally tested that Jd is the lowest if the steering

wheel is grasped as shown in Fig. 3(a) and the largest

for the situation in Fig. 3(d). The latter grasping turns

out to be the most critical one also in terms of stiff-

ness Cd . Namely, the stiffness induced by the operator

is essentially higher compared to other situations in

Fig. 3.

2.3. Actuator Hardware

The scheme of the steer-by-wire force feedback ac-

tuator is shown in Fig. 4. Its main components are a

brushless DC motor, a harmonic-drive gear and a torque

sensor. The harmonic-drive gear consists of flexspline,

wave generator and circular spline. Note that the mo-

tor shaft is connected to the wave generator and the

circular spline to the motor housing, which are both

fixed at the console. The flexspline is constructed in

the form of an ellipse so that in a given position it

touches the circular spline only at two points. Its task

is to transfer the motion introduced at the wave gen-

erator to the output shaft. Since the flexspline has two

teeth less than the circular spline, one revolution of

the input causes relative motion between the flexs-

pline and the circular spline equal to two teeth. With

the circular spline rotationally fixed, the flexspline ro-

tates in the opposite direction to the input at a reduc-

tion ratio equal to one-half the number of teeth on the

flexspline. Typical characteristics of a harmonic-drive
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Figure 4. Force feedback actuator.

gear are high positioning accuracy, high gear ration

and virtually no backlash, but with periodic torque rip-

ples. The fundamental periodic frequency corresponds

to twice the frequency of the motor shaft speed, result-

ing due to touching points between the flexspline and

circular spline.

The torque sensor is based on strain gauges. This op-

erating principle implies that an additional elasticity is

introduced into the mechanical system which accounts

for approximately one third of the entire gear elasticity.

The use of two independent measurement bridges pro-

vides redundancy and also allows the compensation of

temperature changes and other disturbances. As seen

in Fig. 4, the sensor is mounted directly on the gear

output shaft.

2.4. Linear Actuator Model

The conversion of motion over an ideal harmonic drive

gear with fixed circular spline can be described by the

following equations

τ f = nτw (8)

n = δw/δ f (9)

where n represents the transmission and the indices f,

and w stand for flexspline and wave generator, respec-

tively.

A simplified linear mass-stiffness-mass system

shown in Fig. 5 can be used for design-purpose mod-

elling of the force feedback actuator. Thereby the fol-

lowing three assumptions are set: (a) the gear moment

of inertia is concentrated in front of the gear transmis-

Figure 5. Mass-stiffness-mass model.

sion ratio n, and (b) a torsion stiffness Cg with a low

damping Dg appear after the gear transmission ratio.

According to Fig. 4 the sensor is connected in series

with the flexspline, that is it is located at the signal τs

in Fig. 5. However the sensor is omitted therein, since

its stiffness is much higher than that of the gear.

The equations which describe the dynamics of the

mass-stiffness-mass model in Fig. 5 are then easily

derived

Jm δ̈m = Tm −
τs

n
(10)

τs = −Jl δ̈l + Tl (11)

τs = Cg

(

δl +
δm

n

)

+ Dg

(

δ̇l +
δ̇m

n

)

. (12)

The transmission equations of harmonic drive (8)
and (9) are included here by τs = τ f and δm = δw.
Substituting Tm = Km i , where Km stands for the motor
torque constant, and i for the motor current, the latter
equations read

τ f =
n(Cg + Dgs)(Km Jl i + n Jm Tl )

n2 Jm Jls2 + (Jl Dg + n2 Jm Dg)s + n2 JmCg + JlCg

.

(13)

To compute G̃∞ in (3) set Tl = 0 and let Jl → ∞ in

(13)

G̃∞ =
b1s + b0

a2s2 + a1s + a0

(14)

with

b0 = nKmCg

b1 = nKm Dg

a0 = Cg

a1 = Dg

a2 = n2 Jm .
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To compute Gl in (3) set Tm = 0 in (10) and substitute

it in (12)

Gl =
c2s2 + c1s

a2s2 + a1s + a0

(15)

with

c1 = n2 JmCg

c2 = n2 Jm Dg.

The two transfer functions G0 and G t in the model (5)

are directly computed from (13)

G̃0 =
b′

1s + b′
0

a′
2s2 + a′

1s + a′
0

(16)

with

b′
0 = nKm JlCg

b′
1 = nKm Jl Dg

a′
0 = (Jl + n2 Jm)Cg

a′
1 = (Jl + n2 Jm)Dg

a′
2 = n2 Jm Jl

and

G t =
c′

1s + c′
0

a′
2s2 + a′

1s + a′
0

(17)

with

c′
0 = n2 JmCg

c′
1 = n2 Jm Dg.

3. Inverse Disturbance Observer

3.1. Basic Idea

The inverse disturbance observer (IDOB) structure,

(Bajçinca and Bünte, 2005), in its basic form is shown

in Fig. 6. Identify here the plant G, and the two design

parameters (two degrees of freedom): G̃−1 the approxi-

mate inverse of G, and the Q−filter. The transfer func-

tions from the reference r to the plant input u (Gru)

and its output y (Gr y) are easily obtained from Fig. 6

Gru =
G̃−1

1 − Q(1 − GG̃−1)
(18)

Figure 6. IDOB control structure.

Gr y =
GG̃−1

1 − Q(1 − GG̃−1)
. (19)

To present the basic idea of the IDOB control structure

introduce the notation:

(A): Q = 1 (infinity-gain feedback)

(B): G̃−1 = G−1 (feedforward exact inversion)

(C): Gr y = 1 (perfect tracking).

Then (18) and (19) read directly

(A) ∨ (B) ⇒ (C). (20)

In practice, none of the conditions (A) and (B) is re-

alizable for all frequencies. In fact, (A) would destabi-

lize any practical loop, so Q must ultimately roll-off for

high-frequencies. Further, the feedforward exact inver-

sion as defined in (B) fails at least for high-frequencies.

Hence, the conditions (A) and (B) make sense only in

the operational frequency bandwidth. Even then the

two conditions must be weakened due to implementa-

tion limitations to

(A′): Q ≈ 1 (high-gain feedback)

(B ′): G̃−1 ≈ G−1 (feedforward inversion).

