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Chapter 1

Introduction

Networks and control is a challenging and promising direction for current and future research in
the area of control engineering, as described by the expert panel on future directions in control,
dynamics and systems [1]. Two different research areas are distinguished in [2]: control over
networks and networked control systems (NCSs). Control over networks studies the control
problems in networks, such as congestion control and is also part of the field of information
technology. Networked control systems consist of one or more control loops that are closed
over a communication network. One of the research issues is the stability analysis of the NCS.
In this report, we focus on the effect of time-varying delays on NCSs.

An NCS exists of a system coupled over a communication network to a controller. The system
behaves in continuous-time, while the controller is executed on a processor in discrete-time.
A schematic overview of an NCS is depicted in Figure 1.1.

Plant

Communication network

Controller

Figure 1.1: Schematic overview of an NCS.

Compared to the traditional point-to-point control systems, where the controller is directly
linked to the actuators and sensors of the plant, advantages of an NCS are increased flexibility,
the possibility to use decentralized control, decreased maintenance costs and reduction of
the system wiring [3], [4]. A disadvantage is the complicated analysis, due to the use of
the communication network. Four different aspects of the network need to be taken into
account [4], [5]. First, time-varying delays between the controller and system (plant) and
vice-versa occur. Second, package loss, i.e. data that does not arrive at the controller or plant,
occurs. Third, multiple packets to send all data over the network may be needed, which may
result in delivery of part of the data. Fourth, variations in the sample-time may occur. Here,
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we assume that all data is sent in one packet, that all packets arrive and that the sample-time
is constant.

The network induced time-varying delays, in combination with the computation time, con-
sumed by the controller, affect the stability of the controlled system. Different approaches to
model an NCS and investigate its stability are described in literature.

Probably, the first NCS model with time-delay, is proposed in [6]. They propose a finite-
dimensional, time-varying discrete-time model, based on a time-driven sensor and controller
and an event-driven actuator. The model is based on describing the available control inputs,
during one constant sample-interval. The stability of constant delays and known periodic
time-varying delays can be determined, based on checking the eigenvalues of the corresponding
systems.

A comparable model is given in e.g. [7], [8], and [9]. They use a discrete-time representation,
but assume a time-driven sensor and an event-driven controller and actuator. These assump-
tions allow to sum all three time-delays together, which simplifies the model, because only
one total time-delay is used, instead of three separate terms. In [7| the model and stability
analysis are limited to constant time-delays. In [8] an example is presented where bounded
time-varying delays result in instability, while the controller was designed to stabilize the sys-
tem for all constant delays within the same bound. This example shows the need of robust
control analysis and synthesis for systems with time-varying delays. In [9] the variation of the
time-delay is modeled, using either a probability distribution or a Markov chain. For both
cases the stability is analyzed and optimal controllers are designed.

In this technical report, we adopt the model of [7] and derive stability conditions for uncertain
time-varying delays that are upperbounded by the sample-time. The stability conditions are
based on a Jordan form representation of the continuous-time system matrices. Here, the
Jordan based representation is derived for the case of only real eigenvalues, only complex
eigenvalues and a combination of real and complex eigenvalues.

In Section 2, the real Jordan form and the Jordan canonical form are discussed in general. In
Section 3, the Jordan form representation of the NCS is derived and stability conditions are
proposed.



Chapter 2

Preliminaries

2.1 Jordan Canonical Form

For every square matrix A € R™ ", there exists a Jordan Canonical Form J € R™*" given
by [10], [11];

J=Q'AQ, (2.1)
with @ € R™*™ a matrix that contains the generalized eigenvectors of A and
Jp 0 ... 0

0 Jy 0
J=[h&. . eJy)=] . o (2.2)

0 0 ... J,
where J; is called a Jordan block, which has a block diagonal form, represented by one of the
following matrices:

\i 0 ... 0
. N1 ... 0
. N1 0 ' '
A 0 N/’ 0 A 1],]: S I (2.3)
' 0 0 N 0 0 ... N 1
0 0 ... 0 N

with ); the i eigenvalue of the matrix A. Therefore each J; in (2.2), with i € {1,2,...,p}
corresponds to one distinct eigenvalue. If the geometric multiplicity g; of the Xgh eigenvalue is
equal to one, then the dimension of the i*” Jordan block is equal to the algebraic multiplicity
m; of the A" eigenvalue. If the geometric multiplicity (g;) is unequal to one, then g; Jordan
blocks describe the Jordan block associated with \;:

J; = [J@l D Ji’g, ey @Ji,gi]- (24)

The largest Jordan block in J; determines, the number of different parameters (see e.g. (2.7))
that can be obtained from the Jordan block J;. Therefore, we define:

¢i=_ max dim(J;3), (2.5)
j:{1’27“-7gi} ’
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where dim(J) denotes the dimension of the square matrix J.

