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Abstract  

This study proposes a novel adaptive control method to deal with the dead-zone and time delay 

issues in actuators of vibration control systems. The controller is formulated based on a type-2 

fuzzy neural network integrating with a new modification of Riccati-like equation. The developed 

new type Riccati-like equation is significant as it reduces energy consumption of control inputs 

to minimum. Two approaches are suggested to improve performance of the system using the basic 

elements of Riccati equation. In addition, a fuzzy neural network is applied to approximate the 

unmodeled dynamics and a sliding mode controller is developed to enhance the robustness of the 

system against uncertainties and disturbances. After proving the stability of the proposed 

controller via Lyapunov criterion, the effectiveness of the proposed approach is validated based 

on computer simulation for vibration control of a vehicle seat suspension. It is demonstrated that 

the unwanted vibrations due to external excitations are well controlled despite of the presence of 

dead-zone and time delay in actuators. Furthermore, when comparing with other two state-of-the-

art robust controllers [23, 36], the proposed controller provides better vibration suppression 

capacity and requires less energy consumption. 

 

Keywords: Type 2-fuzzy neural network, adaptive control, neural network, dead-zone, time delay, 
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1. Introduction  

Developing new control methodologies for modern devices attracts a lot of attentions from both 

academia and industry because it is important but yetyet challenging. In general, the control 

approaches for modern devices can be classified into:into classical control and modern control. 

The goal of development of new control mechanism is to satisfy multiple requirements of 

consumer such as comfortable, human ergonomics, vibration and disturbance suppression, high 

precision, and so forth. Many great efforts have been spent on designing new control schemes to 

achieve that goals. For instance, an adaptive control using a super-twisting integrated with 

adecoupled terminal sliding mode control was presented in [1], where the sliding surface was 

designed based on a terminal sliding surface and a super-twisting controller was employed to 

eliminate chattering. An integral sliding mode control with prescribed performance was 

developed in [2]. In this approach, a tanh function was used to obtain smooth control efforts and 

a prescribed function was utilized to ensure the tracking errors are limited within the desirable 

boundaries. In the design of control system, besides considering disturbances, the dead-zone in 

actuators and unmodeled dynamics are also significant that need to be taken into 

accountconsidered. A methodology to deal with the dead-zone input and unmodeled dynamics 

was recently studied in [3], where the dead-zone was simply defined as hysteretic properties of 

the system and the unmodeled dynamics was assumed to be bounded by some constants. Due to 

its approximation capability, fuzzy logic system (FLS) has been frequently utilized in many 

practical systems subjected to unmodeled dynamics, parameter variations and non-predictable 

nonlinear parameters-, i.e.g., actuators and sensor faults. For example, a back-stepping design-

based fuzzy approximation has been developed to deal with actuator failures and unknown system 

dynamics [4]. Moreover, in order to enhance system robustness against external disturbances and 

input constraints, an adaptive controller was integrated with an H-infinity technique [5], in which 

the constraint inputs are encoded into H-infinity performance. Recently, various types of robust 

controllers have been proposed by combining two or more different controllers to increase the 

system robustness against the diverse uncertainties and unmodeled dynamics. In general, the 

stability of these composite or hybrid controllers can be proven based on Lyapunov criterion [6]. 

A hybrid controller based on PI control, sliding mode control and radial basic function neural 

https://www.sciencedirect.com/topics/engineering/actuator-failure


network was proposed in [7]. A problem associated with gain adaptation of conventional sliding 

mode control was described in [8]. An integration between nonsingular fast terminal sliding 

model controller and PID controller was also applied to design adaptive controller in [9]. A new 

two-step distributed adaptive leader-following consensus control of connected Lagrangian 

systems was described in [10].  A continuous sliding mode control law coupled with an adaptive 

sliding mode observer was presented in [11]. The nonsingular terminal sliding surface used in [11] 

was similar to that of the one used in [9]. A study of disturbance rejection based on sliding mode 

control with prescribed performance for robot manipulators was carried out in [12]. In [13], a PID 

controller was combined with an H-infinity controller based on Riccati-like equation. It is notice 

that the Riccati-like equation plays an important role in connecting a controller with other 

controllers without loss of the stability. Therefore, it is often employed for deriving hybrid 

controllers, which comprise more than two different controllers. Recently, the a static output 

feedback control for compensating faults of switched system was presented in [14].  

In this model [14], the fuzzy control is applied for finding properties of the switched system, and 

conditions for faults were designed based on the switched nonlinear systems is converted into a 

switched fuzzy system, and the stability of the system is solved using a linear matrix inequality 

method. A similar method [14] was also studied in [15] taking the, but for missing measurements 

problem of the system states of the system into consideration. Fault tolerant control under 

state/noise estimation was studied in [16] using the. The linear matrix inequality approachwas 

also used for setup conditions [16]. In [17], the a fault tolerant control method [17] was proposed 

by an adaptation law with matrices relating to ed Hurwitz definition.  