However it is important that though weakened the

conditions (A′) and (B ′) collaborate, that is, they con-

tribute independently towards situation (C). For Q ≈ 1

due to the positive feedback in the Q-loop in Fig. 6 a

high-gain controller results. If G̃−1 ≈ G−1, then exact

feedforward inversion is approximately realized so the

Q-feedback loop is almost idle. Therefore, IDOB con-

trol structurally unifies the high-gain feedback and the

feedforward exact inversion principle, (20).

3.2. Robustness

Essential implications for the IDOB structure are pro-

vided by the sensitivity S = y/d and complementary
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sensitivity T = y/n functions

S =
1 − Q

1 − Q(1 − GG̃−1)
(21)

T =
QGG̃−1

1 − Q(1 − GG̃−1)
. (22)

The two are constrained by the fundamental algebraic

condition S + T = 1. Also S = 1/(1 + L) and

T = L/(1 + L), where L stands for the loop trans-

fer function

L =
QGG̃−1

1 − Q
. (23)

It is convenient to define also the three latter functions

for the situation that corresponds to feedforward perfect

inversion (condition (B))

S̃ = 1 − Q, T̃ = Q, and L̃ =
Q

1 − Q
. (24)

One important implication of sensitivity function is re-

lated to the error e = r − y dynamics, refer to Eq. (27).

For typical applications requiring zero DC error track-

ing, S(0) = 0 must hold, implying Q(0) = 1. The

latter condition produces always a pole at s = 0 in

the expression 1/(1 − Q). Hence according to (23)

the pole s = 0 appears also in the loop transfer

function L .

In practice, G̃−1 can never provide exact inversion

of the plant G. Therefore it is natural to introduce the

notion of imperfect inversion. For the sake of simplicity

consider the multiplicative imperfection

G = G̃(1 + W2�) (25)

where W2 is a proper stable weighting function and

‖�‖∞ < 1 represents a stable unstructured disk-like

uncertainty. Typically, W2 increases with frequency due

to model mismatching.

The problem explored here is: assuming that IDOB

closed loop with perfect inversion (condition (B)) is

stable, how big is the minimal imperfection that desta-

bilizes the IDOB loop? In Bajçinca and Bünte (2005) it

is shown that robust stability is guaranteed if and only

if the condition

‖W2 Q‖∞ < 1 (26)

holds. Equation (26) sets stability constraints in the

interaction between the imperfection W2 and the design

parameter Q. It has a simple and elegant geometrical

interpretation in terms of the Bode plots of Q and W2.

Namely, the IDOB structure with the imperfection W2

is internally stable iff the magnitude Bode plot of the

function W −1
2 lies above that of Q. Recall that |W2|

−1

rolls off toward zero at high frequencies, thus putting

a limitation for the bandwidth of the filter Q.

3.3. Tracking

Asymptotic tracking is defined as the ability of the con-

trol loop to drive y → r , that is, e → 0 as t → ∞. For

instance, if r is a step, then due to

e

r
= S(1 − GG̃−1) (27)

the function S must have a zero at s = 0, which is

equivalent to Q(0) = 1. For example this is fulfilled

by Q = 1/(τ s + 1). Now consider a set of sinusoidal

inputs confined within some frequency bandwidth. Let

Wp weight a desired tracking response in (27) in the

sense that ‖e‖2 < ‖Wp‖
−1
∞ ‖r‖2. For larger |Wp| the

tracking performance improves. However, it is intu-

itive that for sufficiently large imperfections W2�, the

performance set by Wp may get lost. It is thus important

to set up the conditions for meeting the performance set

by Wp in the presence of the imperfections W2. There-

fore, substitute (25) into (27) to get |SW1�| < 1, ∀ω,

or equivalently

‖W1S‖∞ < 1 (28)

where we switch to the notation W1 = WpW2. This

equation can be further manipulated, see (Bajçinca and

Bünte, 2005), provided that internal stability condition

‖W2 Q‖ < 1 holds to

‖|W1(1 − Q)| + |W2 Q|‖∞ < 1. (29)

Equation (29) is an elegant description of simplicity

and efficiency of the IDOB control structure. It repre-

sents the basic equation for the loopshaping design by

Q. It can be shown that thereby a very simple Q results

(loopshaping details are avoided here). Namely, for op-

erational frequencies, where |W1| ≫ 1 > |W2| holds,

the condition Q ≈ 1 results, and for high frequen-

cies (|W2| ≫ 1 > |W1|), Q ≈ 0 results. In general,

it is easy to define such a Q, e.g. Q = 1/(τ s + 1).

The only design parameter here is basically its band-

width. For its design (29) should be used. Note that,
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for better performance the term |W1(1− Q)| in (29) re-

quires a high bandwidth, which is however compelled

by the stability term |W2 Q|. Thus, the designer should

meet a compromise between these two conflicting

specifications.

3.4. Fixed Steering Wheel Inversion

The inverse disturbance observer control structure for

the force feedback control is shown in Fig. 7. The trans-

fer function G̃−1
∞ represents here the inverse of the lin-

ear model of the fixed actuator. Identify in the grayed

block the plant model defined in (3). Since the gear does

not rotate the bearing friction component is zero, thus

resulting in a good matching between G̃∞ and G∞.

Hence the feedforward inversion by G̃−1
∞ is almost ex-

act, which in turn strongly supports IDOB control due

to the good robustness of the latter with respect to out-

put disturbances. Namely, it has been already noted

that the control strategy here is based on lumping of

uncertainties in the fictive output disturbance Gl δ̇l .

The discussion in Section 2.4 serves to design G̃−1
∞ .

For the design of Q the robust stability of the loop in

Fig. 2(a) with respect to the uncertainties in Zd is to be

considered, see Section 3.6. Due to the relative degree

one of G̃−1
∞ , a first order Q filter is used

Q =
1

τ s + 1
. (30)

3.5. Free Steering Wheel Inversion

The control structure based on the inversion of the

free steering wheel setup described by (5) is shown

in Fig. 8. The transfer functions G̃0 and G t are com-

puted in Section 2.4. The Q filter is given the form (30).

