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Chapter 1Introdu
tion
Networks and 
ontrol is a 
hallenging and promising dire
tion for 
urrent and future resear
h inthe area of 
ontrol engineering, as des
ribed by the expert panel on future dire
tions in 
ontrol,dynami
s and systems [1℄. Two di�erent resear
h areas are distinguished in [2℄: 
ontrol overnetworks and networked 
ontrol systems (NCSs). Control over networks studies the 
ontrolproblems in networks, su
h as 
ongestion 
ontrol and is also part of the �eld of informationte
hnology. Networked 
ontrol systems 
onsist of one or more 
ontrol loops that are 
losedover a 
ommuni
ation network. One of the resear
h issues is the stability analysis of the NCS.In this report, we fo
us on the e�e
t of time-varying delays on NCSs.An NCS exists of a system 
oupled over a 
ommuni
ation network to a 
ontroller. The systembehaves in 
ontinuous-time, while the 
ontroller is exe
uted on a pro
essor in dis
rete-time.A s
hemati
 overview of an NCS is depi
ted in Figure 1.1.PSfrag repla
ements Plant

ControllerCommuni
ation network
Figure 1.1: S
hemati
 overview of an NCS.Compared to the traditional point-to-point 
ontrol systems, where the 
ontroller is dire
tlylinked to the a
tuators and sensors of the plant, advantages of an NCS are in
reased �exibility,the possibility to use de
entralized 
ontrol, de
reased maintenan
e 
osts and redu
tion ofthe system wiring [3℄, [4℄. A disadvantage is the 
ompli
ated analysis, due to the use ofthe 
ommuni
ation network. Four di�erent aspe
ts of the network need to be taken intoa

ount [4℄, [5℄. First, time-varying delays between the 
ontroller and system (plant) andvi
e-versa o

ur. Se
ond, pa
kage loss, i.e. data that does not arrive at the 
ontroller or plant,o

urs. Third, multiple pa
kets to send all data over the network may be needed, whi
h mayresult in delivery of part of the data. Fourth, variations in the sample-time may o

ur. Here,3



4 Robust 
ontrol of an NCS with time-varying delayswe assume that all data is sent in one pa
ket, that all pa
kets arrive and that the sample-timeis 
onstant.The network indu
ed time-varying delays, in 
ombination with the 
omputation time, 
on-sumed by the 
ontroller, a�e
t the stability of the 
ontrolled system. Di�erent approa
hes tomodel an NCS and investigate its stability are des
ribed in literature.Probably, the �rst NCS model with time-delay, is proposed in [6℄. They propose a �nite-dimensional, time-varying dis
rete-time model, based on a time-driven sensor and 
ontrollerand an event-driven a
tuator. The model is based on des
ribing the available 
ontrol inputs,during one 
onstant sample-interval. The stability of 
onstant delays and known periodi
time-varying delays 
an be determined, based on 
he
king the eigenvalues of the 
orrespondingsystems.A 
omparable model is given in e.g. [7℄, [8℄, and [9℄. They use a dis
rete-time representation,but assume a time-driven sensor and an event-driven 
ontroller and a
tuator. These assump-tions allow to sum all three time-delays together, whi
h simpli�es the model, be
ause onlyone total time-delay is used, instead of three separate terms. In [7℄ the model and stabilityanalysis are limited to 
onstant time-delays. In [8℄ an example is presented where boundedtime-varying delays result in instability, while the 
ontroller was designed to stabilize the sys-tem for all 
onstant delays within the same bound. This example shows the need of robust
ontrol analysis and synthesis for systems with time-varying delays. In [9℄ the variation of thetime-delay is modeled, using either a probability distribution or a Markov 
hain. For both
ases the stability is analyzed and optimal 
ontrollers are designed.In this te
hni
al report, we adopt the model of [7℄ and derive stability 
onditions for un
ertaintime-varying delays that are upperbounded by the sample-time. The stability 
onditions arebased on a Jordan form representation of the 
ontinuous-time system matri
es. Here, theJordan based representation is derived for the 
ase of only real eigenvalues, only 
omplexeigenvalues and a 
ombination of real and 
omplex eigenvalues.In Se
tion 2, the real Jordan form and the Jordan 
anoni
al form are dis
ussed in general. InSe
tion 3, the Jordan form representation of the NCS is derived and stability 
onditions areproposed.



Chapter 2Preliminaries
2.1 Jordan Canoni
al FormFor every square matrix A ∈ R

n×n, there exists a Jordan Canoni
al Form J ∈ R
n×n, givenby [10℄, [11℄:

J = Q−1AQ, (2.1)with Q ∈ R
n×n a matrix that 
ontains the generalized eigenve
tors of A and

J = [J1 ⊕ ... ⊕ Jm] =











J1 0 . . . 0
0 J2 0... . . . ...
0 0 . . . Jp











, (2.2)where Ji is 
alled a Jordan blo
k, whi
h has a blo
k diagonal form, represented by one of thefollowing matri
es:
λi,

(

λi 1
0 λi

)

,





λi 1 0
0 λi 1
0 0 λi



 ,















λi 1 0 . . . 0
0 λi 1 . . . 0... . . . ...
0 0 . . . λi 1
0 0 . . . 0 λi















, (2.3)with λi the ith eigenvalue of the matrix A. Therefore ea
h Ji in (2.2), with i ∈ {1, 2, ..., p}
orresponds to one distin
t eigenvalue. If the geometri
 multipli
ity gi of the λth
i eigenvalue isequal to one, then the dimension of the ith Jordan blo
k is equal to the algebrai
 multipli
ity

mi of the λth
i eigenvalue. If the geometri
 multipli
ity (gi) is unequal to one, then gi Jordanblo
ks des
ribe the Jordan blo
k asso
iated with λi:

Ji = [Ji,1 ⊕ Ji,2, . . . ,⊕Ji,gi
]. (2.4)The largest Jordan blo
k in Ji determines, the number of di�erent parameters (see e.g. (2.7))that 
an be obtained from the Jordan blo
k Ji. Therefore, we de�ne:

ci = max
j̃={1,2,...,gi}

dim(Ji,j̃), (2.5)5



6 Robust 
ontrol of an NCS with time-varying delayswhere dim(J) denotes the dimension of the square matrix J .The dimension of the 
ombined gi Jordan blo
ks in Ji in (2.4) is equal to the algebrai
multipli
ity mi of the ith eigenvalue1. Note that the geometri
 multipli
ity 
an never ex
eedthe algebrai
 multipli
ity of λi, so 1 ≤ gi ≤ mi [12℄, and [13℄.For the exponential of A it holds that:
etA = Q[etJ1 ⊕ ... ⊕ etJm ]Q−1. (2.6)The exponential fun
tions of the Jordan blo
ks of (2.3) are, respe
tively, given by:
eλit, eλit

(

1 t

0 1

)

, eλit





1 t t2

2!
0 1 t

0 0 1



 , eλit

















1 t t2

2! . . . t(k−1)

(k−1)!

0 1 t . . . t(k−2)

(k−2)!... . . . ...
0 0 1 t

0 0 0 1

















, (2.7)with k the dimension of the 
orresponding Jordan blo
k.2.1.1 Real Jordan FormIf the matrix exhibits 
omplex eigenvalues λ = a ± bj, the Real Jordan Form (RJF) [14℄, [15℄is more useful, be
ause it avoids the o

urren
e of 
omplex matri
es J and Q in (2.1). A
omplex Jordan blo
k Ji(a + bj) 
an be repla
ed by a Jordan blo
k Ki(a, b), of the form:
D,

(

D I

0 D

)

,





D I 0
0 D I

0 0 D



 ,















D I 0 . . . 0
0 D I . . . 0... . . . ...
0 0 . . . D I

0 0 . . . 0 D















, (2.8)with the matrix D(a, b), de�ned as
D =

(

a −b

b a

)

= aI + bLr, (2.9)with I the identity matrix and L2
r = −I.Every square matrix A 
an be written in the Real Jordan Form as:

K = R−1AR, (2.10)with K ∈ R
n×n, R ∈ R

n×n, and the Real Jordan Form K(a, b) de�ned as:
K = [K1 ⊕ ... ⊕ Km] (2.11)1The algebrai
 multipli
ity des
ribes the number of times that an eigenvalue o

urs. The geometri
 mul-tipli
ity is equal to the dimension of the nullspa
e of (λiI − A), and 
an be 
omputed as: nullity(λiI − A) =

n − rank(λiI − A), with n the dimension of A.



Preliminaries 7and Ki de�ned in (2.8) and (2.9). Note that for real eigenvalues the Real Jordan Form isequal to the Jordan Canoni
al Form.The exponential fun
tion of the Real Jordan blo
ks, given in (2.8), is:
eDt,

(

eDt eDt t
1!

0 eDt

)

,





eDt eDt t
1! eDt t2

2!
0 eDt eDt t

1!
0 0 eDt



 ,

















eDt eDt t
1! eDt t2

2! . . . eDt tk−1

(k−1)!

0 eDt t
1! eDt t2

2! . . . eDt tk−2

(k−2)!... . . . ...
0 0 . . . eDt eDt t

1!
0 0 . . . 0 eDt

















, (2.12)with
eDt = eat

(

cos bt − sin bt

sin bt cos bt

)

. (2.13)Obviously, if both real and 
omplex eigenvalues o

ur, 
ombinations of the exponential of theReal Jordan blo
ks (2.8) and Jordan blo
ks as in (2.3) are used.



Chapter 3Robust stability of an NCS withtime-varying delaysThis 
hapter deals with the stability analysis of Networked Control Systems with small time-delays, i.e. the time-delay is upperbounded by the sample-time. First, a standard dis
rete-timeNCS-model is des
ribed in Se
tion 3.1. Next, this model is rewritten in a Jordan form, whereboth the 
ases with real and 
omplex eigenvalues are investigated. In Se
tion 3.2 the robuststability problem is solved for systems with time-varying delays upperbounded by the sample-time.3.1 NCS modelIn this 
hapter, the dis
rete-time des
ription of an NCS of [8℄ and [7℄, will be used. The NCSis s
hemati
ally depi
ted in Figure 3.1. It 
onsists of a 
ontinuous-time plant and a dis
rete-time 
ontroller, whi
h re
eives information from the plant at the sampling instants tk, only.Additionally, in the model, the 
omputation time and the networked indu
ed delays, i.e. thesensor-to-
ontroller delay and the 
ontroller-to-a
tuator delay, are taken into a

ount. Thesensor a
ts in a time-driven fashion, while the 
ontroller and a
tuator a
t in an event-drivenfashion. Under these assumptions, all delays 
an be represented by a single delay τk thatdelays the 
ontrol input uk with respe
t to the measurement yk [9℄. The sampling moments kare determined by the time-driven sensor output yk. The 
ontinuous-time model of the NCSis given by:
ẋ(t) = Ax(t) + Bu∗(t)
yk = Cxk

u∗(t) = uk, for t ∈ [kh + τk, (k + 1)h + τk+1]
(3.1)with A ∈ R

n×n, B ∈ R
n×1, C ∈ R

n×n the 
ontinuous-time system matri
es; x(t) ∈ R
n thestate; t ∈ R the time; τk the delay for sampling moment k; yk ∈ R

n the dis
rete-time mea-surement; and uk ∈ R the (delayed) dis
rete-time input for sample moment k. For simpli
ity,we assume that we measure the entire state at the sampling instants, i.e. yk = Cxk, with
C the identity matrix. Note that the sensor-to-
ontroller delay is not present in this outputequation, be
ause it was already a

ounted for in the total time-varying delay τk.8



Robust stability 9PSfrag repla
ements
Clo
kSensorControllerPlantZOH

τscτca

uk u∗(t) yk

r(t)Figure 3.1: S
hemati
 overview of the networked 
ontrol system.If we assume that the total delay τk is smaller than the 
onstant sample-time h at everysampling moment k, the dis
retization of (3.1) gives the NCS model:
xk+1 = eAhxk +

