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Abstract In this paper, an adaptive observer for robust control of robotic manipulators is proposed.

The lumped uncertainty is estimated using Chebyshev polynomials. Usually, the uncertainty upper

bound is required in designing observer-controller structures. However, obtaining this bound is a

challenging task. To solve this problem, many uncertainty estimation techniques have been proposed

in the literature based on neuro-fuzzy systems. As an alternative, in this paper, Chebyshev polynomials

have been applied to uncertainty estimation due to their simpler structure and less computational load.

Based on strictly-positive-real (SPR) Lyapunov theory, the stability of the closed-loop system can be

verified. The Chebyshev coefficients are tuned based on the adaptation rules obtained in the stability

analysis. Also, to compensate the truncation error of the Chebyshev polynomials, a continuous robust

control term is designed while in previous related works, usually a discontinuous term is used. An

SCARA manipulator actuated by permanent magnet DC motors is used for computer simulations.

Simulation results reveal the superiority of the designed method.

Keywords Adaptive observer, Chebyshev polynomials, electrically driven robot manipulators, robust

control, uncertainty estimation.

1 Introduction

The performance of many industrial systems such as robotic systems are considerably in-
fluenced by various uncertainties. Consequently, the controllers designed based on the exact or
nominal mathematic models of the system cannot result in satisfactory performance[1–3] and
more advanced algorithms such as adaptive control[4–6], robust control[7–9], adaptive fuzzy[10–13]

or neural network controllers[14–17] are needed to deal with uncertainties.
During the last decades, we have witnessed an increasing trend towards application of fuzzy

systems and neural networks in designing robust nonlinear controllers. The universal approxi-
mation property has been an important motivation for these widespread applications of fuzzy
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systems and neural networks. Many improvements have been reported, but the main idea which
is estimating and compensating the uncertainties using the universal approximation property
of neural networks and fuzzy systems has been remained unchanged[18]. Although these con-
trollers have been practically successful, their design process is not straight forward. There are
many tuning parameters in these controllers. Another important issue is sensing requirements.
Most of the aforementioned controllers have been designed based on the availability of all states.
To solve this problem, some observer-based control strategies have been presented[19–26].

Disturbance observer-based control of nonlinear systems has been studied extensively[27–32].
Extended state observer[33] is a popular observer in which the lumped uncertainty is added to
the state vector to pave the way for its estimation. Observer-based adaptive fuzzy control has
been presented in [34]. Designing adaptive fuzzy observer for strict-feedback nonlinear systems
has been studied in [35]. Several methods have been reviewed for the observer-based residual
generator design and online configuration in [36]. Furthermore, the developments in the plug-
and-play control have been investigated[36]. In addition, in [37], a multi-observer switching
control scheme has been proposed for the robust fuzzy fault tolerant control of variable-speed
wind energy conversion systems.

Many studies focused on the torque control strategy (TCS) of robots. In this strategy,
the control law computes the torques which should be produced by the motors. The system
actuators should be excited, so that they produce the desired torques. However, the actuator
dynamics is not considered in the TCS and its input (voltage signal) is not calculated in this
strategy. To solve this problem, voltage control strategy (VCS) has been presented which is
simpler and more efficient. As a result, from practical point of view, voltage-based methods are
preferable[38–40].

In [41], for dealing with uncertainties, the robust control gain is selected based on the
uncertainty upper bound. Since obtaining this bound in practical implementations is difficult,
a conservative control law is designed in which this bound is tuned based on the trial and error
procedure. To solve this problem, Chebyshev polynomials are used in this paper for uncertainty
estimation and compensation in the observer and controller design. In the proposed method,
there is no need for any information from the uncertainty upper bound or its estimations.
The control law uses the estimated states obtained from the observer and the additional term
based on the Chebyshev polynomials used in the observer. The control law is designed using
VCS. In VCS, on the contrary of TCS, actuator dynamics have not been excluded. In other
words, instead of the applied torques to the robot joints, motor voltages are computed by the
control law[39, 40]. In comparison with the adaptive Jacobian tracking controller[5], the proposed
controller is simpler. The reason is that the regressor matrices are not required. Moreover, in
comparison with the observer-controller structure developed in [42], the proposed method is
superior due to the model-free observer.