Again its bandwidth is determined by computing the

Figure 7. Force feedback control with fixed steering wheel inver-

sion.

Figure 8. Force feedback control with free steering wheel

inversion.

stability charts in the parameter space of Cd , Jd and τ ,

see below.

3.6. Robustness Analysis

The basic task here is to design the parameter τ (that

is, the controller bandwidth 1/τ ) such that the force

feedback actuation system remains stable under all pa-

rameter uncertainties in the driver arms stiffness Cd

and inertia Jd . Therefore consider the loops in Fig. 2.

The characteristic equation of the loop Fig. 2(a) reads

1 + Yl (Zd + S∞Gl) = 0 (31)

and for that in Fig. 2(b)

1 + Yl Zd (1 − S0G t ) = 0. (32)

Assuming that perfect inversion holds in the struc-

tures in Figs. 7 and 8 according to (24)

S∞ = S̃∞ = 1 − Q, S0 = S̃0 = 1 − Q. (33)

Substitution of the latter equation in (31) and (32) re-

sults in an equation with three uncertain parameters

Jd , Cd and τ . The resulting Hurwitz stability bounds

in the space of parameters Cd , Jd and τ are shown in

Fig. 9. Observe in Fig. 9(b) and (e) that for a given

inertia Jd a large enough stiffness Cd turns the system

unstable. This effect has been clearly observed in all

experimental tests.
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Figure 9. Stability bounds in the parameter space of Cd , Jd and τ for IDOB control based on fixed (first row) and free (second row) steering

wheel inversion with respective controllers in Figs. 7 and 8. All variables are in SI units. The stable region is in gray.

4. AOB Based Control

A linear system represented in state space by

{

xr,k = �r xr,k−1 + Ŵr uk−1

yk = Cr xr,k

(34)

can be controlled through state feedback (e.g. optimal

control, adaptive control, deadbeat control and “pure”

pole placement control). In practice, the main problem

of this approach is that (34) does not represent exactly

the real system. In fact, unmodeled terms including

noise, higher order dynamics, parameter mismatches,

couplings and unknown disturbances are not addressed

in the control design. Therefore, it is necessary to de-

velop a control structure that can deal with them, so

that the overall system may have the desired behav-

ior. The AOB state space control design satisfies these

requirements. The main goal of the AOB is to fit a

physical system (i.e. its input/output behavior) into a

linear mathematical model, rather than to fit a mathe-

matical model into a physical system. To accomplish

this goal, a description of the system (closed loop and

open loop) is necessary. A special Kalman Filter (KF)

has to be designed. The motivation for this special KF

is based on:

(1) A desired closed loop system for the state estima-

tion.

(2) An extra equation to estimate an equivalent dis-

turbance referred to the system input. An active

state pk (extra-state) is introduced to compensate

unmodeled terms, providing a feedforward com-

pensation action.

(3) The stochastic design of the Kalman matrices Q

and R for the AOB context. Model reference adap-

tive control appears if Qxr,k
is much smaller than

Q pk
. In this case, the estimation for the system state

follows the reference model. Everything that does

not fit in the xr,k model goes to pk .

In the sequel, the first-order AOB algorithm1 will be

described. Controlling the system of (34) through state

feedback from an observer and inserting pk in the loop,

the overall system can be described by

[

xr,k

pk

]

=

[

�r Ŵr

0 1

][

xr,k−1

pk−1

]

+

[

Ŵr

0

]

uk−1 + dk (35)
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and

yk = Ca[ xr,k−1 pk−1 ]T + nk (36)

where

uk−1 = rk−1 − [Lr 1]

[

x̂r,k−1

p̂k−1

]

. (37)

The stochastic inputs dk and nk represent respec-

tively model and measure uncertainties. The state es-

timate of (35) is based on the desired closed loop (i.e.

p̂k = pk and x̂r,k = xr,k). It is

[

x̂r,k

p̂k

]

=

[

�r − Ŵr Lr 0

0 1

][

x̂r,k−1

p̂k−1

]

+

[

Ŵr

0

]

rk−1 + Kk(yk − ŷk) (38)

with

ŷk = Ca

([

�r − Ŵr Lr 0

0 1

][

x̂r,k−1

p̂k−1

]

+

[

Ŵr

0

]

rk−1

)

(39)

and

Ca = [Cr 0]. (40)

The Kalman gain Kk reflects the uncertainty associ-

ated to each state based on model and measure uncer-

tainties. It is computed from

Kk = P1k CT
a

[

Ca P1k CT
a + Rk

]−1
(41)

with

P1k = �n Pk−1 �T
n + Qk (42)

and

Pk = P1k − Kk Ca P1k . (43)

�n is the augmented open loop matrix

�n =

[

�r Ŵr

0 1

]

. (44)

Qk is the system noise matrix and represents model

uncertainty. It is given by

Qk =

[

Qxr,k
0

0 Q pk

]

. (45)

The measurement noise matrix Rk represents measure

uncertainty. Pk is the mean square error matrix. Its ini-

tial value should reflect at least the uncertainty in the

state estimation. It should not be lower than the initial

matrix Qk .

5. Control Validation

Validation data obtained by simulation and experimen-

tal tests are collected in this section for both control

structures, IDOB and AOB. The respective plots are

shown in Figs. 10 and 11. Thereby three test scenar-

ios are examined for the IDOB controller: (a) robust

tracking of a step-like and (c) sinusoidal reference, and

(b) disturbance rejection of the operator torque on the

steering wheel. For the driver torque rejection the ref-

erence torque is set to zero, and a step-like torque is

applied on the steering wheel. The data are obtained

for nominal, large, stiff, soft and zero operator arms

impedance.

For the AOB control two scenarios have been

investigated: (a) output disturbance rejection and

(b) input tracking. Note that additionally the ac-

tive state responses are shown. The experiments

are done with nominal and infinity operator arms

impedance.

