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Abstract— Active vibration control for flexible high-speed
rotors tends to be a particularly challenging problem due to the
influence of gyroscopic terms, resulting in the need for speed-
dependent system models. This paper addresses robust control
of such systems, using Linear Fractional Transformations
(LFTs) for decoupling the system model into speed-dependent
and -independent components in LFT feedback. Based on the
resulting LFT decomposition, the speed-dependent terms are
efficiently reduced in order and considered uncertain with
respect to the rotational speed of the shaft. The resulting
perturbations are augmented by complex, additive uncertainties
and explicitly used for control synthesis. Defining semi-modal
performance measures, the perturbed open-loop systems are
well-suited for mixed µ synthesis techniques. In particular,
(D,G)-K and µ-K algorithm, both enabling explicit treatment of
mixed perturbations, are investigated in approaching the robust
vibration attenuation problem across the range of operating
speeds.

I. INTRODUCTION

Bending vibrations are a limiting factor in design of

numerous industrial rotating machineries. For high-speed

and high-precision applications, passive methods like bal-

ancing or integration of additional damping elements such

as squeeze film dampers hit accuracy limits, especially when

multiple resonance frequencies of a flexible rotor are within

its range of operation. In many such cases, unbalance is

the dominating excitation source of bending vibrations [12].

Hence, the issue of active vibration control for flexible rotor

systems is investigated by numerous researchers.

Lots of publications on active rotor systems consider

rotors supported by active magnetic bearings, as the idea

of active vibration control arises naturally in the presence

of active bearings [29]. Alternative concepts such as semi-

active dampers (e.g. adaptive squeeze film dampers [5]) or

active bearings by means of ball bearings supported by

piezoelectric stack actuators have been developed in the last

decades [20]. The latter option offers advantages in terms

of high force generation at low phase lag and relatively low

weight. Usually, the actuators are located at the bearings,

which are close to the nodes of the lower bending vibration

modes, limiting their controllability. Further issues regarding

practical applications of piezoelectric stack actuators include

hysteresis induced self-heating and demands on operating

B. Riemann, R. S. Schittenhelm, and S. Rinderknecht are with the
Institute for Mechatronic Systems, TU Darmstadt, Darmstadt, Germany
(email: bernd.riemann@gmail.com, schittenhelm@ims.tu-darmstadt.de,
rinderknecht@ims.tu-darmstadt.de).

M. A. Sehr was with the Institute for Mechatronic Systems, TU Darm-
stadt, Darmstadt, Germany. He is now with the Department of Mechanical
and Aerospace Engineering, University of California, San Diego, La Jolla,
USA (email: msehr@eng.ucsd.edu).

conditions such as temperature range and load directions

[26].

From a control synthesis point of view, the dynamics of

high-speed flexible rotors are time variant as gyroscopic

terms depend on the shaft’s rotational speed. For increas-

ing rotational speeds, the standstill eigenmodes and natural

frequencies split up into so-called forward- and backward

whirls, while only forward whirl modes are excited by

unbalances [12]. Most publications on active rotor systems

subject to severe gyroscopic effects deploy linear control

techniques, either robust ones or such adaptive with respect

to the shaft’s rotational speed. Adaptive feedforward control

schemes have resulted in remarkable performance, but induce

restrictions concerning stability analysis, local vs. global vi-

bration attenuation, and the need for a signal that is correlated

with the unbalance [15]. Adaptive feedback designs for high-

speed rotors usually employ gain scheduling of Linear Time

Invariant (LTI) controllers, as stability and dynamics using

direct nonlinear controllers are hard to predict [16]. Special

forms of such approaches, partially in combination with

robust control techniques, are being developed [17].

Robust control techniques allow the synthesis of con-

trollers yielding guaranteed stability and performance at the

cost of increased modeling effort, more involved optimiza-

tions, and some design-induced degree of conservatism [21].