The dimension of the combined g; Jordan blocks in J; in (2.4) is equal to the algebraic
multiplicity m; of the i*" eigenvalue!. Note that the geometric multiplicity can never exceed
the algebraic multiplicity of A;, so 1 < g; < m, [12], and [13].

For the exponential of A it holds that:
A =Qle @ ... @ elmQ L (2.6)

The exponential functions of the Jordan blocks of (2.3) are, respectively, given by:

2 f(k—1)
1t 5 i
¢ tlk—2
et (1T At Lty At Ot
erit e 01’62 01 t],e™]. . : , (2.7)
00 1 0 0 1 t
0 0 0 1

with k& the dimension of the corresponding Jordan block.

2.1.1 Real Jordan Form

If the matrix exhibits complex eigenvalues A\ = a + bj, the Real Jordan Form (RJF) [14], [15]
is more useful, because it avoids the occurrence of complex matrices J and @ in (2.1). A
complex Jordan block J;(a + bj) can be replaced by a Jordan block K;(a,b), of the form:

D I 0 ... 0
0O D I ... 0
D I D10 ) )
D, 0 D) 0O D I]|,]: S, (2.8)
0 0 D 0 0 D I
0 O 0 D
with the matrix D(a,b), defined as
D= (% ") —artor (2.9)
- b a =a T -

with I the identity matrix and L2 = —1.

Every square matrix A can be written in the Real Jordan Form as:
K = R'AR, (2.10)
with K € R™" R € R™" and the Real Jordan Form K (a,b) defined as:

K=[K&.. &Ky (2.11)

!The algebraic multiplicity describes the number of times that an eigenvalue occurs. The geometric mul-
tiplicity is equal to the dimension of the nullspace of (A;] — A), and can be computed as: nullity(A\;] — A) =
n —rank(A\;I — A), with n the dimension of A.
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and K; defined in (2.8) and (2.9). Note that for real eigenvalues the Real Jordan Form is
equal to the Jordan Canonical Form.

The exponential function of the Real Jordan blocks, given in (2.8), is:

Dt _Dtt Dtt? Dt _th—1
e e € g (k—1)!
Dt _Dtt Dt Dtt . Dtt? Dt _th=2
o (€Dt Dt e e 37 N € -2
T i
€ 7( 0 eDt1 ) ) 0 eDt Dtﬂ ) : ) (212)
0 0 et : Dt Dt t
0 0 e et 5
0 0 0 elt
with
cosbt —sinbt
ePt =eat (™ . (2.13)
sinbt  cos bt

Obviously, if both real and complex eigenvalues occur, combinations of the exponential of the
Real Jordan blocks (2.8) and Jordan blocks as in (2.3) are used.



Chapter 3

Robust stability of an NCS with
time-varying delays

This chapter deals with the stability analysis of Networked Control Systems with small time-
delays, i.e. the time-delay is upperbounded by the sample-time. First, a standard discrete-time
NCS-model is described in Section 3.1. Next, this model is rewritten in a Jordan form, where
both the cases with real and complex eigenvalues are investigated. In Section 3.2 the robust
stability problem is solved for systems with time-varying delays upperbounded by the sample-
time.

3.1 NCS model

In this chapter, the discrete-time description of an NCS of [8] and [7], will be used. The NCS
is schematically depicted in Figure 3.1. It consists of a continuous-time plant and a discrete-
time controller, which receives information from the plant at the sampling instants ¢, only.
Additionally, in the model, the computation time and the networked induced delays, i.e. the
sensor-to-controller delay and the controller-to-actuator delay, are taken into account. The
sensor acts in a time-driven fashion, while the controller and actuator act in an event-driven
fashion. Under these assumptions, all delays can be represented by a single delay 7 that
delays the control input wuy with respect to the measurement yj, [9]. The sampling moments &
are determined by the time-driven sensor output y;. The continuous-time model of the NCS

is given by:
i(t) = Ax(t)+ Bu*(t)
u*(t) = wuy, fortekh+ 11, (k+1)h+ 7441]

with A € R™", B € R™*!, C € R™" the continuous-time system matrices; z(t) € R" the
state; t € R the time; 75 the delay for sampling moment k; y; € R™ the discrete-time mea-
surement; and uy € R the (delayed) discrete-time input for sample moment k. For simplicity,
we assume that we measure the entire state at the sampling instants, i.e. y = Cxy, with
C the identity matrix. Note that the sensor-to-controller delay is not present in this output
equation, because it was already accounted for in the total time-varying delay 7.
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Figure 3.1: Schematic overview of the networked control system.