Most of actuators in practical applications possess a dead-zone band. Violations of the control 

inputs with the dead-zone will degrade the system performance significantly. Moreover, time 

delay of actuators provides adverse effects on system performance. These effects become even 

much worst for complex or composite control systems, which integrate different controller types 

and feedback loops. In order to reduce the adverse effects due to the dead-zone band, many 

approaches have been developed for different types of applications [18-23]. For example, an 

adaptive fuzzy controller integrated with an H-infinity technique was utilized to solve the 

unknown dead-zone output in [18]. Neural networks approach for the dead-zone issue was studied 



in [19]. The dead-zone model was considered as an additional disturbance component and an 

adaptive robust control was designed to eliminate the effects of dead-zone in [20, 21]. In [22], a 

modification of backstepping control technique with prescribed performance was proposed to 

deal with the dead-zone input for air-breathing hypersonic vehicles. An adaptive fuzzy control 

combined with a modification of Riccati-like equation was studied in [23]. However, this 

approach have has not considered the dead-zone effects in the design. 

From the above literature survey, the fuzzy logic system is usually selected as an effective tool 

for controlling the system subjected to several uncertainties including unmodeled dynamics and 

parameter variations. This choice is reasonable because the fuzzy logic system can act like a filter 

in the design of robust control mechanism. Besides the classical fuzzy model, namely type 1 

model, the type 2 model has also been employed in the design of control systems [24, 25, 27-30]. 

Type-2 fuzzy sets and systems generalize standard Type-1 fuzzy sets and systems so that more 

uncertainty can be handled. Because large data is used to establish the fuzzy rules, clustering 

method is normally used as the first step to cluster dataset. The FLS and neural network have their 

own advantages and disadvantages in terms of nonlinear function approximation, so combining 

FLS and neural network will likely bring more merits while reducing their disadvantages for 

uncertain nonlinear systems.   

Motivated by the aforementioned discussions, in this work, a type 2 fuzzy model associated with 

a neural network is adopted for modeling system dynamics. The modeled dynamics is then 

integrated with an adaptive sliding mode controller to improve the system robustness against the 

system uncertainties and disturbances, which includes both dead-zone input and time delay of the 

actuators. In summary, the major contributions of this paper can be highlighted as follows:  

(1) A novel adaptive law for dealing with the dead-zone and delayed timetime delay phenomenon 

is proposed. 

(2) A new modification of Riccati-like equation for both dead-zone phenomenon and time delay 

of actuators is suggested.  

(3) The main parameter, which decide how to save related saving energy consumption of the 

control system, is pointed out in the adaptation laws. 

https://en.wikipedia.org/wiki/Fuzzy_sets
https://en.wikipedia.org/wiki/Fuzzy_sets_and_systems


(4) Compared with other state-of-the-art methods [23, 36], the proposed approach provides 

superior performance. 

 

2. Design of Adaptive Fuzzy Control with Actuator Dead-zone and Time Delay 

2.1. Interval Type 2 Fuzzy Model  

In this study, the interval type 2 fuzzy neural networks (IT2FNN) model [24,25,27-30] is 

employed. Before applying, the clustering progress [26] is carried out to decrease the volume of 

data, and then the rule base of IT2FNN is defined. The jth If-Then rule can be expressed as 

follows: 
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2.2. Adaptive Fuzzy Control with Actuator Dead-zone and Time Delay  

In order to formulate a new composite controller, a single-input single-output (SISO) nonlinear 

system governed by the following equation is considered:  

( ) ( ) ( ) ( )= + + +T

u
tx f x g x Λ x d t        (3) 

where, ( ) nRf x  and ( ) nRg x are two unknown non-linear function vectors, ( ) 
u

t R1 is 

control function, ( ) nt Rd is an external disturbance vector,  
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positive constant. 

An equivalent form of the system (3) can be expressed as follows: 
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The control function ( )u t  in (4) can be designed as follows: 

( ) ( ) ( )u t u u u   = + +         (5) 

where,   is the parameter related to the slope of the dead-zone performance, as shown in Figure 

1, u is the control input, and the functions ( )u and ( )u are defined as follows [19]: 
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( ) ( )u u sign u =          (7) 

where,   is a chosen constant gain. The values of Eqs. (6) and (7) are assumed to be bounded by 

( )u    and ( )u   , respectively. The tracking reference function is determined as: 

= +
d d d
x Ax Bx          (8) 

where, 
−  = =    

TT (n 1) n

d d1 d2 dn d1 d1 d1
x ,x ,...,x x ,x ,...,x Rx . The error dynamic equation is defined 

as de = x - x . The derivative of this error can be calculated as: 

( ) ( ) ( ) ( ) ( )T
d u d dt t = − = + + + + − + e x x Ax B f x g x Λ x d Ax Bx  



( ) ( ) ( ) ( ) ( )T
d u dt t  = − + + + + − e A x x B f x g x Λ x d x     (9) 

 

Figure 1. Nonlinear dead-zone band model. 