New approaches via Linear Matrix Inequality (LMI) methods

have been suggested in recent years, for instance such adding

robustness to H2 controllers [6], although applications to

high-speed rotors subject to severe gyroscopic effects are

rare. Two established robust control techniques are H∞ and

Structured Singular Value (SSV, µ) synthesis, both utilized

successfully for actively reducing vibrations of rotor systems

[11], [13]. For flexible high-speed rotors under significant

gyroscopic influence, complex µ synthesis via D-K Iterations

[8] has been shown to yield solid performance and robustness

properties [24]. However, caused by its limitation to complex

model perturbations, complex µ synthesis induces significant

conservatism. In order to greatly reduce this design-induced

conservatism, the gyroscopic influence can be captured using

a real parametric uncertainty. Replacing this real perturbation

element by complex uncertainties, as done in [17], induces

a large degree of conservatism.

In this paper, the real perturbation capturing gyroscopic

effects is tackled employing mixed µ synthesis via (D,G)-K

[32] and µ-K [27] Iterations, respectively. These approaches

allow the explicit inclusion of real perturbations in un-

certainty models, promising a non-conservative treatment

of flexible high-speed rotors. In section II, the nominal

open-loop model of a particular rotor test rig is described,
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including a brief introduction on rotordynamics. Section

III provides a brief survey regarding the control synthesis

techniques applied to the perturbed, augmented open-loop

plant model introduced in section IV. Ultimately, the closed-

loop results are summarized in section V.

II. NOMINAL PLANT MODEL

This section addresses a brief introduction on the dynamics

of flexible high-speed rotors, translating into an accurate low-

order model of the concrete rotor test rig investigated in this

paper.

A. Test Rig

The dynamics of a high-speed flexible rotor system are
varying according to the rotational speed Ω of the shaft, cap-
tured in the linear equations of motion for the displacements
qi:

Mq̈ + (D +ΩG)q̇ + Sq = F. (1)

While mass matrix M , damping matrix D, and stiffness

matrix S are constant symmetric matrices, respectively, the

skew-symmetric gyroscopic matrix G is multiplied by Ω.

This speed-dependency within the equations of motion re-

sults in a shift of the system’s natural frequencies. While the

gyroscopic matrix is commonly summarized as the product

G∗ = ΩG, the notation used here translates naturally towards

the inclusion of perturbations addressed in section IV. For

the remainder of this paper, G shall denote the gyroscopic

matrix corresponding with a rotational speed of 1 rad/s.

The considered rotor system is a two disk flexible rotor,

supported by a passive and an active piezoelectric bearing.

The actual test rig is depicted in fig. 1, the construction of

the active bearing being illustrated by fig. 2. The rotor is

designed for significant exposure to gyroscopic effects and

capability of passing two resonance speeds below the DC

motor’s maximum speed of approximately 8,000 rpm.

Fig. 1. Test rig: (a) disk 1, (b) active bearing, (c) disk 2, (d) passive
bearing, (e) DC-motor

The shift of natural frequencies caused by the skew-

symmetric gyroscopic terms in (1) is displayed in fig. 3,

employing a Campbell diagram. It can be seen within this

diagram how, for increasing rotational speed Ω > 0, each

standstill natural frequency splits up into a backward (de-

scending branches) and a forward whirl frequency (ascending

branches). Each of these pairs corresponds to eigenforms of

xy

Actuators

Ω

Fig. 2. Active bearing

similar shape, forward whirl modes rotating in the shaft’s

direction and backward whirl modes in the opposite direc-

tion, respectively. However, for isotropic bearings, unbalance

excitation introduces only synchronous forces that rotate in

the shaft’s direction. Critical rotor speeds are such where

the synchronous line (dashed) crosses the natural frequency

of forward whirl modes. As backward whirl modes are

not excited by the unbalance, there are exactly two critical

rotor speeds within the range of operation, at approximately

2,900 rpm and 6,300 rpm, respectively.
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Fig. 3. Campbell diagram: forward and backward whirl natural frequencies
(solid), synchronous line (dashed)