If we assume that the total delay 7 is smaller than the constant sample-time h at every
sampling moment k, the discretization of (3.1) gives the NCS model:
h—Ty h
Tyl = eAMlrr + / e dsBuy, + / e dsBug_1, (3.2)
0 h

—Tk

with xx, ux the discretized state and control input, respectively. Defining the extended state
vector &, = [ 1{ uffl ]T results in the following state-space model, given a maximum delay
Tmaz € [07 h]

€1 = A(Te)& + B()uk, 7 € [0, Tinaal, (3.3)

B Ah h As B h—7x _As
with A(7) = (60 thkz dSB) and B(r) = <f0 ? dSB>.

3.1.1 Jordan forms of the NCS model

To perform analysis on system (3.3), the system can be rewritten as a combination of constant
matrices that are multiplied by time-varying delay 75 dependent parameters. Here, we will
use the Jordan forms, as presented in Section 2.1.

The Jordan form representation of the continuous-time matrix A is given by:

A=QJIQ, (3.4)

with J the Jordan Canonical Form, Real Jordan Form or a combination'. System (3.3) can
be rewritten as:

_ h s — h—Ty s —
o <Qeﬂ(;@ L Qe 13) b (07 QBB oy e 0. (39

Real eigenvalues

For simplicity, first, we will consider a situation with only real eigenvalues that can be multi-
plicative. If none of the eigenvalues are equal to zero, J = Jyz is invertible and the integrals

!The Real Jordan Form is equal to the Jordan Canonical Form if the eigenvalues are real.
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in (3.4) can be solved, which gives in general:

JInzh)—1 J-leInzho-1p 0 —QJlelnz(h-m)0-1B
Chp1 = <Qe 0 @ Qlyze 0 @ &+, @Jnze 0 @ )§k~|—
<—QJN%Q-1B> . (QJ&%eJNZé“leB) .

(3.6)

The matrix e/~¥2(h=7k) contains the time-varying parameters 74, and can be rewritten as:

Cz
oINz(h=Tx) _pNZ ) *Tk A(hw)A
> Z Sig> (3.7)
=1 7=0

where pyz denotes the number of different eigenvalues of A and ¢;,, is defined in (2.5)
as the dimension of the largest Jordan block of the i** non-zero eigenvalue. The matrix
S;,; € R™ ™ is an appropriate matrix, with a one at the matrix entries of e/Nz(h=7k) dependent

‘ 1 10
of (h_]#ye&(h_“ﬂ) and a zero at all other matrix entries. For example, if Jyz =0 1 1],
0 0 1

it holds that pyz = 1, ¢; = 3, which gives

h — Tk)2

eN2hh) = TGy o+ (B — )T Sy + ( ") G 5,

X 1 00 R 0 1 0 K 0 0 1
with S10 =10 1 0], S11=|(0 0 1],and S12= (0 0 O Another example is
0 0 1 0 0 O 0 0 0

1 00
given to show the differences in 5’” that can occur. If Jyz = |0 2 1], it holds that
0 0 2
pNz =2, ¢ =1 and ¢cg = 2, which gives
e/NahmT) — TGy o 4 PTG, o 4 (h— 7)) Sy 4,
A 1 00 0 0O X 0 00
with S10=10 0 0],S20=|(0 1 0] and So1= [0 0 1]. From these examples, it
0 0O 0 01 0 00

is obvious that the shape of 5’” depends on the used combination of Jordan blocks.

For eigenvalues unequal to zero, system (3.6) can be rewritten in a form where all matrices
are independent of the time-varying delay:

~ C; -1 —T j (h—T1 z
€k+1 _ (I)ofk—l- (nglz (ZE:](\)]Z )(h]i'k)]> ekl(h k)) (I)i,jfk‘f‘

~ ing 1 —7 )7 (h— I~
Couy, + Y027 (E;C:]gz : (h—j!k)J) AT, g,

with &g = (Qemh@_l Q‘]lee‘]”hQ_lB) bi s — <0 —QJNIZSi,jQ‘lB>,fO _ (—QJN}Q*B

2V

0 0

K 1a -1
and I'; ; = <QJNZS6’]Q B).