6. Design of Steer-by-Wire Systems

6.1. Target Dynamics

The first step when designing the steer-by-wire steer-

ing dynamics is to set its reference, i.e. to give some

answer to the natural question how a steer-by-wire

system should feel like and how the vehicle should

react on the driver steering command. In the sequel,

such a desired system dynamics will be referred to as

reference or target steering dynamics. Some straight-

forward target steering systems are, of course, the

contemporary steering systems, s.a. Electrical (EPAS)

or/and Hydraulic Power Assisted Steering (HPAS),

Fig. 12.
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Figure 10. Simulation and experimental data with the IDOB controller. Column 1: Simulation data with structure in Fig. 7; Column 2:

Experimental data with structure in Fig. 7; Column 3: Simulation data with structure in Fig. 8; Column 4: Experimental data with structure in

Fig. 8. The variables are in SI units.

Figure 11. Simulation and experimental data with the AOB controller. The variables are in SI units.
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Figure 12. Steering system dynamics.

The relevant signals in Fig. 12 are

Tl : torque on steering wheel

Fr : steering rack force

xr : steering rack position

δl : steering wheel angle.

Notice that steering systems comprehend assisting

algorithms for independent force and position assis-

tance. Usually the assisted torque steering filter is a

nonlinear (parabolic) function of vehicle speed v and

steering column torsional angle, δC (the so-called boost

curve). While torque assistance is mainly to increase

the steering comfort, the steering angle (i.e. rack posi-

tion) assistance is introduced for improvement of lat-

eral and/or vertical vehicle dynamics.

The hardware steering dynamics in Fig. 12 includes

the mechanical dynamics of the steering wheel, steer-

ing column, steering rack, power steering actuator, and

that of the torque sensor on the steering column. Un-

der assumption that it can be approximated by a linear

system, i.e. the nonlinear gearing friction is neglected,

its dynamics can be represented by the following two-

input two-output admittance system,

[

δ̇l

ẋr

]

=

[

y11 y12

y21 y22

][

Tl

Fr

]

(46)

or by an equivalent hybrid or impedance representa-

tion. Since the steering column dynamics is included

in the linear part of the steering dynamics, it is clear that

in order to match the steering dynamics of a given tar-

get steering dynamics (e.g. EPAS) with a steer-by-wire

technology, exactly this dynamics has to be reproduced

by a suitable steer-by-wire actuation. The code which

provides the nonlinear power assisted steering can be

reused as it is, thus reducing the design problem of a

steer-by-wire system into a linear control problem.

Figure 13. Interaction of a steer-by-wire system with its environ-

ment.

6.2. System Uncertainties

A steer-by-wire system can be classified as a master-

slave robotic system, whereby the driver corresponds

to the operator and the vehicle dynamics to its environ-

ment. Besides transparency (target dynamics match-

ing) a basic design requirement of a steer-by-wire sys-

tem is stability robustness particularly w.r.t. paramet-

ric uncertainties of driver arms stiffness2 (Cd ), vehicle

speed (v) and road-tyre friction coefficient (µ). Though

(see Fig. 13) the environment provides a negative feed-

back to a steer-by-wire system, it is important to inves-

tigate the robustness of such an interaction. In the next

two sections the driver arm and the vehicle dynamics

impedance are considered.

Bio-Mechanical Human Arm Impedance. To get an

idea about the modelling of the biomechanics of the

operator arms here are briefly collected some basic re-

sults of single-joint muscle system, which are usually

used in teleoperation robotics. The main aim is to bring

some physical understanding for the model (7) and dis-

cuss the major uncertainties therein.

The muscle actuator of the driver arm may be roughly

modelled by a linear equation as follows

�x/�t = gmα� fα + gm f fm (47)

whereby

�x : internal muscle length contraction

� fα: nerve excitation of the α-neuron

fm : force acting on the muscle

gmα: feedforward admittance

gm f : driving point admittance.
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Note that (47) contains a feedforward path due to

α-neuron excitation and a so-called driving point

impedance for description of the muscle contraction in

response to the load force fm . The feedforward path of

the muscular actuator driven by α-efference represents

an active system and is responsible for the adaption

of the net arm impedance and control of arm position

based on feedback of neural activation. This term cor-

responds to the signal Td in Fig. 1. The human arm

impedance adaption process is associated with time

delays ranging from 30 to 70 ms signal transmission

delays thus resulting with a low bandwidth feedback

loop 0.5–1.7 Hz, (Hogan, 1990).

Both terms gmα and gm f depend on muscle stiffness,

muscle damping and the net mass of the limb and in-

terface element (e.g. joystick or steering wheel). For

the purposes of this chapter especially important is the

driving point admittance gm f . A common modelling

approach for gm f in the teleoperation robotics litera-

ture is a linear mass/damping/stiffness model of the

form

gm f =
1

mos + do + co/s
. (48)

Measurement suggest, (Hogan, 1989), minimal incre-

mental elbow stiffness of 2 Nm/rad and maximal of

400 Nm/rad. On the other hand, the damping was es-

timated to be around 5.5 Ns/m.

Lateral Vehicle Impedance. The car model which

has been used for the investigations in this paper is the

classical linearized single track model as illustrated in

Fig. 14.

Its basic variables and geometric parameters are3

Figure 14. Single-track model.

F f (Fr ): lateral wheel force at front (rear) wheel

r : yaw rate

β: chassis side slip angle at

center of gravity (CG)

v: magnitude of velocity vector at CG

(v > 0, v̇ = 0)

ℓ f (ℓr ): distance from front (rear) axle to CG

δ f : front wheel steering angle

The mass of the vehicle is m and J is the moment of

inertia with respect to a vertical axis through the CG.

For small steering angle δ f and small side slip angle β,

the linearized equations of motion are

mv(β̇ + r ) = F f + Fr (49)

mℓ f ℓr ṙ = F f ℓ f − Frℓr (50)

The tire force characteristics are linearized as

F f (α f ) = µc f 0α f , Fr (αr ) = µcr0αr (51)

with the tire cornering stiffness c f 0, cr0, the road adhe-

sion factor µ, and the tire side slip angles

α f = δ f −

(

β +
ℓ f

v
r

)

(52)

αr = −

(

β −
ℓr

v
r

)

(53)

A variable of great importance in lateral vehicle dy-

namics is the lateral acceleration at the front axle, ay f .