B. Modeling

A model yielding high precision within the considered
bandwidth is essential for successful control synthesis. For
the approach of non-conservative uncertainty tackling sug-
gested below, a model with explicit in- and outputs for
capturing gyroscopic effects is required. Such a model allows
subsequent LFT decomposition into speed-dependent and
speed-independent terms, as depicted in fig. 4. Due to the
number of the required in- and outputs, it would not be rea-
sonable to identify such a model via black box identification
techniques. Therefore, a theoretical model is generated using
Finite Element (FE) modeling, employing Timoshenko beam
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elements and stiffness coefficients for the ball bearings. After
transforming the equations of motion (1) into a state-space
representation

ẋ = Ax+Bu y = Cx, (2)

the piezoelectric stack actuators are included utilizing lin-

ear piezoelectric equations in strain-charge form [14]. To

increase model accuracy, a modal damping ratio of 0.01

with respect to all considered modes was imposed to fit

experimentally identified frequency response functions of the

test rig system.

Obviously, the order of the resulting state-space model is

twice the number of degrees of freedom captured with the

FE model, demanding some model order reduction prior to

control synthesis. Modal reduction of the standstill model

and subsequent LFT decomposition as shown in fig. 4

is problematic due to the required modal transformations.

Such transformations employ eigenvectors and -values of the

system, resulting in an implicit dependency on the rotational

speed Ω. However, it was discovered that the first 16 modal

states of the system dominate its dynamic behavior up to

approximately 800Hz. Therefore, truncating all higher modes

does not affect the considered frequency range up to 400 Hz

appreciably. In general, this approach is viable whenever the

transformation of G by the right eigenvector-matrix of the

standstill system, which does not result in a diagonal matrix,

shows negligibly small cross-coupling between preserved

and truncated modes. Otherwise, it might be necessary to

keep more states than there are natural frequencies in the

considered frequency band. In case of the system investigated

in this paper, each the first four forward and backward whirl

modes have to be preserved, as can be seen in fig. 3.
Unfortunately, an LTI formulation imposing the physical

unbalances as model inputs is impossible, as unbalance
forces exhibit a constant phase difference of 90◦ between
x- and y-directions and an amplitude proportional to Ω2. In
particular, the unbalance forces FU,i are

FU,x = UΩ2 sin (Ωt− π/2) FU,y = UΩ2 sin (Ωt) , (3)

where U represents the unbalances and Ω the shaft’s rota-

tional speed, respectively. To overcome the issues mentioned

above, the actual unbalances are substituted by force inputs

at the disks. However, this simplification involves a loss of

information regarding the unbalance characteristics or, more

precisely, the exclusive excitation of forward whirl modes.

In summary, the model’s inputs are discrete forces at

the two disks as well as the voltages of the piezoelectric

actuators, utilized as control inputs. Outputs are the x- and

y-displacements at the disks, each measured by a sensor.

Further in- and outputs have to be added for the LFT decom-

position of the system, interconnecting the nominal system

with the gyroscopic terms ΩG. For model validation and

runup simulations, the test rig unbalances have been deter-

mined such that resonance vibration amplitudes in respective

simulations and experimental runups match. Throughout this

paper, the dynamics of electrical components, including time

delays of the real time platform and anti-aliasing filters

as well as phase lag of the power amplifiers driving the

piezoelectric actuators, are neglected. The inclusion of these

factors and subsequent real-time implementation of resulting

controllers is currently being examined.

III. STRUCTURED SINGULAR VALUE SYNTHESIS

This section is used for a brief introduction on the
Structured Singular Value introduced in [7], focusing on its
applications to uncertain system analysis and synthesis of
robust controllers, approached via SSV peak optimizations.
For the following paragraphs, consider LTI systems with n
in- and outputs, respectively. While all concepts shown here
extend naturally to dynamics not being captured by square
transfer matrices, this assumption makes the notation more
compact. For imposing structured perturbations of the square
transfer matrices at hand, consider the m-tuple

K (mr,mc,mC) = (k1, . . . , kmr , kmr+1, . . . , kmr+mc ,

kmr+mc+1, . . . , kmr+mc+mC
) ,

(4)

where

m = mr +mc +mC ≤ n, (5)
m
∑

i=1

ki = n. (6)

The integers mr, mc, and mC utilized in (4) and (5)
account for the numbers of repeated real, repeated complex,
and full complex perturbation elements, respectively. For
i ∈ {1, . . . ,m}, each individual perturbation is a square
block of size ki. Therefore, the global, block-diagonal set
of structured perturbations becomes

∆ :=
{

diag
(

δr1Ik1
, . . . , δrmr

Ikmr
, δcmr+1Ikmr+1

, . . . ,

δcmr+mc
Ikmr+mc

,∆C
1 , . . . ,∆

C
mC

)

:

δri ∈ R, δci ∈ C, ∆C
i ∈ C

kmr+mc+i×kmr+mc+i

}

.