0 0
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If eigenvalues equal to zero occur, the inverse of the Jordan matrix does not exist and descrip-
tion (3.8) can not be used. For simplicity, a system with all eigenvalues equal to zero will be
described first (J = Jz). System (3.5) can be rewritten as:

Jzh)—1 cz (n _ (h= Tk 1
o - (00 =i (5 ; ) Q850 B>£k+

3.9
54 08,071 Y
j=1 z' Uk, Tk € [O,Tmax]v

with ¢z the size of the maximum Jordan block for the zero eigenvalues defined in (2.5),
S a matrix with all zeros, except ones at the matrix entries of e/2("=7) corresponding to

(h;#y For example, if Jz = <8 é) this gives ¢z = 2 (because gz = 1), which results in

5 10 5 0 1Y.
Sl = (0 1> and SQ = <0 O> m (3.9).

Splitting up (3.9) in a constant and a delay-dependent part gives:

h —
i1 = <1>o§k+z USO8 3 §k+Fouk+Z ’“) Ujug, 7 € [0, Tmaz),  (3:10)
7j=1
. Jzh)—1 %z bW & . O—1 . —_08%.0-1 .
with &g = (Qe ZOQ ZQ:I J!CO?SJQ B), <I>] = (8 QS]OCQ B> Iy = <?), and

- (Qgﬁg‘lB)_

If the system has real eigenvalues that are both zero and non-zero, then a combination of (3.8)
and (3.10) is needed. The Jordan matrix becomes:

J=JNz ® Jz, (3.11)

with Jyz the combination of Jordan blocks for all non-zero eigenvalues, and J the combina-
tion of Jordan blocks for all zero eigenvalues. System (3.3) is now represented by:

G = dog+ TIPS Bpl g, g
= !
+ Touk +h iy Zﬁc!o” D (hom)) }ij) 6]A~(h Tk)Fi,juk (3.12)
—+ ijl jq!—k (I)Jgk + Z;i Tk) P ky Tk € [OaTmaa:]a

with (i>0 _ <Q€JhQ_1 Q(J L odnzh @ Z;zl ijzf )Q—IB>’ f‘o _ (Q(th/lz e OZ)Q—IB);
0 0 1

(i)i,j = ”- and F” = sz as defined in (3.8), where S”- is replaced by S” = S” @ Og;

b, = <i> and T; = F as defined in (3.10), where S is replaced by S =OnNgz EBS Herein, Oy

is a matrix with only zeros and has a dimension equal to Jz, and ONZ is a matrix with only

zeros and has a dimension equal to Jyz. Note that the matrices 5'” and S’Z have the same

dimension as Q.
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Complex eigenvalues

If A has only complex eigenvalues, the Real Jordan Form can be applied to avoid the occurrence
of complex elements in the system matrices. First, we will consider a situation with one pair

“ _ab). The exponential of the Real Jordan

of complex conjugated eigenvalues, thus Jo = ( b

Matrix e’/c* is then given by:

Jos _ s <cos(bs) - sin(bs)> |

c sin(bs)  cos(bs)

To determine the matrices in (3.5) the corresponding integrals need to be solved. Note that
it holds that:

us B eas )
/e cos(bs)ds = P (acos(bs) + bsin(bs)), (3.13)

and
/ e sin(bs)ds = a2€7+b2 (asin(bs) — beos(bs)) . (3.14)

Then, system (3.3) can be rewritten with matrices ®; and T; that are independent of the
time-varying delay 7:

Ser1 = (Pio+ a2+bz> cos(b(h — 1)) P10 + © 2+;§) sin(b(h — Tk))i’l,o,z> &k (3.15)
+ (To+ 5% cos(b(h — 73))Tron + g sin(b(h—Tk))l_“Lg,g) wg,
with
¢ahQ) cos(bh) —sin(bh) 0l <o acos(bh) + bsin(bh) —asin(bh) + bcos(bh) 0B
Py = sin(bh)  cos(bh) a*+b2 \ g sin(bh) — beos(bh)  acos(bh) + bsin(bh) ,
0 0
& — (Y —QT10,.Q'B & o (Y —QT102Q7'B
1,0,1 0 0 s @102 0 0 ;
£ (~QTo@ 'B
1,0 = T ;
by (QT1,0,1Q_IB> B <QT1,0,2Q_IB>
1,01 = 0 s 1102 = 0 ;
(3.16)
with
1 a b a b b —a