∫ h−τk

0
eAsdsBuk +

∫ h

h−τk

eAsdsBuk−1, (3.2)with xk, uk the dis
retized state and 
ontrol input, respe
tively. De�ning the extended stateve
tor ξk =
[

xT
k uT

k−1

]T results in the following state-spa
e model, given a maximum delay
τmax ∈ [0, h]:

ξk+1 = Ã(τk)ξk + B̃(τk)uk, τk ∈ [0, τmax], (3.3)with Ã(τk) =

(

eAh
∫ h

h−τk
eAsdsB

0 0

) and B̃(τk) =

(
∫ h−τk

0 eAsdsB

I

).3.1.1 Jordan forms of the NCS modelTo perform analysis on system (3.3), the system 
an be rewritten as a 
ombination of 
onstantmatri
es that are multiplied by time-varying delay τk dependent parameters. Here, we willuse the Jordan forms, as presented in Se
tion 2.1.The Jordan form representation of the 
ontinuous-time matrix A is given by:
A = QJQ−1, (3.4)with J the Jordan Canoni
al Form, Real Jordan Form or a 
ombination1. System (3.3) 
anbe rewritten as:

ξk+1 =

(

QeJhQ−1
∫ h

h−τk
QeJsdsQ−1B

0 0

)

ξk+

(
∫ h−τk

0 QeJsdsQ−1B

I

)

uk, τk ∈ [0, τmax]. (3.5)Real eigenvaluesFor simpli
ity, �rst, we will 
onsider a situation with only real eigenvalues that 
an be multi-pli
ative. If none of the eigenvalues are equal to zero, J = JNZ is invertible and the integrals1The Real Jordan Form is equal to the Jordan Canoni
al Form if the eigenvalues are real.



10 Robust 
ontrol of an NCS with time-varying delaysin (3.4) 
an be solved, whi
h gives in general:
ξk+1 =

(

QeJNZhQ−1 QJ−1
NZeJNZhQ−1B

0 0

)

ξk +

(

0 −QJ−1
NZeJNZ(h−τk)Q−1B

0 0

)

ξk+
(

−QJ−1
NZQ−1B

I

)

uk +

(

QJ−1
NZeJNZ(h−τk)Q−1B

0

)

uk. (3.6)The matrix eJNZ(h−τk) 
ontains the time-varying parameters τk, and 
an be rewritten as:
eJNZ(h−τk) =

pNZ
∑

i=1

(ciNZ
−1)

∑

j=0

(h − τk)
j

j!
eλi(h−τk)Ŝi,j , (3.7)where pNZ denotes the number of di�erent eigenvalues of A and ciNZ

is de�ned in (2.5)as the dimension of the largest Jordan blo
k of the ith non-zero eigenvalue. The matrix
Ŝi,j ∈ R

n×n is an appropriate matrix, with a one at the matrix entries of eJNZ(h−τk) dependentof (h−τk)j

j! eλi(h−τk) and a zero at all other matrix entries. For example, if JNZ =





1 1 0
0 1 1
0 0 1



,it holds that pNZ = 1, c1 = 3, whi
h gives
eJNZ(h−τk) = e(h−τk)Ŝ1,0 + (h − τk)e

(h−τk)Ŝ1,1 +
(h − τk)

2

2
e(h−τk)Ŝ1,2,with Ŝ1,0 =





1 0 0
0 1 0
0 0 1



, Ŝ1,1 =





0 1 0
0 0 1
0 0 0



, and Ŝ1,2 =





0 0 1
0 0 0
0 0 0



. Another example isgiven to show the di�eren
es in Ŝi,j that 
an o

ur. If JNZ =





1 0 0
0 2 1
0 0 2



, it holds that
pNZ = 2, c1 = 1 and c2 = 2, whi
h gives

eJNZ(h−τk) = e(h−τk)Ŝ1,0 + e2(h−τk)Ŝ2,0 + (h − τk)e
2(h−τk)Ŝ2,1,with Ŝ1,0 =





1 0 0
0 0 0
0 0 0



, Ŝ2,0 =





0 0 0
0 1 0
0 0 1



 and Ŝ2,1 =





0 0 0
0 0 1
0 0 0



. From these examples, itis obvious that the shape of Ŝi,j depends on the used 
ombination of Jordan blo
ks.For eigenvalues unequal to zero, system (3.6) 
an be rewritten in a form where all matri
esare independent of the time-varying delay:
ξk+1 = Φ̂0ξk +

(

∑pNZ

i=1

(

∑(ciNZ
−1)

j=0
(h−τk)j

j!

)

eλi(h−τk)
)

Φ̂i,jξk+

Γ̂0uk +
∑pNZ

i=1

(

∑(ciNZ
−1)

j=0
(h−τk)j

j!

)

eλi(h−τk)Γ̂i,juk,
(3.8)with Φ̂0 =

(

QeJNZhQ−1 QJ−1
NZeJNZhQ−1B

0 0

), Φ̂i,j =

(

0 −QJ−1
NZ Ŝi,jQ

−1B

0 0

), Γ̂0 =

(

−QJ−1
NZQ−1B

I

),and Γ̂i,j =

(

QJ−1
NZ Ŝi,jQ

−1B

0

).