 

From Eq. (9), a new feedback gain matrix  1 ndiag=K K K with  1 2

T

i i iK K=K  is a 

chosen vector such that all roots of the characteristic polynomial of ,  1, ,T

i i i n= − =A A BK  are 

in the open left-half plane. From this definition, a new matrix  1 ndiag =A A A  is 

declared.  Eq. (9) is then rewritten as follows: 

( ) ( ) ( ) ( ) ( )T T T
du u u t    = − + + + + + + + −  e Ae BK e B K e f x g x Λ x d x  

( ) ( ) ( ) ( ) ( )T T
du u u t      = + + + + + + + −  e A e B K e f x g x Λ x d x   (10) 

Using the result of fuzzy neural networks model (2), the nonlinear functions ( )f x and ( )g x can 

be expressed as: 

( ) ( )ˆ
f fx=f x Ξ Φ , ( ) ( )ˆ

g gx=g x Ξ Φ        (11) 

When the fuzzy neural networks model is used, the minimum approximation errors of ( )f x and 

( )g x are defined as follows: 

( )*ˆ( ) ( ) | f= −Δf x f x f x Φ , ( )*ˆ( ) ( ) | g= −Δg x g x g x Φ      (12) 

where, ( )Δf x  and ( )Δg x are the minimum approximation errors. These errors will be 

compensated by using adaptation laws. The vectors *
fΦ and *

gΦ are defined as follows: 
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To support the next analysis steps, two new definitions are introduced as follows: 

*
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Using the results in Eqs. (11) and (14),  Eq. (10) is rewritten as follows: 
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where, ( ) ( )u u u   = + + + D Δf Δg is the minimum approximation error associated to dead-

zone phenomenon. The proposed controllers are now described as below. 

 

Proposed Control 1.  

In this proposed control 1, the state with time delay 

( ) ( ) ( )  
    = − − − 

T

n n
x t x t x tx
1 1 2 2

is neglected. The main control u  is determined as 

follows: 
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where, 1u  is the equivalent control, 2u is the first robustness control related to the Riccati-like 

equation, and 3u  is the second robustness control related to the dead-zone band and the minimum 

approximation error D of the system. These control inputs are designed as follows: 
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where,  is the upper bound value of ( )u ,  is the upper bound value of ( )u , min is 

the parameter related to the dead-zone model. The balance Riccati-like equation is given by 

1
min2

2
0T T


− 
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PA A P Q PB I R B P       (20) 

where, 0 1  , I is the identity matrix ( n n ), 
T=Q Q , R denotes the robust H-infinity gain.  

 

Theorem 1. The stability and robustness of the proposed controller for the dead-zone system are 

guaranteed if the control function u  is design as in (16) with its elements are implemented as in 

Eqs.(17), (18), (19), and the adaptation laws are given below. 
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Using the results in Eq.(20), Eq.(27) is rewritten as follows: 
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Using the adaptation laws (21) and  (22), Eq.(28) is rewritten as follows: 
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Using the results in Eq.(20), Eq.(29) is rewritten as follows: 
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Using the results in Eqs.(17-19), Eq.(30) is rewritten as follows: 
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Eq.(31) is rewritten as follows: 
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Eq. (32) is rewritten as follows: 
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Using the adaptation laws (23-24), Eq.(33) is rewritten as follows: 
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t = 0  to t T= : 

( ) ( )   − +  
T T

T

v v
L L T w dt dt2

0 0

1 1
0

2 2
e Qe       (34) 

where, ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )



   

= + + + +T T T

v f f g g

f g

L e Pe Φ Φ Φ Φ 21 1 1 1
0 0 0 0 0 0 0 0

2 2 2 2
.  