(7)

Notice that, employing straightforward in- and output

conversions, any set of structured uncertainty composed of

the three elements above can be transformed into block-

diagonal form. For square transfer matrices and (4)-(7), the

Structured Singular Value is defined as:

Definition 1, [35]: For M ∈ C
n×n, µ∆ (M) is defined as

µ∆ (M) :=

(

min
∆∈∆

{σ (∆) : det (I −M∆) = 0}

)−1

(8)

unless no ∆ ∈ ∆ makes I − M∆ singular, in which case

µ∆ (M) := 0.

That is, in terms of the H∞-norm, the SSV is the re-
ciprocal of the size of the smallest structured perturbation
in ∆ destabilizing M . Conclusively, small values of µ at
some particular frequency ω indicate high robustness with
respect to some set of structured model perturbations at that
frequency. Unfortunately, there exists no explicit solution to
(8). In fact, it is shown in [4] that the exact computation of µ
subject to real and mixed uncertainty sets ∆ is an NP-hard
problem. Therefore, µ is usually approximated by pointwise
upper and lower bounds across frequency. Such upper and
lower bounds can be cast as scaled maximum singular value
problems, the required scaling matrices being members of
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the following sets [34]:

UK :=
{

U ∈ ∆ : δri ∈
[

−1 1
]

, δc∗i δci = 1,

∆C∗
i ∆C

i = Ikmr+mc+i

} (9)

DK :=
{

diag
[

D1, . . . , Dmr+mc , d1Ikmr+mc+1
, . . . , dmC

Ikm

]

:

Di ∈ C
ki×ki , Di = D∗

i > 0, dj ∈ R, dj > 0
}

(10)

GK :=
{

diag
[

G1, . . . , Gmr , 0km1+1
, . . . , 0km

]

:

Di = D∗
i ∈ C

ki×ki

} (11)

Utilizing the above sets, a tight µ upper bound is [10]:

βmin = inf
D∈DK,G∈GK

inf
β∈R+

{

β : σ

((

DMD−1

β
− jG

)

(

I +G2)−1/2
)

≤ 1

} (12)

Including a lower bound based on the real spectral radius
ρR, one obtains

max
U∈UK

ρR (UM) ≤ µ∆ (M) ≤ βmin. (13)

For mr = 0, the bounds in (13) simplify to

max
U∈UK

ρ (UM) ≤ µ∆ (M) ≤ inf
D∈DK

σ
(

DMD−1) . (14)

It turns out that the lower bounds with maxima in (13)

and (14) are de facto equalities. However, it is common

to use inequalities to account for the non-convexity of the

underlying optimization problems, causing issues with local

optima in the respective domains. In [19], a power method

is suggested for approximating the complex µ lower bound

problem in (14). This power algorithm is extended in [30]

to tackle the mixed lower bound problem in (13). While the

upper bounds in (13) and (14) are convex optimization prob-

lems that can be solved efficiently, they are not always equal

to µ. Fortunately, the gaps between µ and its upper bounds

tend to be small, making the upper bounds particularly useful

for control synthesis. For the mixed case, that is mr > 0,

an alternative LMI upper bound is proposed in [31]. At the

cost of increased computational effort, employing this LMI

upper bound frequently results in tighter approximation of µ

than solving the upper bound problem in (13). However, it

seems LMI upper bounds have not yet been utilized directly

for µ synthesis.
Minimizing the peak value of µ and thus optimizing the

closed-loop robust performance with respect to ∆ across
frequency is referred to as µ synthesis. That is, µ synthesis
is equivalent to approaching a controller Kµ for a plant P
such that

Kµ = arg inf
K

sup
ω∈R

µ∆ (Fl (P,K)) . (15)

Anyway, as there is no explicit solution to computing µ,

there also exists no explicit solution to this optimization.