It can be easily shown that,

ay f = v(β̇ + r ) + ℓ f ṙ . (54)

For steer-by-wire control the essential characteristic of

vehicle dynamics is its lateral impedance, which will

be defined as the ratio between the front lateral reac-

tion force, F f and the front wheel steering angle, δ f ,

Zv = F f /δ f . In this paper, for the sake of simplicity,

the single-track model will be used to compute it. By

combining the equations (50), (51), (52) and (53) it can

be shown that

Zv(s) =
a2s2 + a1s + a0

s(b2s2 + b1s + b0)
(55)

with

a2 = c f µv2m J

a1 = µ2c f crv(J + mℓ2
r )
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a0 = c f crℓrµ
2v2m

b2 = mv2 J

b1 = µ((c f + cr )J + m(c f ℓ
2
f + crℓ

2
r ))

b0 = µ(µcr c f (ℓ f + ℓr )2 − mv2(c f ℓ f − crℓr )).

Notice that, Zv(s, µ, v) is uncertain because of the un-

certainties in physical parameters µ and v.

6.3. Open Actuation Loops

This section is about setting up an open-loop model

description of a steer-by-wire actuation system. As al-

ready noted, a steer-by-wire control system includes

two actuation inner-loops for torque and/or position

control. The dynamics of the force feedback loop can

in general be described by the linear equation

δ̇l = yl(s)(Tl − αl(s)τm) (56)

which formally describes both, the closed-loop and

open-loop force feedback. Notice that the dynamics

of the actuator, sensor and controller are lumped into

the transfer functions αl .

Similarly, in an admittance steer-by wire structure

the road-wheel actuation loop is described by the equa-

tion

ẋr = yr (s)(Fr − αr (s) fs) (57)

while in a hybrid steer-by-wire structure it is described

by

Fr = zr (ẋr − βr ẋs) . (58)

Thereby

ẋr : rack position rate

Fr : rack force (road-feedback)

ẋs : reference rack-position rate

fs : reference road-wheel actuation force.

By introducing the following definitions

va =

[

δ̇l

ẋr

]

ra =

[

Tl

Fr

]

τ1 =

[

τm

fs

]

(59)

and

vl =

[

δ̇l

Fr

]

rl =

[

Tl

ẋr

]

τ2 =

[

τm

ẋs

]

. (60)

The dynamics of the open-loop admittance steer-by-

wire structure can be described by the equation

va = Ye(s)(ra − A1(s)τ1) (61)

with

Ye =

[

Yle(s) 0

0 Yre(s)

]

A1 =

[

αl(s) 0

0 αr (s)

]

.

(62)

Similarly open-loop dynamics of the hybrid steer-by-

wire structure may be modelled by the equation

vl = H (rl − A2τ2) (63)

whereby

H =

[

yl 0

0 zr

]

A2 =

[

αl 0

0 βr

]

. (64)

6.4. Model-Matching Based Design

Basically, four different control structures may be

applied for a steer-by-wire interaction. Depending

on feed-backed variables, one can discriminate be-

tween the admittance, hybrid and impedance control

topology.

In an admittance system description, (46), the steer-

ing wheel angle rate, δ̇l and the rack position rate, ẋr

are the measured/controlled variables. The controller

structure in this case is

[

τm

fs

]

= Cy(s)

[

δ̇l

ẋr

]

+

[

0

f A

]

. (65)

The primary advantage of this structure is its simple

sensory requirement.

In a hybrid steer-by-wire structure the rack force,

Fr , is assumed to be known instead of the rack position

rate, ẋr . Its controller structure has the following form

[

τm

ẋs

]

= Cl

[

δ̇l

Fr

]

+

[

0

ẋA

]

. (66)

This paper considers the controller structure in (65),

whereby the same formalism can be applied to that in

(66)

By closing the loop in (61) and using (65) it follows

va = Y (ra − A1Cyva). (67)
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Its solution va is

va = (I + Ye A1Cy)−1Yera . (68)

The control problem may be formulated as follows: find

the controller Cy such that the closed-loop response

ra → va resembles the steering dynamics described

by (46), i.e.

‖(I + Ye A1Cy)−1Ye − Yd‖∞ = minimal (69)

whereby Yd corresponds to the desired admittance ma-

trix in (46). In order to solve this problem the con-

troller Cy is parameterized using Youla parameteriza-

tion (Doyle et al., 1992; Francis, 1987)

Cy = (B − M Q)(A − N Q)−1 (70)

whereby matrices M and N coprime-factorize the prod-

uct YA1

YA1 = NM−1 = M̃−1 Ñ (71)

and

[

Ã −B̃

−Ñ M̃

][

M B

N A

]

= I. (72)

Q belongs to Hardy space, RH∞, of all proper and

real rational stable transfer matrices and represents the

free parameter. Using the last three equations, after

some algebraic operations, (69) may be transformed

to the model-matching problem

‖T1 − T2 QT3‖∞ = minimal (73)

whereby

T1 = AM̃Ye − Yd (74)

T2 = NM̃ (75)

T3 = M̃Ye. (76)

The model-matching problem may be solved using

LMI tools or some other H∞ optimization tool. The

target steer-by-wire admittance Yd used in this article

is

y11 =
33.33s2 + 448.7s + 93690

s3 + 20.71s2 + 7655s + 45790
(77)

y12 =
1.295s + 894.6

s3 + 20.71s2 + 7655s + 45790
(78)

Figure 15. Comparison of desired steer-by-wire (solid line) dy-

namics and closed-loop dynamics (dashed line).

y21 =
−1.295s − 894.6

s3 + 20.71s2 + 7655s + 45790
(79)

y22 =
−0.001789s2 − 0.01296s − 8.543

s3 + 20.71s2 + 7655s + 45790
(80)

which represents the linear part of a conventional steer-

ing system. Further the open-loop actuation is de-

scribed by transfer functions

yl =
26.67s2 + 568s + 218300

s3 + 28.1s2 + 16430s + 120000
(81)

yr =
−0.00179

s + 9.395
(82)

αl =
−13510

s2 + 21.3s + 8188
(83)

αr =
1974000

s + 1885
. (84)

In Fig. 15 the frequency response of designed lin-

ear reference steer-by-wire system and closed-loop dy-

namics are compared.