If a pair of complex conjugated eigenvalues occurs twice, another Real Jordan Matrix needs to
be used. In this case, besides the integral of (3.13) and (3.14), two additional integrals need
to be solved:

as as
(&

/seas cos(bs)ds = cﬂL—ka (acos(bs) + bsin(bs))—Fm ((b* — a®) cos(bs) — 2absin(bs)) ,
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(3.18)
and
/seas sin(bs)ds = aQL—H)? (asin(bs) — bcos(bs))—i—(Clzj_ilﬁ)2 ((b* — @) sin(bs) + 2abcos(bs)) .
(3.19)
System (3.3) can now be formulated as:
= ea(h—7g) = ealh—7g) . =
€k+1 = (‘I)Lo + W COS(b(h — Tk))q)1’071 + W sm(b(h — Tk))(bl,O,Q
a(h—T = ea(h—7 . =
(= ) Syt cos(b(h — ) Bra + (b= m) S sin(b(h — 7)) P11z ) &
o h=mp) = ) a
+ (T10+ azh+b§ s(b(h — 7)) T'1,0,1 + # sin(b(h — 7%))T'1,0,2
ea(h—7g) = ea(h—Tg) . =
+ St (=) os(b(h = )T + S (b — m) sin(b(h — 7)1 ) i,

(3.20)

The matrices ®; and T'; are all functions that are dependent of the parameters a, b, h and can
be determined similar to the situation with only one complex pair of eigenvalues, they are:

cosbh —sinbh hcosbh —hsinbh
sinbh cosbh hsinbh hcosbh

_ ah 1 1
D= Qe 0 0 cosbh ~ —sinbh Q QHQ™ B ,
0 0 sin bh cos bh
0 0
& . — (0 —QToaQ7'BY & (0 —QTi02Q7'B
1,0,1 0 O bl 1,0,2 0 0 Y (321)
... (0 -QT11.Q7'B B0 (0 —QT12Q7'B
11,1 0 0 , 1o 0 0 ;
= -QT1pQ 'B\ = _ (QTp1Q'B\ = QT02Q 'B
Fo= s P01 = , T'10,2 )
I 0 0
_ (QT1.Q7'BY QT,12Q 'B
INERE 0 y T2 = 0 ;
with
acosbh + bsinbh —asinbh + bcosbh l1 lo
I - eth asinbh — bcosbh  acosbh + bsin bh I3 Iy
N 0 0 acosbh + bsinbh —asinbh + bcos bh
0 0 asinbh — bcosbh  acosbh + bsinbh
(3.22)
with
l1 = h(acosbh + bsinbh) + 2+b2 ((b* — a®) cos bh — 2absinbh) ,
lo = h(—asinbh + bcosbh) — 2+b2 (2abcosbh + (b* — a?)sinbh) ,
I3 = h(asinbh — bcosbh) + 21%2 (2abcosbh + (b* — a?)sinbh) ,
ly = h(acosbh + bsinbh) + -4 ((b* — a®) cos bh — 2absin bh) ,
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and
b2 —a? 2ab b2 —a? —2ab
¢ b TmE e ¢ b omp aim
et 0 0 a b w 0 0 a b
0 0 ) a 0 0 -b a
_ 2 32
b ggi“,% ZQT% 00 a b
a b =L 20 00 —b a 3.93
Tb Tb — .
T10,2 00 ab “_a y 11 00 o ol (3.23)
0 0 a b 00 0 0
0 0 b —a
0 0 a O
Tii2=1g 0 0 o0
00 0 O

Previous obtained results for complex eigenvalues are only valid for conjugated pairs of eigen-
values for which ¢;,, defined in (2.5), is equal to 2 or 4. Generalizing, dependent on the
number of different complex conjugated pairs of eigenvalues pc, and their resulting number
of variable parameters ¢;, the following general equation holds:

Ehi1 = Po&r+ 2% 12% I)M =) cos (b (h — 7)) i 16k
+ ‘ 12010 Ve ng) al(h ™) sin(bi(h — 7))@ j 26k
(
)T

@ h (3.24)
+ Fouk + Z 6 Tﬂ“) ai(h=7) cos by (h — 1) )T j 1wk
(Gic—1 7] a T
+ 1 Zj:g : % i(h=7e) sin(b; (h — 7k))Ls 5,20k,
with ¢;, = C’TC and
3 QeehQt Qf(a,b,h)Q'BY & 0 -QT;;,,Q"'B
q)O = ) ¢]l = o 5
0 0 ’ 0 0 (3.25)
= -QToQ™'B\ - QT;,;,Q"'B :
FO = I 9 F ,]l ’ O