Hence, the µ synthesis problem is commonly approximated

by minimizing the peak values of the upper bounds in (13)

and (14), respectively. In order to penalize distinct perfor-

mance measures, the plant model P in (15) is commonly

augmented by diagonal, frequency-shaped weighting matri-

ces Wi, including corresponding augmentation of ∆ with an

unstructured performance block. Such augmentations of the

µ synthesis setup (15) transform the optimization of robust

stability under structured perturbations into an optimization

of robust performance under structured perturbations, includ-

ing the robust stability µ problem per definition. In general,

the concept of augmenting LFT µ problems arises from the

so-called Main Loop Theorem, omitted in this paper for

convenience (see [9] or [35], for instance). For the remainder

of this paper, the symbol µ
p

is used to indicate such robust

performance µ upper bound problems.

A. Complex µ Synthesis

Approaching (15) for mr = 0 is referred to as complex

µ synthesis, the problem usually being approximated by

minimizing the complex upper bound peak value in (14).

Unfortunately, even after replacing µ by its upper bound,

there is no closed-form solution to the resulting optimization

problem. However, the upper bound problem can be effec-

tively tackled by biconvex optimization over a controller K

and the scaling matrices D in (14). This approach is the so-

called D-K algorithm, first suggested in [8] and commercially

accessible with the MATLAB Robust Control ToolboxTM (see

[1], for instance).

D-K Iteration:

1) Find an initial estimate of the scaling matrices D (ω)
pointwise across frequency.

2) Find a state-space realization D fitting D (ω), augment
D such that

DL := diag
[

D, Iny

]

, DR := diag
[

D−1, Inu

]

, (16)

and construct the state-space system

PD := DLPDR (17)

so that by construction we have

Fl (PD,K) = DFl (P,K)D−1 . (18)

3) Find K̂ minimizing ‖Fl (PD,K)‖
∞

over all stabiliz-

ing, proper, real-rational controllers K.

4) Find pointwise scaling matrices D̂ (ω) solving

D̂ (ω) = arg inf
D(ω)∈DK

σ

(

D (ω)Fl

(

P, K̂
)

(jω)D−1 (ω)
)

.
(19)

5) Compare D̂ (ω) with D (ω). Stop if they are close,

else replace D (ω) with D̂ (ω) and return to step 2.

It shall be mentioned at this point that the D-K algorithm

is also frequently employed for tackling perturbation setups

where mr > 0, that is, mixed µ synthesis problems. While

some - possibly large - degree of conservatism is induced

by approximating the mixed by the complex upper bound

problem, this approach has been applied to various synthesis

setups in the past [17], [24].
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B. Mixed µ Synthesis

There exist several approaches of extending the general

idea of the D-K Iteration towards minimizing the upper

bound in (14) for tackling mixed µ synthesis problems. The

most common approach of approximating the mixed upper

bound µ problem is the so-called (D,G)-K algorithm, posed

in [32]. In analogy with the D-K algorithm, the (D,G)-K

algorithm makes use of a biconvex optimization approach

over a controller and the scaling matrices of the upper bound.

However, due to the nature of (12), the biconvex approach

is notably more involved than its complex counterpart. The

(D,G)-K algorithm is available with the MATLAB Robust

Control ToolboxTM and described comprehensively in [33].

An alternative to the (D,G)-K algorithm is the so-called µ-

K Iteration suggested in [27]. Rather than directly extending

the idea of the D-K algorithm to the mixed upper bound

problem, the µ-K algorithm makes use of two layers of

scaling matrices. In addition to the D-scales used within the

D-K algorithm, the µ-K algorithm employs a scalar outer

scale γ reflecting the ratio of mixed and complex upper

bounds across frequency. That is, the µ-K algorithm’s main

idea is scaling D-K Iterations with respect to the frequency

dependent degree of conservatism induced when employing

the complex upper bound. While tending to produce slightly

higher control orders than the (D,G)-K algorithm, the µ-

K algorithm avoids state-space fits of the purely complex

scaling matrices G ∈ GK. In [28], the (D,G)-K and µ-

K algorithms are appropriately distinguished as direct and

indirect mixed upper bound minimizations, respectively.