6.5. Steer-by-Wire AOB Design

This section provides the design of a steer-by-wire con-

troller using the AOB algorithm. The target model of

a conventional vehicle within the framework of AOB
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design is given by

[

δ̇l

ẋr

]

=

[

y11 0 y12 0

y21 0 y22 0

]











Tl

τm

Fr

fs











(85)

Note that the inputs Tl and Fr are not directly reached

by actuators. The model-matching problem in the AOB

framework consists in designing a state-space con-

troller for the open-loop system

[

δ̇l

ẋr

]

=

[

yl −αl yl 0 0

0 0 yr −αr yr

]











Tl

τm

Fr

fs











(86)

to achieve (85). Writing (85) in discrete state-

space form with sampling time Ts = 1[ms], the de-

sired closed-loop poles result at λ1,2 = 0.9890 ±

0.0859i and λ3 = 0.9940.

The discrete state-space of (86) can be represented

by (35), where φr and Ŵr have dimensions 7 × 7 and

7×4, respectively. To apply the AOB design described

in Section 4, a state feedback matrix Lr has to be found.

In addition to the three above desired closed-loop poles,

four additional poles (p1 . . . p4) are needed due to the

dimension of �r . There is no straightforward proce-

dure to obtain the additional poles. Simulations have

shown that there are many possibilities that guarantee

good results, such as p1 = 0.89, p2 = 0.89, p3 =

−0.89andp4 = 0.994. The minus sign in one pole is

important due to the transient effect of a positive zero in

the target system. To compute Lr , Ŵr has to be changed

(only for this computation) to reflect the lack of actua-

tion on the inputs Tl and Fr . The first and third columns

of Ŵr should be set to zero. This guarantees that if there

is an Lr , it will not generate a direct feedback referred to

non-actuated inputs. The DC gain of the steer-by-wire

system is compensated by proper pre-amplification of

the reference inputs. For the target system (′t ′ stands

for target system)

DCt = Ct [I − (φt )]
−1Ŵt (87)

and for the steer-by-wire system

DCSbW = CSbW [I − (φSbW − ŴSbW L Sbw)]−1ŴSbW .

(88)

Therefore

Lc = (DCSbW )−1 DCt (89)

i.e.

Lc =

[

0.4785 −0.0046

67.0076 −0.6399

]

. (90)

The reference input is then

rk = Lc

[

Tl

Fr

]

. (91)

AOB estimation strategies for steer-by-wire. Model

reference adaptive control appears if Qxr,k
is much

smaller than Q pk
. In this case, the estimation for the

system state follows the reference model. Everything

that does not fit in the xr,k model goes to pk . Knowing

the structure of Qk , the relation between Rk and Qk

makes the estimates more (Rk low) or less (Rk high)

sensitive to measures. The stochastic parameters of Qk

and Rk are a powerful tool in the control design, creat-

ing enough space to explore complex estimation strate-

gies for highly unstructured tasks. For the steer-by-wire

setup

Qxr,k
= 10−12 I7×7 (92)

Q pk
=











0 0 0 0

0 10−1 0 0

0 0 0 0

0 0 0 103











(93)

Rk = 4I2×2 and P0 = Q0. Since there are four inputs,

pk has four statespk = [ p1,k p2,k p3,k p4,k ]T . p1,k and

p3,k cannot enter in the system (there is no actuation

entry). Hence, the first and third lines of Q pk
are zero.

This design inactivates the estimation of p1,k and p3,k

(p1,k = 0 and p3,k = 0). In the steer-by-wire design,

the uncertainty of p4,k is higher than p2,k , enabling p4,k

to have faster dynamics.

6.6. Simulation Results

This section shows simulation results of a steer-by-

wire system with the linear model-matching controller,

whereby its dynamics is coupled to the standard single-

track vehicle model for vehicle dynamics simulation.

The responses of the closed-loop steer-by-wire system

and target steering systems with respect to two input
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Figure 16. Responses of linear steer-by-wire vehicle (dashed line) and conventional vehicle (solid line) to rectangular periodic driver input

torque (left) and disturbance force on steering link (right).

Figure 17. Responses of non-linear steer-by-wire vehicle (dashed line) and EPAS vehicle (solid line) to rectangular periodic driver input torque

(left) and disturbance force on steering link.

scenarios are compared: (a) the driver torque on the

steering wheel is a periodic rectangular signal of fre-

quency 0.5 Hz and amplitude 3.2 Nm, and (b) a step-

wise disturbance force of amplitude 1 kN is applied

on the steering link. Comparisons for both: linear (no

force assistance, Fig 16) and non-linear (with force

assistance, Fig 17) systems are done in terms of re-

sponses of the steering wheel angle δl , steering rack po-

sition xr , road-feedback, Fr , and vehicle dynamics vari-

ables: yaw rate, r , and lateral front-wheel acceleration,

ay f .

7. Robustness Analysis

7.1. Passivity Approach

Passivity provides the basic framework of state of the

art methods used for design and analysis of teleoper-

ation systems. Thus, it is important to investigate its

usability for steer-by-wire.

7.1.1. Basic Definitions. This subsection recalls

briefly some very basic definitions on passivity, which
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will be used on later discussions, (Sepulchre et al.,

1997; Khalil, 1996; Slotine and Lee, 1991). Consider

a system H with an input vector u and output vector y

of the same dimension m, whereby u : R
+ �→ R

m is

bounded. Assume further that for the system H the sup-

ply rate w : R
m × R

m �→ R may be defined such that
∫ t1

to
|w(u(t), y(t))|dt < ∞, ∀to ≤ t1. The system H

is said to be dissipative with the supply rate w(u, y)

if there exists a function of states x(t), S(x) ≥ 0,

S(0) = 0, which is called storage function such that

S(x(T )) − S(x(0)) ≤

∫ T

0

w(u(t), y(t)) dt (94)

∀T ≥ 0. Further, H is said to be passive if it is dissi-

pative with supply rate w(u, y) = uT y.