Robust stability 11If eigenvalues equal to zero o

ur, the inverse of the Jordan matrix does not exist and des
rip-tion (3.8) 
an not be used. For simpli
ity, a system with all eigenvalues equal to zero will bedes
ribed �rst (J = JZ). System (3.5) 
an be rewritten as:
ξk+1 =

(

QeJZhQ−1
∑cZ

j=1

(

hj

j! −
(h−τk)i

i!

)

QS̆jQ
−1B

0 0

)

ξk+

(

∑cZ

j=1
(h−τk)i

i! QS̆jQ
−1B

I

)

uk, τk ∈ [0, τmax],

(3.9)with cZ the size of the maximum Jordan blo
k for the zero eigenvalues de�ned in (2.5),
S̆j a matrix with all zeros, ex
ept ones at the matrix entries of eJZ(h−τk) 
orresponding to
(h−τk)j

j! . For example, if JZ =

(

0 1
0 0

), this gives cZ = 2 (be
ause gZ = 1), whi
h results in
S̆1 =

(

1 0
0 1

) and S̆2 =

(

0 1
0 0

) in (3.9).Splitting up (3.9) in a 
onstant and a delay-dependent part gives:
ξk+1 = Φ̆0ξk +

cZ
∑

j=1

(h − τk)
j

j!
Φ̆jξk + Γ̆0uk +

cZ
∑

j=1

(h − τk)
j

j!
Γ̆juk, τk ∈ [0, τmax], (3.10)with Φ̆0 =

(

QeJZhQ−1
∑ajZ

j=1
hj

j! QS̆jQ
−1B

0 0

), Φ̆j =

(

0 −QS̆jQ
−1B

0 0

), Γ̆0 =

(

0
I

), and
Γ̆j =

(

QS̆jQ
−1B

0

).If the system has real eigenvalues that are both zero and non-zero, then a 
ombination of (3.8)and (3.10) is needed. The Jordan matrix be
omes:
J = JNZ ⊕ JZ , (3.11)with JNZ the 
ombination of Jordan blo
ks for all non-zero eigenvalues, and JZ the 
ombina-tion of Jordan blo
ks for all zero eigenvalues. System (3.3) is now represented by:
ξk+1 = Φ̃0ξk +

∑pNZ

i=1

∑(ciNZ
−1)

j=0
(h−τk)j

j! eλi(h−τk)Φ̃i,jξk

+ Γ̃0uk +
∑pNZ

i=1

∑(ciNZ
−1)

j=0
(h−τk)j

j! eλi(h−τk)Γ̃i,juk

+
∑cZ

j=1
(h−τk)j

j! Φ̃jξk +
∑cZ

j=1
(h−τk)j

j! Γ̃juk, τk ∈ [0, τmax],

(3.12)with Φ̃0 =

(

QeJhQ−1 Q(J−1
NZeJNZh ⊕

∑cZ

j=1
hj

j! S̆j)Q
−1B

0 0

), Γ̃0 =

(

Q(J−1
NZ ⊕ OZ)Q−1B

I

);
Φ̃i,j = Φ̂i,j and Γ̃i,j = Γ̂i,j as de�ned in (3.8), where Ŝi,j is repla
ed by S̃i,j = Ŝi,j ⊕ OZ ;
Φ̃i = Φ̆j and Γ̃i = Γ̆j as de�ned in (3.10), where S̆j is repla
ed by S̃j = ONZ ⊕ S̆j . Herein, OZis a matrix with only zeros and has a dimension equal to JZ , and ONZ is a matrix with onlyzeros and has a dimension equal to JNZ . Note that the matri
es S̃i,j and S̃i have the samedimension as Q.



12 Robust 
ontrol of an NCS with time-varying delaysComplex eigenvaluesIfA has only 
omplex eigenvalues, the Real Jordan Form 
an be applied to avoid the o

urren
eof 
omplex elements in the system matri
es. First, we will 
onsider a situation with one pairof 
omplex 
onjugated eigenvalues, thus JC =

(

a −b

b a

). The exponential of the Real JordanMatrix eJCs is then given by:
eJCs = eas

(

cos(bs) − sin(bs)
sin(bs) cos(bs)

)

.To determine the matri
es in (3.5) the 
orresponding integrals need to be solved. Note thatit holds that:
∫

eas cos(bs)ds =
eas

a2 + b2
(a cos(bs) + b sin(bs)) , (3.13)and

∫

eas sin(bs)ds =
eas

a2 + b2
(a sin(bs) − b cos(bs)) . (3.14)Then, system (3.3) 
an be rewritten with matri
es Φ̄i and Γ̄i that are independent of thetime-varying delay τk:

ξk+1 =
(

Φ̄1,0 + ea(h−τk)

a2+b2
cos(b(h − τk))Φ̄1,0,1 + ea(h−τk)

a2+b2
sin(b(h − τk))Φ̄1,0,2

)

ξk

+
(

Γ̄0 + ea(h−τk)

a2+b2
cos(b(h − τk))Γ̄1,0,1 + ea(h−τk)

a2+b2
sin(b(h − τk))Γ̄1,0,2

)

uk,
(3.15)with

Φ̄1,0 =





eahQ

(

cos(bh) − sin(bh)
sin(bh) cos(bh)

)

Q−1 eah

a2+b2
Q

(

a cos(bh) + b sin(bh) −a sin(bh) + b cos(bh)
a sin(bh) − b cos(bh) a cos(bh) + b sin(bh)

)

Q−1B

0 0



 ,

Φ̄1,0,1 =

(

0 −QT1,0,1Q
−1B

0 0

)

, Φ̄1,0,2 =

(

0 −QT1,0,2Q
−1B

0 0

)

,

Γ̄1,0 =

(

−QT1,0Q
−1B

I

)