Even though the µ-K algorithm appears to be a promising

alternative for tackling mixed µ synthesis problems, it is not

yet supported by commercially available software. Motivated

by the synthesis of robust controllers for flexible high-speed

rotors, the algorithm was implemented in MATLAB by the

authors of this paper, using the iteration outline accessible

in [28]. Furthermore, the algorithm has been extended by

several means, permitting usage of the more accurate LMI

upper bounds and internal order reductions, for instance.

All augmentations of the algorithm including applications

to particular control synthesis issues are addressed in [25].

IV. SYNTHESIS OF ROBUST CONTROLLERS

This section addresses augmentations of the nominal plant

model described in section II such that both model perturba-

tions and performance requirements are accounted for. The

resulting perturbed open-loop model is then employed for

synthesis of robust controllers.

A. Uncertainty Modeling

Appropriately accounting for model uncertainties is a

crucial point in the scope of robust control. Though complex

uncertainties in combination with the D-K algorithm pro-

duced some decent results for high-speed rotors, a significant

degree of conservatism is going in hand with the complex un-

certainty representations. Obviously, a more straightforward

description of the speed-dependent dynamics is to define a

real uncertain parameter Ωu for the rotational speed, varying

inbetween 0 and the peak operational speed of the shaft.

An upper LFT of the speed-independent terms with the

real matrix perturbation −ΩuG captures all variations in

the pointwise LTI dynamics. In combination with the real

parametric uncertainty Ωu, we make use of complex additive

uncertainties ∆a perturbing the outputs of Fu (P,−ΩuG),
as shown in fig. 4. The additive, unstructured perturbations

∆a are used to account for the decreasing model accuracy

at high frequencies. The LFT diagram of the augmented,

perturbed closed-loop system in fig. 4 additionally includes

the diagonal scaling matrix Wz , described in further detail

below.

Fig. 4. Perturbed, augmented closed-loop system

Available literature on vibration control for flexible high-

speed rotors avoids the plant description via real uncertain

perturbations, presumably because Ωu needs to be approxi-

mated with a complex parameter when approached via D-K

iterations. When suitable algorithms for mixed perturbation

setups are employed, the real uncertainty description of the

speed-dependency tends to result in high computational effort

and numerical issues [18]. Nevertheless, some publications

employ the D-K algorithm ([17], [24]) to approach active

vibration control for high-speed rotors. Other approaches for

the consideration of gyroscopic effects stated in accessible

literature utilize combinations of modal [2] and unstructured

uncertainties [3]. Due to the implicit description of speed-

dependencies, such approaches tend to introduce consider-

able conservatism, limiting their applicability and achievable

performance results to a certain extent.

Due to the size of the gyroscopic matrix (16×16), an
immediate implementation of the real parametric uncertainty-
LFT for the reduced order plant model described in section II
causes enormous numerical effort and could not be processed
in reasonable time using µ-K and (D,G)-K algorithms. A
step from FE to analytical modeling produces a solution: the
inertias of the two disks are significantly larger than those of
the remaining structure, suggesting that the latter elements
can be neglected. Hence, it is sufficient to introduce only
two in- and output channels per disk. For constant rotational
speed Ω, the gyroscopic moments MG around the x- and y-
axes of a disk with polar moment of inertia Θ are calculated

2347



using the disk’s angular velocities ϕ̇i:
[

MG,x

MG,y

]

= Ω

[

0 Θ
−Θ 0

] [

ϕ̇x

ϕ̇y

]

(20)

By this setup, G can be reduced to an order of four,

allowing for mixed µ synthesis at reasonable computational

effort.