The purpose of this paper is robust control of robot manipulators in the task-space using
adaptive observer based on Chebyshev polynomials. The system states are estimated using
observer and these estimated values are used in the controller. By applying the control signal
to the system, the tracking aim is realized. Based on Lyapunov theorem and Barbalat’s lemma,
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it is guaranteed that the tracking error and observer error will converge to zero.
The remainder of this paper is organized as follows. In Section 2, a task-space dynamic

model of the electrically driven robot is presented. Section 3 introduces Chebyshev polyno-
mials and universal approximation. In Section 4, the observer and controller are designed.
Stability analysis is presented in Section 5. Section 6 illustrates the simulation results and
finally, Section 7 concludes the paper.

2 Modeling

The dynamics of the electrically driven robot manipulator is given in the equations (1)–(3),
as follows[43]:

D(q)q̈ + C(q, q̇)q̇ + G(q) = τl, (1)

where q ∈ Rn is the vector of joint positions, D(q) ∈ Rn×n is the matrix of manipulator
inertia, C(q, q̇)q̇ ∈ Rn is the vector of Coriolis and centrifugal forces and G(q) ∈ Rn denotes
the gravitational force vector.

Jmr−1q̈ + Bmr−1q̇ + rτl = KmIa, (2)

Jm, Bm and r are the n×n diagonal matrices for motor coefficients, namely the actuator inertia,
damping, and reduction gear, respectively. Km is the n × n motor torque constant matrix.

RIa + Lİa + Kmr−1q̇ + d = v(t). (3)

The matrices R and L represent the n × n diagonal matrices for the coefficients of armature
resistance and inductance, respectively. v(t) ∈ Rn is the vector of motor voltages, Ia ∈ Rn is
the vector of motor currents and d ∈ Rn is a vector of external disturbances.

In this paper, q and q̇ are position and velocity in the joint space. Also, h and ḣ are position
and velocity in the task space. The Jacobian matrix J(q) relates the joint-space velocity vector q̇

to the task-space velocity vector ḣ as ḣ = J(q)q̇. Consequently, ḧ is given by ḧ = J(q)q̈+ J̇(q)q̇.
By using (1)–(3) motion equation of electrically driven robot manipulator in the task-space is
given by

M(h)ḧ + N(h, ḣ)ḣ + H(h) = u(t),

M(h) = J(q)−TD(q)J(q)−1,

N(h, ḣ) = J(q)−T(C(q, q̇) + KmR−1Kmr−1

−D(q)J−1(q)J̇(q))J(q)−1,

H(h) = J(q)−T(G(q) + KmR−1Lİa + KmR−1d),

D(q) = Jmr−1 + rD(q),

C(q, q̇) = Bmr−1 + rC(q, q̇),

G(q) = rG(q),

u(t) = J(q)−TKmR−1v(t).

(4)
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State space representation of (4) is

ẋ = Ax + Bu(t) + Bδ(t),

y = Cx,
(5)

where

x = [ h ḣ ]T, A =

⎡
⎣ 0 I

0 0

⎤
⎦ , B =

⎡
⎣ 0

I

⎤
⎦ , C= [ I 0 ],

δ(t) = (M(h)−1 − I)u(t) − M(h)−1(N(h, ḣ)ḣ + H(h))

(6)

such that δ(t) is the lumped uncertainty, and 0 and I are the n× n zero and identity matrices,
respectively. The control law calculates the signal u(t). Then, the voltage signal is obtained by
v(t) = R̂K̂−1

m Ĵ(q)Tu(t) in which R̂, K̂m and Ĵ(q) are nominal values.

3 Chebyshev Polynomials and Universal Approximation

Chebyshev polynomials are a sequence of orthogonal polynomials which can be defined
recursively. Consider a typical inner product given by[44]

〈f, g〉 =
∫ b

a

ω(z) · f(z)g(z)dz. (7)

Two functions f(z) and g(z) are said to be orthogonal on the interval [a, b] with respect to a given
continuous and non-negative weight function ω(z) if (7) takes the value of zero. If we define the
inner product (7) using the interval and weight function [a, b] = [−1, 1] , ω(z) = (1−z2)−

1
2 , then

we find that the Chebyshev polynomials satisfy 〈ϕi, ϕj〉 =
∫ 1

−1
ω(z)ϕi(z)ϕj(z)dz = 0 (i �= j).