Assume a system divided in a set of subsystems, such

that its storage function is the sum of the storage func-

tions of the subsystems. The whole system may still

be passive, even if some its subsystem is not passive.

In other words, one can assign to a system the notions

shortage and excess of passivity. The system H is said

to be output feedback passive if it is dissipative with

respect to w(u, y) = uT y − ρyT y for some ρ ∈ R.

Analogously, H is said to be input feedback passive if

it is dissipative with respect to w(u, y) = uT y − ηuT u

for some η ∈ R. Accordingly, positive sign of ρ and η

means that the system has an excess of passivity, and

conversely, negative sign of ρ and η means that the

system has a shortage of passivity.

7.1.2. Robust Stability. Figure 18 represents a

master-slave observation of a steer-by-wire system. Zd

represents the impedance of the arm of the driver (mas-

ter) and Zv the lateral vehicle impedance (environ-

ment), i.e. the friction force of the tyre-road friction

due to the rack rate ẋr . The two impedances interact

via the steer-by-wire actuation and control algorithm.

Notice that the forces generated at the driver arm mus-

cles and lateral vehicle disturbances are ignored.

A well-known passivity-based theorem on the robust

stability of such a master-slave structure is: given the

passivity of the master and environment impedance,

the whole master-slave system is robust stable iff the

block Actuation + Control is passive. Notice that no

other assumptions regarding the master and environ-

ment dynamics are assumed besides being passive.

7.1.3. Passivity Bounds in Parameter Space. This

work aims to analyze the stability and/or passivity re-

Figure 18. Master-slave representation of steer-by-wire interac-

tion.

gions in the space of physical parameters of a steer-by-

wire system, such as driver arm stiffness, Cd , vehicle

speed, v, and tyre-road adhesion coefficient µ. To this

end, the approach of mapping of specifications in pa-

rameter space will be used. This section provides a brief

introduction to the method used therefore.

Assume Y (s, q) is a given transfer function matrix,

which depends on some parameters q , which may in-

clude uncertain physical parameters or/and controller

parameters. Transfer function matrix Y (s, q) is passive

at some q iff the hermitian matrix, (Slotine and Lee,

1991),

H ( jω, q) = Y ( jω, q) + Y T (− jω, q) (95)

is positive-definite for each ω at q.

The following is standard in linear algebra. A her-

mitian matrix H ( jω) = (hi j ) is positive definite iff

�
(H )
k ( jω) > 0, ∀ω > 0, k = 1, 2, . . . , m

with

�
(H )
k ( jω) =

∣

∣

∣

∣

∣

∣

∣

h11( jω) · · · h1i ( jω)

...
...

hi1( jω) · · · hi i ( jω)

∣

∣

∣

∣

∣

∣

∣

.

Now define

Q(k)
π =

{

q : ek(ω, q)
.
= �

(H )
k (ω, q) ≥ 0

}

.

Then the parameter region which drives Y ( jω, q) pas-

sive is the intersection

Qπ =
⋂

k

Q(k)
π .

Thus, finding the passivity bounds of the whole matrix

is reduced to solving a system of m-inequalities. It can
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be shown that the bounds of the set Q(k)
π are defined by

the solution of the two following parametric nonlinear

equations

ek(ω, q) = 0,
∂ek

∂ω
(ω, q) = 0. (96)

Notice that, this methodology is convenient if the vector

q includes few parameters.

7.1.4. Example: Lateral Vehicle Impedance. Fig-

ure 19 shows the passivity bounds of the lateral vehicle

impedance in the parameter plane (µ, v).

Note that, unlike the usual tele-operation appli-

cations, a steer-by-wire system comprehends a non-

passive environment, which complicates to some extent

the robust stability considerations, since the conditions

of the cited theorem in Section 1.2 are not fulfilled. In

fact, physically this is not a strange condition, since for

velocities v �= 0, when steering, an amount of longi-

tudinal kinetic energy is sent to the lateral dynamics.

(Notice, for v = 0 the vehicle is passive, which is in-

tuitive.) For a given friction coefficient, µ, it can be

shown that the critical vehicle speed when passivity

properties switch is

vcr =

√

µcr (ℓ f + ℓr )
(

J + ℓ2
r m

)

m(J + ℓ f ℓr m)
. (97)

Figure 19. Passivity bounds of the open-loop lateral vehicle

impedance, Zv .

7.2. Robust Passivity

7.2.1. Linear Steer-by-Wire System. Assume that

the steer-by-wire controller is passive. The model-

matching controller designed in this paper, indeed

shows output passivity excess. Hence, it is interesting

to investigate the impact of such an excess into the pas-

sivity property of the feedback loop designated by the

dashed line in Fig. 18. Because of the passivity excess

of the controller, it is to be expected that the passivity

region of the feedback loop will increase compared to

that shown in Fig. 19. In Fig. 20 passivity bounds of

the feedback loop are computed. Notice that the pas-

sivity excess of the controller can compensate for the

activity of the vehicle in the region of small µ. Nev-

ertheless, passivity in the whole operating domain of

a vehicle is not provided. Hence, for robust passivity

a new controller has to be designed (probably) at the

price of performance, i.e. of model-matching.

7.2.2. Non-Linear Steer-by-Wire System. Consider

the non-linear steer-by-wire vehicle with force assis-

tance, Fig. 21.4 Such a structure provides an additional

power source, so it is intuitively clear that passivity

shortage of the feedback structure will be further in-

creased. According to the previous discussion, the lin-

ear steer-by-wire system has already output passivity

shortage, i.e.

∫ T

0

(uT y + ρyT y) dt ≥ S(x(T )) − S(x(0)) (98)

Figure 20. Passivity bounds of the coupling between steer-by-wire

steering system and lateral vehicle dynamics.
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Figure 21. Boost curve and its dependence on vehicle speed.

whereby ρ > 0. Since the dynamics of the boost-curve,

Fig. 21, is void, the storage function of the feedback

loop is equal to that of the open-loop, S(x). Substitution

of

u = r + ψ(y) (99)

in (98), whereby, β|y| > |ψ(y)|, ∀y, Fig. 21, yields the

condition of passivity of the closed-loop

∫ T

0

(r T y − (−ψ(y)T y − ρyT y)) dt

≥ S(x(T )) − S(x(0)) (100)

which further requires an impossible condition

−β − ρ > 0. (101)

Thus, it is to be concluded that passivity tools fail to

prove robust stability of steer-by-wire systems.