B. Performance Measures

Preceding control synthesis, the perturbed plant model is

augmented for improved performance measures regarding

unbalance vibrations. As indicated in section II, the plant

inputs do not contain the appropriate characteristics of the

actual unbalance excitations, but local force inputs at the

disks. As unbalances do not excite backward whirl modes,

efficient performance measures should not highlight gains

corresponding to such modes. Otherwise, significant conser-

vatism might be induced, limiting the achievable reduction

of forward whirl vibrations.
Intuitively, one might attempt defining closed-loop vibra-

tion bounds penalizing high gains at forward whirl frequen-
cies heavier than such in the proximity of backward whirl
frequencies. For actual rotor systems, however, the utilization
of such setups is not straightforward as both forward and
backward whirl modes start at the same natural frequency
at standstill. That is, a bound being loose at backward
whirl frequencies and tight at forward whirl frequencies
would require a large order, subsequently raising the order
of the augmented plant. This might, in turn, increase both
likelihood of numerical problems and computational effort,
respectively. Furthermore, backward whirl frequencies inter-
sect with forward whirls of other modes at certain rotational
speeds. Therefore, we propose an adaptation of the model
instead of the performance measures. Based on the disk’s
vibration outputs, additional outputs are generated via modal
scaling. For that purpose, the nominal plant model is trans-
formed into modal form, providing access to the respective
influences of individual modes on the plant outputs. In modal
state-space representations, the i-th column of the output

matrix C̃ accounts the impact of the i-th modal state on the
output vector:

˙̃x = Ãx̃+ B̃u y = C̃x̃ (21)

Utilizing a modal state-space representation (21), the un-

desired backward whirl modes can be eliminated for per-

formance assessment by simply replacing the corresponding

elements of C̃ with zeros. To avoid excitation of backward

whirls by the controller, though, a scaling factor α << 1
is imposed instead. Even though the transformation to (21)

depends on the rotational speed Ω and some decoupling of

the modal states x̃ is lost due to the LFT between speed-

dependent and -independent terms (see fig. 4), this semi-

modal performance approach works very well for the system

at hand. Performance assessment after modal elimination of

backward whirl influence from the output vector matches the

requirement of reducing unbalance excitation at significantly

less conservatism than the use of true displacements.

Ultimately, the augmented plant model displayed in fig.

4 enables two choices of performance measures z, physical

displacement signals and such after elimination of backward

whirl influence, respectively. In either case, closed-loop

bounds in the sense of H∞-norm performance assessment

are imposed using a diagonal scaling matrix Wz such that

z∗ = Wzz. The particular choice of closed-loop bounds

restricts the chosen displacements signals in the proximity

of the first forward whirl mode at disk one and the sec-

ond one at disk two, respectively. This spatial performance

assessment allows penalizing the two forward whirl modes

within operating range almost independently, as the first

forward whirl mode has more influence on disk one and the

second on disk two. Notice that without modal elimination of

backward whirl modes, each of the two closed-loop signal

bounds also penalizes the corresponding backward whirls.

It is shown in table I and section V how the conservatism

induced by penalizing backward whirl modes notably limits

the achievable closed-loop performance. Transfer functions

for random, bounded perturbations including the closed-loop

signal bounds (dashed) are displayed for the initial system

behavior in fig. 5 and after modal backward whirl elimination

(BWE) in fig. 6.
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Fig. 5. Synthesis setup: perturbed system without backward whirl elimi-
nation (solid), closed-loop bound (dashed)

C. Robust Control

The reduction in conservatism achieved when treating Ωu

as a real parametric uncertainty is indicated by the µ upper

bound peaks of the augmented plant model. These µ peaks

are included in table I, the index p referring to robust per-

formance, while the superscripts c and m distinguish purely

complex and mixed perturbation models, respectively. The ra-

tios between µc

p
and µm

p
for the particular augmented open-

and closed-loop systems indicate the significant conservatism
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Fig. 6. Synthesis setup: perturbed system after backward whirl elimination
(solid), closed-loop bound (dashed)

associated with approximating bounded, varying rotational

speeds by a complex perturbation elements. Furthermore,

the final column of table I (i.e., µm

p
) strongly reflects the

conservatism induced when utilizing the performance setup

without backward whirl elimination (BWE, recall fig. 5) from

the displacement outputs. That is, for each pair of values for

µm

p
, the one without BWE is notably higher.