The matrices T; j; are defined similar to (3.17) or (3.23). Note that I = {1,2}, dependent
on the cos or sin part of the equation, respectively, i denotes the i*" eigenvalue and j the
number of uncertain parameters that depend in this eigenvalue. The function f(a,b,h) is
equal to the primitive of e/¢*, evaluated at s = h. For one complex pair of eigenvalues,
with algebraic multiplicity 1, it is equal to the corresponding part in ®q in (3.16), and if the
algebraic multiplicity is equal to 2, it is equal to Hi, as defined in (3.22). The matrix Tj
is equal to the primitive of e/¢%, evaluated at s = 0, for a system with multiple complex
eigenvalues it holds that To = T ® T2 0@ ... S Ty 0, with T defined in (3.17) or (3.23) for
eigenvalues with an algebraic multiplicity 1 or 2, respectively.

Both complex and real eigenvalues

If both complex and real eigenvalues occur, a combination of previous obtained results can be
used. The Jordan matrix can be written as:

J=[Inz®Jz & Jc), (3.26)
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where Jyz represents the Jordan block with all real, non-zero eigenvalues, Jz the Jordan
block for all real, zero eigenvalues, Jo the real Jordan block with all complex eigenvalues.

A general notation of system (3.3) is thus a combination of the previous obtained results:

(Cin,—1 T T
Eep1 = Polp + 20N =0 0 ;%& DG
4 Toup,+ pNZ Z]:na/z %e/\ i(h— T/c)I‘muk
+ Z?ZI h ZlTk 16 + Z h sz Fﬂtk;
+ 1 Z Czc 1) (h—mi)? ‘f'k) az(h Tk) cos(b;(h — Tk))q)i,j,lgk (3.27)
N c. Z czc 1) w ai(h="r) gin (b; (h — 7)) Pij.28k
n o i ch—I) hiﬂc) e%(h=7k) cos(b;(h — 71,) )Ty j1ur,
N 3 Czc M e =) sin (b; (h — 73,)) T j 2 U,
with
. @1 @2 _ \Ijl
CI’O—(O O)’FO_<I> (3.28)
and

@1 — Q ( JInzh D erh D eJCh) Q*l
—Q(Uxkelveh e A S 6 fla,b, ) QB (3.29)
lI’1 = _Q(JNZ ® 0z & T)Q 'B.

The function f(a,b, h) and matrix Ty correspond to their definitions in (3.25). It holds that
;= (i)i,j and I'; j = f‘iyj, as defined in (3.8), with S'” replaced by 5’” @ Oz @ O¢. Herein,
Oz and O¢ are zero-matrices with the same dimension as Jz and J¢o, respectively. Similar, it
holds ®; = ®; and I'; = I; , as defined in (3.10), where S, is replaced by Onz &® S; @& O¢, with
Onz a zero-matrix with the same dimension as Jyz. Moreover, it holds that ®; ;; = 'i)i,j,l
and I'; j; = T'; j;, as defined in (3.25), with the matrix T; ;; replaced by Onz @Oz @T; ;. The
parameters pyz, pz and pc denote the number of real non-zero, zero and pairs of complex
eigenvalues, respectively. ¢;,,, ¢z and ¢;, denote the maximum Jordan block of the ith real
non-zero, zero or complex eigenvalue, respectively.

The complicated, general Jordan representation of the NCS (3.2), presented in (3.27) can be
simplified to:

§k+1 = (Fg + Z Ozi(Tk, h, )Fz> fk + (Go + Zai(Tk, h, )Gz> Uk, (3.30)
=1

i=1

with «; functions dependent on the time-delay 73, the sample-time h, and the eigenvalue



16  Robust control of an NCS with time-varying delays

parameters \; or a;, b;. It is defined as:

Yoz Ul_j—"!—’“)je)‘lzvz(h_%), fori=j+1,j={0,1,...,c15, — 1}
e (gl danz (W) for i =+ 1+ ciyy,, 5 ={0,1,...,ca5, — 1}