( ) ( ) ( ) ( ) 
 

+ +T T

D

D D ν ν1 1
0 0 0 0

2
. The value ( )v

L T is always positive, so Eq. (34) is 

determined as: 

( )   +   
T T

T

v
L w dt dt2

0 0

1 1
0 0

2 2
e Qe       (35) 

The proof is completed. Figure 2 illustrates the block diagram of the proposed control 1. Firstly, 

the main controls and the adaptation laws will use outputs of the fuzzy neural networks model, 

the modified Riccati-like equation, and the dead-zone band for calculation. The projection 

algorithm [38] is also applied for the adaptation laws to improve the process. The oOutput of the 

main control is the input of the plant and the observer. The dDynamic states of the plant after 

controlling will be compared with the state variables of the observer, and the results of this 

comparison are the basis base for the performance evaluation of the proposed control. The eError 

of this comparison is used as input to updated input of the fuzzy neural networks model and, the 

adaptation laws. In addition, the states of the plant areis also inputted intoof the fuzzy model. The 

process is continuously updated until the system states of the plant obtaineding stable 

convergence.   

 

Remark 1. The update law   in (25) will be used to replace the constant parameter   in the 

control inputs 1 2 3, ,u u u  (in Eqs. (17-19)) to ensure the robustness of the proposed controller. This 

is a new approach to adapt the gain. Compared to the existing adaptation laws, this modification 

reduces energy consumption of the control input to minimum value. 



 

Figure 2. Block diagram of the proposed algorithm 1. 

 

Proposed Control 2.  

In the proposed control 2, full phenomena of the system including dead-zone phenomenon and 

delay time in actuators presented in Eq. (1) are used. Now, the main control u is determined as 

follows: 

 
4

1 2 3 4

1

i

i

u u u u u u
=

= + + + =         (36) 

where, 1u is the equivalent control, 2u is the first robustness control related to the Riccati-like 

equation, and 3u is the second robustness control input, which is used to deal with the dead-zone 

band, the Riccati-like equation and the minimum approximation error D of the system, and 4u is 

the third robustness control input, which is used to tackle the effects of the time delay. These 

controllers are designed as follows: 

( )
( )( )1 2

1 ˆ
ˆ

T
du


= − − +f x x K e

g x
       (37) 

( )
1

2 2

1

ˆ
T

u


−= − R B Pe
g x

        (38) 

( ) ( )( ) ( )3 2
min1

1 1ˆsign
ˆ

u  
 

= −  +  −g x D
g x

      (39) 



( )4
min 2

1 ˆ
ˆ

T
u


= − νB Pe

g x
        (40) 

where,  is the upper bound value of ( )u ,  is the upper bound value of ( )u . The 

balance Riccati-like equation is given by 

1 1
min1 min 22 2

1 2

2 2
0T T T 

 
− −   

+ + + − + − =   
   

PA A P Q PB I R B P PB I R B P   (41) 

where, 1 20 1,0 1     , I is the identity matrix ( n n ), 
T=Q Q , R denotes the robust H- 

infinity technique gain, min1 is the parameter related to the dead-zone model, min 2 is the 

parameter related to the time delay model. 

 

Theorem 2. The stability and robustness of the control system with the dead-zone band and time 

delay are guaranteed if the control  input u  is designed as in (36) with its elements shown in 

Eqs.(37)-(40), and the adaptation laws for these control inputs are chosen as 

T T T
f f f= −Φ Ξ B Pe          (42) 

( )T T T
g g g u  = − +  + Φ Ξ B Pe        (43) 

T TD





= −D B Pe          (44) 

( )( )ˆT T

d    = − − + e PB f x x K e        (45) 

( )( )
min 2

T T T


= −ν B Pe e PB         (46) 

where, , , , ,f g D        are chosen constants,    is the parameter related to the slope of the dead-

zone.  

Proof: To prove the theorem, a Lyapunov function candidate is proposed as follows: 

  
 


     

= + + + + +T T T T T

v f f g g

f g D

L e Pe Φ Φ Φ Φ D D ν ν21 1 1 1 1 1

2 2 2 2 2 2
  (47) 

where,     = − ˆ ,  
=
1

,  
=ˆ

2

1
,  

=D̂ D
1

,  = − ˆD D D , = − ˆν ν ν ;  f ,  g ,  , 


D ,  are chosen constants.  

The derivative of Eq. (47) is obtained as: 

   
 

 
      

= + + + + + +T T T T T T

v f f g g

f g D

L e Pe e Pe Φ Φ Φ Φ D D ν ν1 1 1 1 1 1 1

2 2
 (48) 

Using Eq.(40), Eq.(48) is rewritten as follows: 
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v f f g g
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 (49) 

Using the adaptation laws (42) and (43), Eq.(49) is rewritten as follows: 

( ) ( ) ( )( )
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  + + +
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dT T T
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Using Eq.(41), Eq.(50) is rewritten as follows: 
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Using Eqs.(37)-(40), Eq.(51) is rewritten as follows: 
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Now, Eq.(52) is rewritten as follows: 
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where, 
  

= +
2 2 2

1 2

1 1 1
,  0 1  .  