,

Γ̄1,0,1 =

(

QT1,0,1Q
−1B

0

)

, Γ̄1,0,2 =

(

QT1,0,2Q
−1B

0

)

, (3.16)with
T1,0 =

1

a2 + b2

(

a b

−b a

)

, T1,0,1 =

(

a b

−b a

)

, T1,0,2 =

(

b −a

a b

)

. (3.17)If a pair of 
omplex 
onjugated eigenvalues o

urs twi
e, another Real Jordan Matrix needs tobe used. In this 
ase, besides the integral of (3.13) and (3.14), two additional integrals needto be solved:
∫

seas cos(bs)ds =
seas

a2 + b2
(a cos(bs) + b sin(bs))+

eas

(a2 + b2)2
(

(b2 − a2) cos(bs) − 2ab sin(bs)
)

,
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∫

seas sin(bs)ds =
seas

a2 + b2
(a sin(bs) − b cos(bs))+

eas

(a2 + b2)2
(

(b2 − a2) sin(bs) + 2ab cos(bs)
)

.(3.19)System (3.3) 
an now be formulated as:
ξk+1 =

(

Φ̄1,0 + ea(h−τk)

a2+b2
cos(b(h − τk))Φ̄1,0,1 + ea(h−τk)

a2+b2
sin(b(h − τk))Φ̄1,0,2

+ (h − τk)
ea(h−τk)

a2+b2
cos(b(h − τk))Φ̄1,1,1 + (h − τk)

ea(h−τk)

a2+b2
sin(b(h − τk))Φ̄1,1,2

)

ξk

+
(

Γ̄1,0 + ea(h−τk)

a2+b2
cos(b(h − τk))Γ̄1,0,1 + ea(h−τk)

a2+b2
sin(b(h − τk))Γ̄1,0,2

+ ea(h−τk)

a2+b2
(h − τk) cos(b(h − τk))Γ̄1,1,1 + ea(h−τk)

a2+b2
(h − τk) sin(b(h − τk))Γ̄1,1,2

)

uk,(3.20)The matri
es Φ̄i and Γ̄i are all fun
tions that are dependent of the parameters a, b, h and 
anbe determined similar to the situation with only one 
omplex pair of eigenvalues, they are:
Φ̄1,0 =













Qeah









cos bh − sin bh h cos bh −h sin bh

sin bh cos bh h sin bh h cos bh

0 0 cos bh − sin bh

0 0 sin bh cos bh









Q−1 QH1Q
−1B

0 0













,

Φ̄1,0,1 =

(

0 −QT1,0,1Q
−1B

0 0

)

, Φ̄1,0,2 =

(

0 −QT1,0,2Q
−1B

0 0

)

,

Φ̄1,1,1 =

(

0 −QT1,1,1Q
−1B

0 0

)

, Φ̄1,1,2 =

(

0 −QT1,1,2Q
−1B

0 0

)

,

Γ̄1,0 =

(

−QT1,0Q
−1B

I

)

, Γ̄1,0,1 =

(

QT1,0,1Q
−1B

0

)

, Γ̄1,0,2 =

(

QT1,0,2Q
−1B

0

)

,

Γ̄1,1,1 =

(

QT1,1,1Q
−1B

0

)

, Γ̄1,1,2 =

(

QT1,1,2Q
−1B

0

)

,

(3.21)
with
H1 =

eah

a2 + b2









a cos bh + b sin bh −a sin bh + b cos bh l1 l2
a sin bh − b cos bh a cos bh + b sin bh l3 l4

0 0 a cos bh + b sin bh −a sin bh + b cos bh

0 0 a sin bh − b cos bh a cos bh + b sin bh









,(3.22)with
l1 = h (a cos bh + b sin bh) + 1

a2+b2

(

(b2 − a2) cos bh − 2ab sin bh
)

,

l2 = h (−a sin bh + b cos bh) − 1
a2+b2

(

2ab cos bh + (b2 − a2) sin bh
)

,

l3 = h (a sin bh − b cos bh) + 1
a2+b2

(

2ab cos bh + (b2 − a2) sin bh
)

,

l4 = h (a cos bh + b sin bh) + 1
a2+b2

(

(b2 − a2) cos bh − 2ab sin bh
)

,



14 Robust 
ontrol of an NCS with time-varying delaysand
T1,0 = 1

a2+b2











a b b2−a2

a2+b2
− 2ab

a2+b2

−b a 2ab
a2+b2

b2−a2

a2+b2

0 0 a b

0 0 −b a











, T1,0,1 =











a b b2−a2

a2+b2
−2ab
a2+b2

−b a 2ab
a2+b2

b2−a2

a2+b2

0 0 a b

0 0 −b a











,

T1,0,2 =











b −a −2ab
a2+b2

a2−b2

a2+b2

a b b2−a2

a2+b2
−2ab
a2+b2

0 0 b −a

0 0 a b











, T1,1,1 =









0 0 a b

0 0 −b a

0 0 0 0
0 0 0 0









,

T1,1,2 =









0 0 b −a

0 0 a b

0 0 0 0
0 0 0 0









.