Sy Bemdl dowz () for i = 4+ N oo +1, = {01, ., ez — 1}

j=0 S s=1INz
g ol M= for i =+ qnz, § = {1,2,...,cz}
cp~—1 —) a —r . . .
o; = > (i)’ j!’“>]e 1c (=) cos(byy, (h — k), for i =j + 14 qz +qnz, § = {0,1,...,¢cz}

-1 —713)7 — Tk : - - 1 y
Zji% (hj—!k)]veapcw 2 COS(bPC(h - Tk))v for i = J+az+aqnz + Z:gl ! %é +1,j= {0? 1, "'7CPC}
Yoghs el oo () sin (b (h — 7)), for i =+ qz +qnz + 2 +1, 5 ={0,1,...,cp0}

Yrs T e etre ) sin(byg (b — ), for i = j 4z +anz + 9+ X0 S, 5 ={0,1, ., 0p0)
(3.31)

with ¢nz the total number of time-varying parameters that depend on the real non-zero
eigenvalues:

PNz

qNz = Z Ci,

i=lnz

with ¢; defined in (2.5) for the i*" real non-zero eigenvalue, 1y the first real non-zero eigen-
value and pyz the number of distinct real non-zero eigenvalues. gz denotes the number of
time-varying parameters that depend on the zero eigenvalues:

qz = Cz,

with ¢z defined according to (2.5). gc denotes the total number of time-varying parameters
that depend on the complex eigenvalues:

pc

qac = Z Ci;

i=lc

where po denotes the number of distinct pairs of complex conjugated eigenvalues, 1¢ the
first pair of complex eigenvalues and ¢; defined in (2.5), which denotes the number of distinct
eigenvectors. Note that ¢; is always an even number, because it represents two eigenvectors
for one pair of complex eigenvalues.

For the matrices, F;, G;, i = {0,1,2,...,v} it holds that:

_ (0 ©3; _ (O3
F0_<I>0,Fl_<0 0>,G0—F0,Gz—< 0 >, (3.32)

with ®g and I'y defined in (3.28). To define ©3;, we first define Oz, which is a zero-matrix
with the same dimension as Jz, Onz a zero matrix with the same dimension as Jyz and O¢
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a zero-matrix with the same dimension as Jo. Then O3 ; is given by:

r —_OJ=L (8, . -1
<8 QJNZ(SLJ@OOZ@OC)Q 3)7fO”.:jH’j:{O’LM’%Z71}

1,48 —1
<8 _QJNz(SQ’J@(?Z@OC)Q 3)7 fori=j+eciyz+1,j={01,. .. cop, —1}
' N —1 /4 ) -1
<8 QJNZ(SPNZ»JGSOZ@OC)Q B), fori:j+zzs)£1z;zlcs+1,j:{0,17...,CpNz_1}
0 —Q(O S;®0c)Q'B o .
<0 QOnz & 669 )Q ),for1:]+qNZ,]:{1,...,cpZ}
0 —QJy,(O Oz®Ti;1)Q 'B . .
@3’1 = <0 Q NZ( Nz D OZEB 1,],1)Q )7 fOTZ:j+IJNZ+QZ+1,] :{1,...,(310}
(0 —QJcL(0 Oz®Ti,;1)Q 'B o _ .
<0 @z NZ@OZ@ 131 )a forz:]+QNz+QZ+ZgiC101)O(Cs)+1,]:{17---70;00}
0 —QJyy(O Oz®Ti;2)Q 'B o .
<0 QNZ( NZEBOZEB L]YZ)Q >7fOYZZ]+qNZ+QZ+ch+17]:{17“‘7010}
0 —QUsL(0 Oz®Ti;2)Q 'B o - ‘
( (0 @l vy 1i2)Q ) for i =j+anz +qz + B2 + LEGV () + 1L j = {1 e}

(3.33)

The parameter v gives the number of different uncertain time-varying functions and is equal
to:

v=qnz+qz + qc, (3.34)

with v smaller than or equal to n (obtained from A € R™*").

3.2 Robust stability

For system (3.3) a full-state feedback control law is adopted, ux = —Kx. In this case, we
can simplify (3.3) to:

Xk+1 = A(T) Xk (3.35)

. T A
with yx = (:Uk :Uk—l) . Alrg) = ( I 0

[OaTmaz]7 Tmaz < .

el — foh_Tk e**dsBK — f:ﬂ eASdSBK> and 7, €

For this system we can investigate the stability of the equilibrium point 2517 = 0. In this
stability analysis, the previously derived Jordan forms are used, where the matrix A can
consist of real and complex eigenvalues.