Hence, {ϕi(z), i = 0, 1, · · ·} forms an orthogonal polynomial system on [−1, 1] with respect to
the weight ω(z)[44]. Assume that V is the space of all continuous-time real-valued functions. A
function h(z) defined on the interval [−1, 1] in V may be expanded as[44]

h(z) =
m∑

i=1

aiϕi(z) + εm(z), (8)

in which the set {ϕ1(z) ϕ2(z) · · · ϕm(z)} forms an orthogonal basis. The coefficient ai is
determined by[44]

ai =
〈h(z), ϕi(z)〉
〈ϕi(z), ϕi(z)〉 =

∫ 1

−1
ω(z)h(z)ϕi(z)dz

∫ 1

−1 ω(z)ϕi(z)ϕi(z)dz
. (9)

In addition, for the approximation error or truncation error εm(z), we have[44]

lim
m→∞

∫ z2

z1

ε2
m(z)dz = 0. (10)

Chebyshev polynomials are given by[44]

ϕ0(z) = 1, (11)
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ϕ1(z) = z, (12)

ϕk(z) = 2zϕk−1(z) − ϕk−2(z), k = 2, 3, · · · . (13)

According to [44], these functions are orthogonal. As a result, we can approximate h(z) in the
form of:

hCP (z) =
m∑

i=1

aiϕi(z) = θTϕ, (14)

θ =
[

a0 a1 · · · am

]T

, (15)

ϕ =
[

ϕ0 ϕ1 · · · ϕm

]T

. (16)

To be more precise, h(z) can be represented as

h(z) = θTϕ + εm. (17)

It is worthy to mention that in robust control systems, the function which should be approx-
imated is not available. Thus, the coefficients ai cannot be calculated according to (9), since
h(z) is unknown. Alternatively, these coefficients are calculated online using adaptation rules
obtained from stability analysis.

4 Observer and Controller Design

Define the tracking error e = x − xd. As a result, x = e + xd. Substitution of x into (5)
yields

ė = Ae + Axd − ẋd + B(u + δ). (18)

Now consider Axd − ẋd. Due to the definitions of A and B in (6) we have

Axd − ẋd =

⎡
⎣ 0 I

0 0

⎤
⎦

⎡
⎣xd1

xd2

⎤
⎦ −

⎡
⎣ ẋd1

ẋd2

⎤
⎦

=

⎡
⎣xd2 − ẋd1

−ẋd2

⎤
⎦ =

⎡
⎣ 0

−ẍd1

⎤
⎦ = B(−ẍd1). (19)

Substitution of (19) into (18) obtains

ė = Ae + B(u + δ − ẍd1). (20)

Define Ac = A − BkT
c . Consequently, A = Ac + BkT

c . As a result, (20) is rewritten as

ė = Ace + B(kT
c e + u + δ − ẍd1). (21)

Now, consider the following observer

˙̂x = Ax̂ + ko(y − Cx̂) + B(δ̂ + u − ur), (22)
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in which ur is the robust control term which will be determined in next section. It has been
added to compensate for the truncation error. Usually, a discontinuous term using the sign
function is considered for ur

[18, 41, 45–48], while in this paper a continuous term is proposed.
Also, δ̂ is the estimation of δ using Chebyshev polynomials. Since δ and δ̂ are vectors, we can
represent them as follows

δ(t) = ϕθ + εm, (23)

ϕ = diag
[
ϕT

1 (t),θT
2 , · · · , ϕT

n (t)
]
, (24)

θ =
[
θT
1 , θT

2 , · · · , θT
n

]T

, (25)

δ̂(t) = ϕθ̂, (26)

θ̂ =
[
θ̂T
1 , θ̂T

2 , · · · , θ̂T
n

]T

, (27)

ϕi = [1 z (2z2 − 1) (4z3 − 3z) (8z4 − 8z2 + 1)]T, i = 1, 2, · · · , n. (28)

In (28), the index i refers to the motor number. There are 3 motors in this robot, thus i = 1, 2, 3.
For each motor, the first 5 Chebyshev polynomials defined in (28) have been used. Overall,
there are 15 Chebyshev polynomials.