(3.23)
Previous obtained results for 
omplex eigenvalues are only valid for 
onjugated pairs of eigen-values for whi
h ciC , de�ned in (2.5), is equal to 2 or 4. Generalizing, dependent on thenumber of di�erent 
omplex 
onjugated pairs of eigenvalues pC , and their resulting numberof variable parameters ci, the following general equation holds:

ξk+1 = Φ̄0ξk +
∑pC

i=1

∑(c̃iC
−1)

j=0
(h−τk)j

j! eai(h−τk) cos(bi(h − τk))Φ̄i,j,1ξk

+
∑pC

i=1

∑(c̃iC
−1)

j=0
(h−τk)j

j! eai(h−τk) sin(bi(h − τk))Φ̄i,j,2ξk

+ Γ̄0uk +
∑pC

i=1

∑(c̃iC
−1)

j=0
(h−τk)j

j! eai(h−τk) cos(bi(h − τk))Γ̄i,j,1uk

+
∑pC

i=1

∑(c̃iC
−1)

j=0
(h−τk)j

j! eai(h−τk) sin(bi(h − τk))Γ̄i,j,2uk,

(3.24)with c̃iC =
ciC

2 and
Φ̄0 =

(

QeJChQ−1 Qf(a, b, h)Q−1B

0 0

)

, Φ̄i,j,l =

(

0 −QTi,j,lQ
−1B

0 0

)

,

Γ̄0 =

(

−QT0Q
−1B

I

)

, Γ̄i,j,l =

(

QTi,j,lQ
−1B

0

)

.

(3.25)The matri
es Ti,j,l are de�ned similar to (3.17) or (3.23). Note that l = {1, 2}, dependenton the cos or sin part of the equation, respe
tively, i denotes the ith eigenvalue and j thenumber of un
ertain parameters that depend in this eigenvalue. The fun
tion f(a, b, h) isequal to the primitive of eJCs, evaluated at s = h. For one 
omplex pair of eigenvalues,with algebrai
 multipli
ity 1, it is equal to the 
orresponding part in Φ̄0 in (3.16), and if thealgebrai
 multipli
ity is equal to 2, it is equal to H1, as de�ned in (3.22). The matrix T0is equal to the primitive of eJCs, evaluated at s = 0, for a system with multiple 
omplexeigenvalues it holds that T0 = T1,0 ⊕ T2,0 ⊕ . . .⊕ TpC ,0, with Ti,0 de�ned in (3.17) or (3.23) foreigenvalues with an algebrai
 multipli
ity 1 or 2, respe
tively.Both 
omplex and real eigenvaluesIf both 
omplex and real eigenvalues o

ur, a 
ombination of previous obtained results 
an beused. The Jordan matrix 
an be written as:
J = [JNZ ⊕ JZ ⊕ JC ], (3.26)



Robust stability 15where JNZ represents the Jordan blo
k with all real, non-zero eigenvalues, JZ the Jordanblo
k for all real, zero eigenvalues, JC the real Jordan blo
k with all 
omplex eigenvalues.A general notation of system (3.3) is thus a 
ombination of the previous obtained results:
ξk+1 = Φ0ξk +

∑pNZ

i=1

∑(ciNZ
−1)

j=0
(h−τk)j

j
eλi(h−τk)Φi,jξk

+ Γ0uk +
∑pNZ

i=1

∑(ciNZ
−1)

j=0
(h−τk)j

j! eλi(h−τk)Γi,juk

+
∑cZ

i=1
(h−τk)i

i! Φiξk +
∑cZ

i=1
(h−τk)i

i! Γiuk

+
∑pC

i=1

∑(ciC
−1)

j=0
(h−τk)j

j! eai(h−τk) cos(bi(h − τk))Φi,j,1ξk

+
∑pC

i=1

∑(ciC
−1)

j=0
(h−τk)j

j! eai(h−τk) sin(bi(h − τk))Φi,j,2ξk

+
∑pC

i=1

∑(ciC
−1)

j=0
(h−τk)j

j! eai(h−τk) cos(bi(h − τk))Γi,j,1uk

+
∑pC

i=1

∑(ciC
−1)

j=0
(h−τk)j

j! eai(h−τk) sin(bi(h − τk))Γi,j,2uk,

(3.27)
with

Φ0 =

(

Θ1 Θ2

0 0

)

, Γ0 =

(

Ψ1

I

) (3.28)and
Θ1 = Q

(

eJNZh ⊕ eJZh ⊕ eJCh
)

Q−1

Θ2 = Q
(

J−1
NZeJNZh ⊕

∑mZ−gZ+1
i=1

hi

i! Ši ⊕ f(a, b, h)
)

Q−1B

Ψ1 = −Q(J−1
NZ ⊕ OZ ⊕ T0)Q

−1B.

(3.29)The fun
tion f(a, b, h) and matrix T0 
orrespond to their de�nitions in (3.25). It holds that
Φi,j = Φ̂i,j and Γi,j = Γ̂i,j , as de�ned in (3.8), with Ŝi,j repla
ed by Ŝi,j ⊕ OZ ⊕ OC . Herein,
OZ and OC are zero-matri
es with the same dimension as JZ and JC , respe
tively. Similar, itholds Φi = Φ̆i and Γi = Γ̆i , as de�ned in (3.10), where S̆i is repla
ed by ONZ ⊕ S̆i ⊕OC , with
ONZ a zero-matrix with the same dimension as JNZ . Moreover, it holds that Φi,j,l = Φ̄i,j,land Γi,j,l = Γ̄i,j,l, as de�ned in (3.25), with the matrix Ti,j,l repla
ed by ONZ ⊕OZ ⊕Ti,j,l. Theparameters pNZ , pZ and pC denote the number of real non-zero, zero and pairs of 
omplexeigenvalues, respe
tively. ciNZ

, cZ and ciC denote the maximum Jordan blo
k of the ith realnon-zero, zero or 
omplex eigenvalue, respe
tively.The 
ompli
ated, general Jordan representation of the NCS (3.2), presented in (3.27) 
an besimpli�ed to:
ξk+1 =

(

F0 +

ν
∑

i=1

αi(τk, h, ...)Fi

)

ξk +

(

G0 +

ν
∑

i=1

αi(τk, h, ...)Gi

)

uk, (3.30)with αi fun
tions dependent on the time-delay τk, the sample-time h, and the eigenvalue
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ontrol of an NCS with time-varying delaysparameters λi or ai, bi. It is de�ned as:
αi =























































