Note that, due to the time-varying delay 7, a set of matrices A(Tk) can be constructed:

A= {A(Tk) : Tk € [0, Tmaz), k € ZJr} ) (3.36)
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To find a general solution of the integrals in the system matrix A(73,), system (3.35) is rewritten
in its Jordan form representation, similar to (3.30):

Xk+1 = (FO + Z Oéz‘(Tk, h‘a )E) Xk (337)
i=1

with the matrices F; derived similar to (3.30), as:

~ <@1 — \PlK —®2K> ~ <@3,z‘K —@3,1'K>

by = ; ) R 0 (3.38)

with ¢ = {1,2,...,v} and all other parameters equal to (3.29) and (3.33).

System (3.37) contains the uncertain time-varying parameters «;, which may be nonlinear in
Tx. These parameters form, together with the matrices FZ i ={1,2,...,v} a set of system
matrices for (3.37) that can be tested to derive the stability of the system. This set Fis
represented by:

F= {Fo + Zai(m,h, )E 1T € [O,Tmax]} . (3.39)

i=1
For each uncertainty parameter an overestimation can be derived, based on
67} :gz+5l(al_gz)7 i:{laQa"wV}? (340)

where §; can take any value in the interval [0,1] and @;, a; are defined as the maximum and
minimum of the function «;, respectively:

Q= MaXr, [0, 7mae] Vi(Ths 1y )
Q; = My c(07n00] Qi Ths s -o0),

(3.41)

for given h and \;, a;, b;.

Then, the set F, as in (3.39), can be overestimated by:

F= {FOJFZ&E: 8 € [0, 1],1':{1,2,...,1/}}, (3.42)

=1

with Fy = Fy + Sy giﬁ’i and F; = (a; —gi)ﬁi. Note that each §; can be chosen individually
from the set [0, 1].

Now, it is obvious that it holds that:
A=FcF. (3.43)

For stability of the origin of (3.35) it is sufficient to prove stability for xz+1 = Fx, for any
F € F. The set of matrices F is infinite, but every matrix in this set can be written as a
convex combination of the generators (corner points) of this set. First, we define the set of
generators of F, which is given by:

H= {Fo +2V:5iFi 0 6, =1{0,1}, i = {1,2,...,1/}}. (3.44)

=1
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Note that the set H consists of 2 matrices, which we will denote individually by H;, j =
{1,2,...,2"}. Second, we define the convex overapproximation of F, based on this set of
generators, by

v

2]/
H=1> (Hj) Y pj=1, p €[0,1], j={1,2,..,2"} 3. (3.45)
j=1 j=1

Note that this set is again infinite, due to all allowable values of u;, j = {1,2,...,2"}. It is
obvious that it holds that:

FCH. (3.46)

Now, we formulate a result, posing sufficient conditions, based on LMIs, for the asymptotic
stability of the origin of (3.35) for time-varying delays 7 € [0, Timaz] With Tpee < A.

Theorem 3.2.1 Consider the networked control system (3.35) with time-varying delays taken
from a bounded set T, € [0, Timaz|, With Tmaex < h. Consider the set of matrices H defined by
(3.44), (3.42), (3.39), (3.38) and parameterized by Tmae. If there exists a P € R?™*?" such
that the following LMI conditions are satisfied:

P=PT > 0

HIPH;—P < 0,VHj€H, (3.47)

then (3.35) is robustly GAS for any time-varying delay 7y satisfying 11, € [0, Tmaz| Yk € Z7.

Proof Consider the quadratic Lyapunov function V = X%Px;c. The existence of a common
quadratic Lyapunov function for all A(r;,) € A is sufficient for the asymptotic stability of the
origin of system (3.35). Therefore, we require that:

AV = X% <A(Tk)TPA(Tk) — P) Xt <0, V7% € [0, Tmaz)s Tmaz € [0, .

Due to the overapproximation of A by H, as shown in (3.46) and (3.43), it is sufficient to
require:

2v 2v

AV =xi | D wH[PY piH; = P | x <0, Yy € [0,1], j ={1,2,..,2"}, (348
j=1 j=1

satisfying 25;1 pj = 1. The use of Schur’s complement [16] allows us to rewrite the inequality
in (3.48) in the form of the following LMI:

2V
2VP Zj:l MngTP >0
PZj:1NjHj P

which can be rewritten as:
= P HI'P
Z Ki\pg. P > 0.
j=1 /
Reapplying Schur’s complement, in combination with p; >0, Vj € {1,2,...,v} gives (3.47).

0
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