Thus, Eq.(53) is rewritten as follows: 
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Using the adaptation laws (44)-(46), Eq.(54) is rewritten as follows: 
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where,  


T T 2

2

1
e PBB Pe  with 2

is the upper bound value of  


T T

2

1
e PBB Pe . The above 

equation cannot be used to conclude the system stability. Hence, it needs to be integrated from 

t = 0  to t T= : 
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where, ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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. The value ( )v

L T is always positive, and thus Eq. (55) is 

determined as: 
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2 2
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The proof is now completed. Figure 3 illustrates the block diagram of the proposed control 2. The 

control process is similar to the Figure 2. However, the a dead-zone band-delayed model and a 

new modified Riccati-like equation are added for calculation. 

 

Remark 2. As a similar way as Remark 1, the proposed adaptive law in (45) helps to reduce the 

energy consumption in control inputs. 

Remark 3. In [18], the control process usingapproach used fuzzy model to handle thefor dead-

zone. However, this approach requires higher computational burden consumed more time for 

calculation because of the overlap of the iteration parameters. The Nussbaum-type function was 

used tofor supporting this process. However, this application was affects to the system 

stabilitycontrol and the delayed time delay issues was not consideredsolved thoroughly.  

Remark 4. In [19], the model of neural networks was applied for the dead-zone problem. 

However, the dead-zone model in [19] iswas a simple form, which followsing the classical model. 

In addition, tThe delayed timetime delay issue was not solved in [19]. 

Remark 5. In [20], the dead-zone model was similar to the model in [19]. The delayed timetime 

delay of actuator was not mentioned considered in [19]. Hence, the proposed controllers in [19,20] 

were notcould not obtain the required precision in controllevel for a complicated complex system. 

The delay and dead-zone of oil in hydraulic system [20] was impacted by pressure in valve and 

the pipe line.  

Remark 6. In [21], the dead-zone model was still formed like the classical model. The inverse 

model was used with the adaptation laws for control. This inverse model wais thea main 

disadvantage of the control system [21], which increasesd the time of calculation time and the 

convergence of the desired system error. The delayed time was not taken into consideration added 

in [21]. 

Remark 7. In [22], the classical model of dead-zone was still applied. The prescribed 

performance was used for control defining the convergence of the error. However, the obtained 

results were similar like the results in [21] with the properties as mentioned discussed above. 

Remark 8. In [23], the dead-zone model was developed based on the classical model. The time 

delay issue was also mentioned discussed in the model [23]. However, this approach preserves 

the disadvantages as that of e disadvantages of the proposed model was remain as shown in the 

classical model. This will be pointed out in the next section, and the control [23] is aswill be also 

compared control with the proposed control in this study. 

 

3. Simulation and Discussion  

3.1. Model of Simulation   



In this work, the vehicle seat suspension system with MR damper studied in [13] is adopted to 

demonstrate the effectiveness of the proposed controller. The mechanical model of the system is 

shown in Figure 4.  The governing equations of the system are derived as follows: 

( ) ( ) ( ) ( )s s s s s s s s MR
m x k x x c x x k x x c x x F= − − − − + − + − +

0 0 1 1 1 1
   (57) 

( ) ( )s s
m x k x x c x x= − − + −

1 1 1 1 1 1
       (58) 

 

 

 

Figure 3. Block diagram of the proposed algorithm 2. 

 

The above equations can be rewritten using the state variables as follows: 

( ) ( )

( )

s
x x x

x f x ,x ,x ,x g x ,x ,x ,x u

x x x

x f x ,x ,x ,x

= =
= +

= =
=

11 22

22 11 11 22 33 44 11 11 22 33 44

33 1 44

44 22 11 22 33 44

     (59) 

where, 

( ) ( ) ( ) ( ) ( )s s

s s s s

k c k c
f x ,x ,x ,x x x x x x x x x

m m m m
= − − − − + − + −1 1

11 11 22 33 44 11 0 22 0 33 11 44 22
, 

( )
s

g x ,x ,x ,x
m

=
11 11 22 33 44

1
, MR

u F= , ( ) ( ) ( )k c
f x ,x ,x ,x x x x x

m m
= − − − −1 1

22 11 22 33 44 33 11 44 22

1 1

.  



It is notice that x ,x ,x ,x
11 22 33 44

are variables related to s
x  and x

1
 of the system (57)-(58).  

 

Figure 4. Mechanical model of the seat suspension. 

 

From Figure 1, the dead-zone for MR damper or generally MR device can be represented in Figure 

5(a,b,c). It is remarked that there is also another phenomenon namely hysteresis in MR device. 