TABLE I

SSV BOUND PEAK VALUES

Type BWE Order µ
c
p µ

m
p

Aug. Plant y - 53.21 13.03
n - 62.20 14.56

H∞ y 68 40.82 8.73
n 68 40.81 9.87

D-K y 68 40.82 8.73
n 116 40.77 11.78

IR µ-K y 77 13.87 1.08
n 48 12.73 1.51

The µ peaks of the H∞ controllers indicate how unstruc-

tured perturbations approximating (4)-(7) are not appropriate

to address the perturbations of the system at hand. In fact, the

two H∞ controllers merely improve the robust performance

of the augmented plant model. Similar results have been

obtained using the D-K algorithm, approximating (4)-(7) by

a purely complex perturbation structure and inherently opti-

mizing µc

p
≥ µm

p
. As the D-K iteration implicitly attempts

stabilizing the dynamics subject to complex perturbations,

it does not produce a controller better than the H∞ con-

troller used to initialize the algorithm. In fact, the improved

value µc

p
for the performance setup without backward whirl

elimination (BWE) goes in hand with a raise in µm

p
and,

conclusively, an actual decrease in robust performance.

As expected, the real parametric uncertainty description

of the plant’s speed-dependency in combination with appro-

priate algorithms allows for significantly better results. In

particular, the augmented µ-K algorithm including internal

order reduction (IR) of the controllers at each iteration in

combination with the utilization of LMI bounds achieved

superb results. Notice that table I does not include µ peaks

for (D,G)-K controllers due to numerical issues similar to

those reported in the literature [18]. Anyhow, the results

achieved using the augmented µ-K algorithm for explicit

treatment of mixed perturbations and the inclusion of semi-

modal performance measures are highly promising.

V. CLOSED-LOOP RESULTS

In order to display the perceptible performance for the

test rig, unbalance simulations are performed. Fig. 7 shows

simulated steady-state unbalance vibration amplitudes at

disks 1 and 2 in x-direction, caused by a quasi-stationary

runup. Due to the almost symmetric closed-loop behavior,

y-directions have been omitted. Within all simulations, the

maximum voltages are slightly above 300V, which is clearly

below the maximum amplifier voltage at 500 V, so that no

further bounding of the control input signals was necessary.

The simulated unbalances are those identified for the test rig,

publications regarding alternative control schemes applied to

the same test rig indicating that such simulations are suitable

for capturing the actual system behavior [22], [23].
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Fig. 7. Quasi-stationary runup simulation for unbalance excitation: open-
loop plant (solid), closed-loop using IR µ-K controller without BWE
(dotted), closed-loop using IR µ-K controller including BWE (dashed)

Corresponding to the achieved peak µ values, the internal

reduction (IR) µ-K controllers yield significant vibration

reduction. Comparing both IR µ-K controllers, the one

designed at the hand of the BWE system achieves remarkably
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more reduction than the one designed using physical perfor-

mance outputs. The D-K and H∞ controllers do not reduce

the resonance amplitudes of the passive system. Although

table I shows decreased µ peaks for the corresponding con-

trollers. This indicates that, even though the open-loop plant

is robustly stable, the complex stability problem dominates

the complex performance problem. Once more, these results

demonstrate how complex uncertainty sets are particularly

more conservative than mixed perturbation setups whenever

severe levels of gyroscopic effects are present.

VI. CONCLUSIONS

We have proposed an efficient framework of synthesizing

robust controllers for flexible high-speed rotors subject to

severe gyroscopic effects via mixed µ synthesis. Employing

real parametric uncertainties, the speed-dependency of the

system dynamics is appropriately accounted for, whereas

the degree of model-induced conservatism is notably low.

In combination with semi-modal performance measures, al-

lowing penalties on individual modes, remarkable closed-

loop results were shown. In particular, the extended µ-K

algorithm, incorporating internal order reductions and LMI

µ bounds, achieved great attenuation of bending vibrations.

Future research directions include extensions regarding time

delays, noise sensitivity, control order reduction, and the

subsequent test rig implementation.
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