7.3. Robust Stability

This section presents an alternative approach for anal-

ysis of robust stability of steer-by-wire systems with

respect to parameter uncertainties. Again the aim is

to find the stability regions in the space of uncertain

parameters.

7.3.1. Linear Steer-by-Wire System. Consider the

linear system shown in Fig. 22 with the feedback loop

containing the uncertainties of a steer-by-wire system.

Figure 22. Linear steer-by-wire system in feedback with the un-

certain environment.

The main uncertain parameters are vehicle speed v fric-

tion coefficient µ (Zv = Zv(s, v, µ)), and driver stiff-

ness Cd (Zd = Zd (Cd )).

A straightforward method is to compute the charac-

teristic polynomial of the system, which describes the

eigenvalues of the steer-by-wire system in dependence

of uncertain parameters. By doing this, and separating

the characteristic equation into its real and imaginary

part, once again is met the system of two parametric

nonlinear equations

h(ω, v, µ, Cd ) = 0, g(ω, v, µ, Cd ) = 0 (102)

whereby 0 < ω < ∞ stands for the Hurwitz fre-

quency and represents the gridding parameter of the

equations. Figure 23 shows its solution. An interesting

fact is that for a given vehicle dynamics operating point,

i.e. v = const and µ = const , the stability radius in-

creases with increasing driver stiffness Cd . The curves

in Fig. 23 represent the stability bounds for a linear

model, which neglects the non-linearities (e.g. gearing

friction) in the system. However they provide insight

on the stability robustness with respect to parameters

uncertainties.

7.3.2. Nonlinear Steer-by-Wire System. Now con-

sider Fig. 24 with the boost-curve feedback. In non-

linear control the global asymptotic stability of this

structure is denoted as absolute stability of H , with

respect to the sector (0, β) static nonlinearity. For its

investigation in parameter space, in this paper the cir-

cle criterion, (Sepulchre et al., 1997; Khalil, 1996),

will be used, since it fits well within the analysis

framework developed in Section 7.1 of mapping of
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Figure 23. Robust stability of linear steer-by-wire system.

Figure 24. Absolute stability of non-linear steer-by-wire system

with boost-curve feedback.

positive realness bounds in parameter space. Accord-

ing to the circle criterion, the feedback loop of a linear

system H (s) with any static nonlinearity of the sec-

tor (0, β) is global asymptotic stable, if the transfer

function

H̃ (s) = H (s) −
1

β
(103)

is positive real (β > 0). In the case of steer-by-wire

system, the linear part is further uncertain, thus extend-

ing the requirement for robust absolute stability with

respect to uncertainties v, µ and Cd . Based on the dis-

cussions in Section 7.1, the mapping equations, which

correspond to circle criterion are directly derived to be

e(ω, v, µ, Cd ) = 1/β,
∂e

∂ω
(ω, v, µ, Cd ) = 0. (104)

Thus, by tuningβ, bounds of robust absolute stability

in the space of parameters (v, µ, Cd ) are gained. Notice

that this approach provides good insights also for the

practical design of the boost-curve, since the required

stability radius for a given β may be clearly read in

charts similar to that shown in Fig. 23.

8. Conclusions

At the actuation level robust force control algorithms

for steer-by-wire vehicles are developed using inverse

disturbance observer (IDOB) control scheme and ac-

tive observer algorithms (AOB). Simulation and exper-

imental results validate both proposed structures.

Methods for design and analysis of steer-by-wire

systems at the operational level are further presented.

Model-matching approach is shown to be an appro-

priate method, once the desired steering dynamics is

known. Therefore the controllers have been developed

using H∞ and AOB formalisms. The design methods

are illustrated on the admittance steer-by-wire struc-

ture, but they can be applied equally well for the hybrid

structure. Further, methods for the analysis of robust

stability of a given steer-by-wire system with respect

to the uncertain physical parameters are introduced.

They apply to both, linear and nonlinear steer-by-wire

systems with static nonlinearities.

Notes

1. The general AOB algorithm uses N extra states to describe pk

(Cortesão, 2003).

2. For the sake of simplicity we do not consider here the effects

resulting form uncertainties in the driver arms inertia Jd .

3. The parameter values of the linearized single track model assumed

in this paper are l f = 1.25 m, lr = 1.32 m, m = 1296 kg,

J = 1750 kg m2, c f 0 = 9244 N/rad and cr0 = 105750 N/rad.

4. In the figure the torque assistance is plotted. This signal is trans-

formed to a linear force assistance through the rack-and-pinion

gearing transmission coefficient. Both of the terms, force and

torque transmissions are used in this paper.
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Cortesão, R. and Bajçinca, N. 2004. Model-matching control

for steer-by-wire vehicles with under-actuated structure. sub.

in Int. Conf. on Intelligent Robots and Systems (IROS),

Japan.

Doyle, J.C., Francis, B.A., and Tannenbaum, A.R. 1992. Feedback

Control Theory. MacMillan Publishing Company, 113 Sylvan Av-

enue, Englewood Cliffs, NJ.

Francis, B.A. 1987. A Course on H∞ Control. Springer Verlag, lec-

ture notes in control and information sciences edition.

Hogan, N. 1989. Controlling impedance at the man/machine inter-

face. In Proc. of the IEEE Int. Conference on Robotics and Au-

tomation.

Hogan, N. 1990. Mechanical impedance of single- and multiarticular

systems. Multiple Muscle Systems, Biomechanics and Movement

Organization.

Khalil, H. 1996. Nonlinear Systems. Prentice Hall: Upper Saddle

River, NJ.

Sepulchre, R., Jankovic, M., and Kokotovic, P. 1997. Constructive

Nonlinear Control. Springer-Verlag Series on Communications

and Control Engineering (CCES).

Slotine, J.J. and Lee, W. 1991. Applied Nonlinear Control. Prentice

Hall International, Inc.
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