Pc1NZ
−1

j=0
(h−τk)j

j!
eλ1NZ

(h−τk), for i = j + 1, j = {0, 1, . . . , c1NZ
− 1}Pc2NZ

−1

j=0
(h−τk)j

j!
eλ2NZ

(h−τk), for i = j + 1 + c1NZ
, j = {0, 1, . . . , c2NZ

− 1}...Pcp,NZ

j=0
(h−τk)j

j!
eλpNZ

(h−τk), for i = j +
PpNZ−1

s=1NZ
cs + 1, j = {0, 1, . . . , cp,NZ − 1}PcpZ

j=1
(h−τk)j

j!
eλ1(h−τk), for i = j + qNZ , j = {1, 2, . . . , cZ}PcpC

−1

j=0
(h−τk)j

j!
ea1C

(h−τk) cos(b1C
(h − τk)), for i = j + 1 + qZ + qNZ , j = {0, 1, . . . , cZ}...PcpC

−1

j=0
(h−τk)j

j!
eapC

(h−τk) cos(bpC
(h − τk)), for i = j + qZ + qNZ +

PpC−1
s=1

cs

2
+ 1, j = {0, 1, ..., cpC

}Pc1,C−1

j=0
(h−τk)j

j!
ea1C

(h−τk) sin(b1(h − τk)), for i = j + qZ + qNZ + qC

2
+ 1, j = {0, 1, ..., cp,C}...Pcp,C−1

j=0
(h−τk)j

j!
eapC

(h−τk) sin(bpC
(h − τk)), for i = j + qZ + qNZ + qC

2
+
PpC−1

s=1
cs

2
, j = {0, 1, ..., cp,C}(3.31)with qNZ the total number of time-varying parameters that depend on the real non-zeroeigenvalues:

qNZ =

pNZ
∑

i=1NZ

ci,with ci de�ned in (2.5) for the ith real non-zero eigenvalue, 1NZ the �rst real non-zero eigen-value and pNZ the number of distin
t real non-zero eigenvalues. qZ denotes the number oftime-varying parameters that depend on the zero eigenvalues:
qZ = cZ ,with cZ de�ned a

ording to (2.5). qC denotes the total number of time-varying parametersthat depend on the 
omplex eigenvalues:
qC =

pC
∑

i=1C

ci,where pC denotes the number of distin
t pairs of 
omplex 
onjugated eigenvalues, 1C the�rst pair of 
omplex eigenvalues and ci de�ned in (2.5), whi
h denotes the number of distin
teigenve
tors. Note that ci is always an even number, be
ause it represents two eigenve
torsfor one pair of 
omplex eigenvalues.For the matri
es, Fi, Gi, i = {0, 1, 2, ..., ν} it holds that:
F0 = Φ0, Fi =

(

0 Θ3,i

0 0

)

, G0 = Γ0, Gi =

(

−Θ3,i

0

)

, (3.32)with Φ0 and Γ0 de�ned in (3.28). To de�ne Θ3,i, we �rst de�ne OZ , whi
h is a zero-matrixwith the same dimension as JZ , ONZ a zero matrix with the same dimension as JNZ and OC



Robust stability 17a zero-matrix with the same dimension as JC . Then Θ3,i is given by:
Θ3,i =



























































































































�
0 −QJ−1

NZ(Ŝ1,j ⊕ OZ ⊕ OC)Q−1B

0 0

�
, for i = j + 1, j = {0, 1, . . . , c1NZ

− 1}�
0 −QJ−1

NZ(Ŝ2,j ⊕ OZ ⊕ OC)Q−1B

0 0

�
, for i = j + c1N Z + 1, j = {0, 1, . . . , c2NZ

− 1}...�
0 −QJ−1

NZ(ŜpNZ ,j ⊕ OZ ⊕ OC)Q−1B

0 0

�
, for i = j +

PpNZ−1
s=1NZ

cs + 1, j = {0, 1, . . . , cpNZ
− 1}�

0 −Q(ONZ ⊕ S̆j ⊕ OC)Q−1B

0 0

�
, for i = j + qNZ , j = {1, . . . , cpZ

}�
0 −QJ−1

NZ(ONZ ⊕ OZ ⊕ T1,j,1)Q
−1B

0 0

�
, for i = j + qNZ + qZ + 1, j = {1, . . . , c1C

}...�
0 −QJ−1

NZ(ONZ ⊕ OZ ⊕ T1,j,1)Q
−1B

0 0

�
, for i = j + qNZ + qZ +

P(pC−1)C
s=1C

(cs) + 1, j = {1, . . . , cpC
}�

0 −QJ−1
NZ(ONZ ⊕ OZ ⊕ T1,j,2)Q

−1B

0 0

�
, for i = j + qNZ + qZ + qC

2
+ 1, j = {1, . . . , c1C

}...�
0 −QJ−1

NZ(ONZ ⊕ OZ ⊕ T1,j,2)Q
−1B

0 0

�
, for i = j + qNZ + qZ + qNZ

2
+
P(pC−1)C

s=1C
(cs) + 1, j = {1, . . . , cpC

}(3.33)The parameter ν gives the number of di�erent un
ertain time-varying fun
tions and is equalto:
ν = qNZ + qZ + qC , (3.34)with ν smaller than or equal to n (obtained from A ∈ R

n×n).3.2 Robust stabilityFor system (3.3) a full-state feedba
k 
ontrol law is adopted, uk = −Kxk. In this 
ase, we
an simplify (3.3) to:
χk+1 = Â(τk)χk, (3.35)with χk =

(

xk xk−1

)T , Â(τk) =

(

eAh −
∫ h−τk

0 eAsdsBK −
∫ h

h−τk
eAsdsBK

I 0

) and τk ∈

[0, τmax], τmax ≤ h.For this system we 
an investigate the stability of the equilibrium point xk+1 = 0. In thisstability analysis, the previously derived Jordan forms are used, where the matrix A 
an
onsist of real and 
omplex eigenvalues.Note that, due to the time-varying delay τk, a set of matri
es Â(τk) 
an be 
onstru
ted:
Â =