Normally, hysteresis phenomenon exists in the model of MR device. This phenomenon is 

explained as a nondegenerate input-output closed curve, which defines the frequency of excitation 

towards a DC signals [37], or a discontinuous jump in the force-velocity response [31]. The 

hysteresis phenomenon leads to some problems such as high tracking error, unwanted harmonics, 

and instability of the system.  The difference between the dead-zone and hysteresis is that the 

value of the output will be zero for dead-zone, but a mean value for hysteresis. The disadvantages 

of the dead-zone phenomenon is are quite similar to the hysteresis. Hence, the proposed controller 

for dead-zone problem is also true for the hysteresis issueproblem.  

          

(a)                                                                     (b) 



Figure 5. Parameters of damping force for dead-zone model: (a) Fixed-frame model, (b) Real-

frame model 

 

From Eq.(5), the main control function shown in Figure 5(a) can be written as follows: 

( ) ( ) ( )MR MR MR MRf f f f   = + +        (60) 

where, MRf  is the theoretical damping force of the damper. Using similar definitions used in [32], 

the parameters of Eq.(60) are defined as: 

2

MRf v


=


, 
2

MRf v


=


        (61) 

where,  (V.s/m) is the actuation constant related to the viscous coefficient,   is the resistance 

of the circuit of the damper ( ), v (m/s) is the velocity of the damper. The function ( )MRf is 

defined as follows: 

( )

  if >

0  if  - < <

  if <-  

d
d

d d
MR

d
d

e
e v

e e
f v

e
e v





 





− 


= 





        (62) 

where, de  is the voltage applied to the MR damper. The value of ( )MRf  can be understood as 

 . The value ( )MRf  is determined based on the upper bound W , which is defined as an 

offset of the damping force. This value can be understood as   . For the MR damper, the value 

W  is chosen considering the range of the minimum and maximum damping force shown in 

Figure 5(b). From Eqs. (60) and (61), the relationship between the damping force and main control 

input u  can be expressed as: 

( ) 2MR MRF u f W u     = + + = +  +        (63) 

From Eq. (63), the main control input u  is obtained as follows: 

MRF
u



 


−  −
=          (64) 

It is notice that in the practical applications of the proposed controller, from the resistance of the 

damper, the voltage   will be changed to the current to generate the magnetic field which is 



required to achieve the desired damping force of the MR damper. It is remarked that the 

controllers proposed in [23, 36] will be used as a comparative model to verify the effectiveness 

of the proposed controller in this study.  

 

3.2. Simulation Results  

In this simulation, the performance of the proposed control declared in theorems 1 and 2 will be 

demonstrated. To verify the effectiveness of the proposed control, it is compared with other state 

–of-the-art controllers proposed in [23] (compared control 1) and [36] (compared control 2). 

Computer simulation for the above MR damper is carried out to evaluate the performance of the 

controllers. The principal parameters of the MR damper, seat suspension system and the 

converting values from voltage to current are given in [13]. The parameters of the dead-zone 

model areis firstly proposed, and then updated according to the learning progress of the fuzzy 

neural networks model. Two different excitations, i.e., the random bump road and random step 

wave road shown in Figure 6, are imposed to the seat suspension system. The maximum force of 

MR damper is designed to have 1000 N at 2 A. The fuzzy neural networks model is adapting 

online with the centroid vector given in [13]. The selected parameters of the proposed controller, 

the controller proposed in [23] and the controller proposed in [36] are listed in Table 1, Table 2, 

and Table 3, respectively. In this simulation, the initial states for the dynamic states are assigned 

as . .  0 035 2 5  and . .  0 035 2 5 for random bump road, and random step wave bump, 

respectively. The initial states for the observer are assigned as .  0 035 0  for two excitations.  

       

               (a)                                                                                      (b) 



Figure 6. Excitation signals: (a) random bump road, (b) random step wave road 

Table 1. Parameters of simulation of proposed control 

Description Symbol Value 

Delayed time   0.1 
Control function ( )u  0.07 

Dead-zone performance , + −
 0.08;-0.08 

Dead-zone performance   0.06 

Dead-zone performance 
min  0.65 

Dead-zone performance 
min1 min 2,   0.65 

Riccati-like constant   0.65 

Riccati-like constant 
1 2,   0.65 

Gain matrix  1 2

T

i i iK K=K   0.0001 1
T

i =K  

Constants , , , ,f g D        700 

Riccati-like matrix Q   2 0;0 2− −  

Riccati-like matrix R  0.1 

 

Table 2. Parameters of simulation of compared control 1 [23] 

Description Symbol Value 

Delayed time   0.1 
Gain matrix  1 2

T

i i iK K=K   0.3 1
T

i =K  

Control function ( )u  0.07 

Dead-zone performance   0.06 

Dead-zone performance 
min  0.65 

Dead-zone performance , + −
 0.08;-0.08 

Riccati-like constant   0.65 

Riccati-like matrix Q   2 0;0 2− −  

Riccati-like matrix R  0.1 

 

Table 3. Parameters of simulation of compared control 2 [36] 

Description Symbol Value 

Dead-zone performance   1 

Dead-zone performance   1.7 
Dead-zone performance a  1000 

 

Simulation results will include the displacement of seat and force control input. These dynamic 

responses have important roles in evaluating the performance of the comparative controllers in 

terms of vibration suppression and energy consumption. The responses of the system under the 

inputs of the first proposed control (theorem 1) and the second proposed control (theorem 2) are 

shown in Figures 7 and 8 and Figures (9) and 10, respectively. The displacements of the seat 



under the controllers are shown in Figures 7 and 9. In Figure 7, the displacement of the seat under 

the inputs of the three controllers are fairly good. It is shown from Figure 7(a1) that the magnitude 

of vibration is significantly decreased after applying three controllers. The variations of control 

inputs and observers are shown in Figure 7(a2). This figure shows that the performances of the 

three controllers satisfy the observer’s requirements. However, the performance of the proposed 

controller is better than that of the comparative controllers, as shown in Figure 7(a3) and Figure 

7(a4). For the excitation of random pump road, the results are shown in Figures 7(b1), 7(b2), 

7(b3), and 7(b4). It is clearly seen from Figure 7(b3) and 7(b4) that the proposed controller 

provides better performance than the comparative controllers. The control input u is shown in 

Figure 8. It is clearly observed that the control energy of the proposed controller is less than that 

of the comparative controllers. This results directly prove that the proposed controller requires 

less power consumption, butconsumption but provides better control performance. This merit is 

obtained based on the use of the adaptation law for the dead-zone problem, as discussed in remark 

1. The flexible adaptation values of the update law   in (25) and other adaptation laws of the 

proposed controller 1and the other laws improve the system performance significantly. system 

with application of the proposed controller 1. This is also show demonstrated that the affection 

effects of the dead-zone problem is limitedcan be suppressed.  

For the excitation of random step wave road, the results are shown in Figures 9(a1)-9(a4). Similar 

results can be achieved for the random bump road, which verify better control performance of the 

proposed controller compared to other controllers. In addition, the vibration amplitude obtained 

by the proposed controller is less than that of the valued obtained by the comparative controllers, 

as shown in Figures 9(a3,a4,b3,b4). This results directly verify that the ride comfort of the driver 

can be enhanced by implementing the proposed controller. Figure 10 presents control inputs of 

the three controllers for two different road conditions. It can be seen that the input powers of the 

proposed controller is are less than the comparative controllers. Thus, the proposed controller 

provides better vibration suppression performance and less power consumption than the 

comparative controllers. The updated values of the update law   in (45), ν in (46), and the other 

adaptation laws of the proposed controller 2 improve the system performance system under both 



dead-zone and delayed time problem with application of the proposed controller 2. This is also 

show that the affectiondemonstrated that the effects of both dead-zone problem and delayed 

timeand time delay have been suppressed is limited.  

From the above results, the compared control 1 is not flexible in calculation, as shown discussed 

in remarks (1,2,8). It is also remained the main properties of the classical model of dead-zone. In 

the compared control 2, the simple calculation based on the classical dead-zone model is does still 

not solve the disadvantages as well. The compared control 2 is designed to only seek the 

tuningtune the parameters following the time scale only. In addition, the sine function in the 

derived functions of tuning method is one of the obstructed calculationcalculations. ThisIt is 

considered based onfrom the property of the system which does is not always follow a fixed model 

of dead-zone function. Then, the time convergence of the compared control 2 is also longer than 

the other controllers as shown in [36]. The simulation results verified are show that the proposed 

controller has overcome the disadvantages that the compared controls (1,2) encountered, and 

decreased the effectsaffection of the dead-zone and time delay in minimallyto minimum.    
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Figure 7. Simulation results of the displacement at the seat (xs): (a1) (a2)(a3)(a4) random bump 

road, (b1) (b2)(b3)(b4) random step wave road 
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  Figure 8. Simulation results of force control u: (a1)(a2) random bump road, (b1)(b2) random 

step wave road 
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Figure 9. Simulation results of the displacement at the seat (xs): (a1) (a2) (a3)(a4)-random bump 

road; (b1) (b2) (b3) (b4)-random step wave road 
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  Figure 10. Simulation results of force control u: (a1)(a2) random bump road, (b1)(b2) random 

step wave road 

4. Conclusion  

In this study, a new adaptive controller was proposed based on a type 2 fuzzy model integrated 

with a neural network to resolve the dead-zone band and time delay issues of actuators. The 

proposed approach preserves many merits of many traditional controllers and adaptive techniques, 

including type 2 fuzzy model, adaptive control laws based on the sliding mode controller, H-

infinity control technique and modified Riccati-like equation. The new model of dead-zone band 

has overcome the disadvantage of the classical model of in control, especially applying for smart 

materials such as piezoelectric, magneto-rheological fluid.  The proposed dead-zone model is also 

can be also applied for actuators made byusing materials possessing high time delay delayed time 

parameters. Two theorems have been presented: one for dead-zone problem, and the other for 

both dead-zone problem and time delayed time. The combination between the values of the dead-

zone band and the Riccati-like equation has improved the robustness properties of the controllers. 