{

Â(τk) : τk ∈ [0, τmax], k ∈ Z
+
}

. (3.36)



18 Robust 
ontrol of an NCS with time-varying delaysTo �nd a general solution of the integrals in the system matrix Â(τk), system (3.35) is rewrittenin its Jordan form representation, similar to (3.30):
χk+1 =

(

F̂0 +
ν
∑

i=1

αi(τk, h, ...)F̂i

)

χk, (3.37)with the matri
es F̂i derived similar to (3.30), as:
F̂0 =

(

Θ1 − Ψ1K −Θ2K

I 0

)

, F̂i =

(

Θ3,iK −Θ3,iK

0 0

)

, (3.38)with i = {1, 2, ..., ν} and all other parameters equal to (3.29) and (3.33).System (3.37) 
ontains the un
ertain time-varying parameters αi, whi
h may be nonlinear in
τk. These parameters form, together with the matri
es F̂i, i = {1, 2, ..., ν} a set of systemmatri
es for (3.37) that 
an be tested to derive the stability of the system. This set F̂ isrepresented by:

F̂ =

{

F̂0 +
ν
∑

i=1

αi(τk, h, ...)F̂i : τk ∈ [0, τmax]

}

. (3.39)For ea
h un
ertainty parameter an overestimation 
an be derived, based on
αi = αi + δi(αi − αi), i = {1, 2, ..., ν}, (3.40)where δi 
an take any value in the interval [0, 1] and αi, αi are de�ned as the maximum andminimum of the fun
tion αi, respe
tively:
αi = maxτk∈[0,τmax] αi(τk, h, ...)

αi = minτk∈[0,τmax] αi(τk, h, ...),
(3.41)for given h and λi, ai, bi.Then, the set F̂ , as in (3.39), 
an be overestimated by:

F̄ =

{

F̄0 +
ν
∑

i=1

δiF̄i : δi ∈ [0, 1], i = {1, 2, ..., ν}

}

, (3.42)with F̄0 = F̂0 +
∑ν

i=1 αiF̂i and F̄i = (αi −αi)F̂i. Note that ea
h δi 
an be 
hosen individuallyfrom the set [0, 1].Now, it is obvious that it holds that:
Â = F̂ ⊂ F̄ . (3.43)For stability of the origin of (3.35) it is su�
ient to prove stability for χk+1 = F̄χk, for any

F̄ ∈ F̄ . The set of matri
es F̄ is in�nite, but every matrix in this set 
an be written as a
onvex 
ombination of the generators (
orner points) of this set. First, we de�ne the set ofgenerators of F̄ , whi
h is given by:
H =

{

F̄0 +
ν
∑

i=1

δiF̄i : δi = {0, 1}, i = {1, 2, ..., ν}

}

. (3.44)



Robust stability 19Note that the set H 
onsists of 2ν matri
es, whi
h we will denote individually by Hj , j =
{1, 2, ..., 2ν}. Se
ond, we de�ne the 
onvex overapproximation of F̄ , based on this set ofgenerators, by

H̄ =







2ν
∑

j=1

(µjHj) :
2ν
∑

j=1

µj = 1, µj ∈ [0, 1], j = {1, 2, ..., 2ν}







. (3.45)Note that this set is again in�nite, due to all allowable values of µj , j = {1, 2, ..., 2ν}. It isobvious that it holds that:
F̄ ⊆ H̄. (3.46)Now, we formulate a result, posing su�
ient 
onditions, based on LMIs, for the asymptoti
stability of the origin of (3.35) for time-varying delays τk ∈ [0, τmax] with τmax ≤ h.Theorem 3.2.1 Consider the networked 
ontrol system (3.35) with time-varying delays takenfrom a bounded set τk ∈ [0, τmax], with τmax ≤ h. Consider the set of matri
es H de�ned by(3.44), (3.42), (3.39), (3.38) and parameterized by τmax. If there exists a P ∈ R

2n×2n su
hthat the following LMI 
onditions are satis�ed:
P = P T > 0

HT
j PHj − P < 0, ∀Hj ∈ H,

(3.47)then (3.35) is robustly GAS for any time-varying delay τk satisfying τk ∈ [0, τmax] ∀k ∈ Z
+.Proof Consider the quadrati
 Lyapunov fun
tion V = χT

k Pχk. The existen
e of a 
ommonquadrati
 Lyapunov fun
tion for all Â(τk) ∈ Â is su�
ient for the asymptoti
 stability of theorigin of system (3.35). Therefore, we require that:
∆V = χT

k

(

Â(τk)
T PÂ(τk) − P

)

χk < 0, ∀τk ∈ [0, τmax], τmax ∈ [0, h].Due to the overapproximation of Â by H̄, as shown in (3.46) and (3.43), it is su�
ient torequire:
∆V = χT

k





2ν
∑

j=1

µjH
T
j P

2ν
∑

j=1

µjHj − P



χk < 0, ∀µj ∈ [0, 1], j = {1, 2, ..., 2ν}, (3.48)satisfying∑2ν

j=1 µj = 1. The use of S
hur's 
omplement [16℄ allows us to rewrite the inequalityin (3.48) in the form of the following LMI:
(

P
∑2ν

j=1 µjH
T
j P

P
∑2ν

j=1 µjHj P

)

> 0,whi
h 
an be rewritten as:
2ν
∑

j=1

µj

(

P HT
j P

PHj P

)

> 0.Reapplying S
hur's 
omplement, in 
ombination with µj > 0, ∀j ∈ {1, 2, ..., ν} gives (3.47).
�
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