The stability and convergence of the proposed controllers are proved rigorously based on 

Lyapunov stability criterion. The effectiveness of the proposed controllers areis validated through 

the computer simulation for a vehicle seat suspension system and comparing with two other state-

of-the-art controllers. From the simulation results, it was demonstrated that the proposed 

controller provides better control performance with less power consumption compared to the two 

counterpart controllers. This performance enhancement indicates the better ride comfort of the 

vehicle seat. It should be mentioned that the proposed controller can be straightforwardly 



applicable for many control systems activated by smart material actuators such as shape memory 

alloys, piezoelectric materials, magneto strictive materials and magnetorheological elastomers. 

The future works of this study will concentrate on extending the to applications  of the proposed 

control approaches for real systems featuring smart materials such as seat suspension, energy 

harvesting system, mount vibration control.  
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Nomenclature  

( )mjnif ,...,1;,...,1 ==j
iH    Fuzzy sets 

m       Number of rules 

j
ia       Interval sets 

f
g       Defuzzied output 

f f

l r
,Φ Φ       Weighted firing strength vectors 

( ) nRf x ,  ( ) nRg x     Two unknown non-linear function vectors 

( ) ( ) ( )u t u u u   = + + , ( ) 
u

t R1   Control function 

       Parameter related slope of the dead-zone  

      performance (a chosen constant gain) 

u       Control input 

( )u       Dead-zone function 

       Maximum boundary of dead-zone model 

( )u       Parameter related varied boundary of dead-zone 

model 

       Maximum value of varied boundary 

( ) nt Rd      An external disturbance vector 

nRδd      Upper bound of ( )d t  

TT (n 1) n

1 2 n 1 1 1
x ,x ,...,x x ,x ,...,x R−  = =    x   The state vector of the system 

( ) ( ) ( )  
    = − − − 

T

n n
x t x t x tx
1 1 2 2

 The state with time delay 



Λ , ( ) ( ) =  
T

m m
t z tΛ 0 , ( ) 

m m
z t z  The nonlinear function related time-varying of 

the system 


m

z       Unknown positive constant 

−  = =    
TT (n 1) n

d d1 d2 dn d1 d1 d1
x ,x ,...,x x ,x ,...,x Rx Desired value 

de = x - x      Error vector 

 1 ndiag=K K K    Feedback gain matrix 

 1 2

T

i i iK K=K  Chosen vector such that all roots of the 

characteristic polynomial of 

,  1, ,T

i i i n= − =A A BK are in the open left 

half plane 

( ) ( )ˆ
f fx=f x Ξ Φ , ( ) ( )ˆ

g gx=g x Ξ Φ  Fuzzified functions of ( )f x and ( )g x , 

respectively 

( )Δf x  , ( )Δg x  The minimum approximation errors 

( ) ( )( )u u u  = + + +D Δf Δg  The minimum approximation error related dead-

zone phenomenon 

1u  The equivalent control 

2u  The first robustness control related the Riccati-

like equation 

3u  The second robustness control related the dead-

zone band, the Riccati-like equation and the 

minimum approximation error D of the system 

4u  The third robustness control related the delayed 

model 

ν̂  Parameter related delayed time 

R  The robust H infinity technique gain 



min1  Parameter related dead-zone model 

min 2  Parameter related delayed model 

, , , ,f g D        Chosen constants 

sm  Mass of seat 

1m  Mass of driver 

sk  Stiffness coefficient of seat 

1k  Stiffness coefficient  of torso 

sc  Damping coefficient of seat 

1c  Damping coefficient of torso 

x ,x ,x ,x
11 22 33 44

 Variables related s
x and x

1
of the system 

MRf  Theoretical damping force of the damper 

  The actuation constant related viscous 

coefficient (V.s/m) 

  The resistance of the circuit of damper ( ) 

v  The velocity of damper (m/s) 

de  The voltage applied to the damper 

  The upper boundary  which is defined as an 

offset of the damping force, and this value can 

be seen as   

       The voltage to be applied to MR damper 

 

 