It must be emphasized that the functions ϕi are mutually orthogonal just on the interval
[−1 1]. However, the uncertain functions which should be estimated in control systems are
generally functions of the variable time which may increase to infinity and cannot be limited to
the interval [−1 1]. To solve this problem, According to [49], we have assumed that z = sin(ω0t),
where ω0 has a constant real value[49]. In this article, the value of ω0 has been chosen as 0.01.
Define the estimated tracking error as ê = x̂ − xd. Now, consider the following controller:

u = −δ̂ + ẍd1 − kT
c ê + ur. (29)

Substitution of (29) into (22) yields

˙̂x = Ax̂ + ko(y − Cx̂) + B(ẍd1 − kT
c ê). (30)

After substitution of x̂ = ê + xd into (30) and some simple manipulations, (30) is given by

˙̂x − Axd − Bẍd1 = Acê + koC(x − x̂). (31)

Now, consider the terms −Axd − Bẍd1 in (31). It is easy to show that

−Axd − Bẍd1 = −
⎡
⎣0 I

0 0

⎤
⎦

⎡
⎣xd1

xd2

⎤
⎦ −

⎡
⎣ 0

I

⎤
⎦ ẍd1

=

⎡
⎣−xd2

−ẍd1

⎤
⎦ = −ẋd. (32)

Thus, (31) can be rewritten as
˙̂e = Acê + koC(x − x̂). (33)
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Define the observer error ẽ = e − ê = x − xd − (x̂ − xd) = x − x̂. As a result, (33) is given by

˙̂e = Acê + koCẽ. (34)

Taking the time derivative of ẽ = e − ê and using (21), (29) and (34), we will have

˙̃e = ė − ˙̂e = (A − koC)ẽ + B(−δ̂ + ur + δ). (35)

According to (23) and (26), (35) is simplified to

˙̃e = Aoẽ + Bw, (36)

where Ao = A − koC. Now, define the error vector E =
[
ê ẽ

]T

. Using (34) and (36), Ė is
given by

Ė = AE + Bw, E1 = CE, (37)

A =

⎡
⎣Ac koC

0 Ao

⎤
⎦ , B =

⎡
⎣ 0

B

⎤
⎦ , C = [C C], (38)

w = ϕθ̃ + ur + εm, θ̃ = θ − θ̂. (39)

Usually, it is assumed that only the output E1 in (37) is measurable. Therefore, the strictly
positive real (SPR) Lyapunov design approach is needed to prove the stability and derive
adaptation laws[45–47]. Besides, the output error dynamics of (37) can be represented as

E1 = H(s)w = H(s)(ϕθ̃ + ur + εm), (40)

where H(s) = C(SI−A)−1B is the transfer function of (40). In order to use the SPR-Lyapunov
design approach, (40) is rewritten as

E1 = H(s)L(s)(Γ + ϕθ̃ + ur),

Γ = L−1(s)(ϕθ̃ + ur + εm) − (ϕθ̃ + ur + εm) + εm,
(41)

L(s) is chosen so that H(s)L(s) is a proper SPR transfer function. Then, the state-space
realization of (41) can be written as[45–47]

Ė = AsE + Bs(Γ + ϕθ̃ + ur),

E1 = CsE,
(42)

where As = A, Cs = C, Bs = [β1 β2 β3 β4]T, βi = biI and I is the n × n identity matrix.
In (15) and (16), m represents the number of the coefficients as well as the number of

Chebyshev polynomials selected by the designer. In this work, we have used five terms of
Chebyshev polynomial to estimate the uncertainty, and also have considered the approximation
error εm in our calculations. In fact, in order to approximate the uncertainty function, a certain
number of Chebyshev terms has been chosen, and to compensate other terms, an approximation
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error or modeling error has been used. The approximation error exists in (41) in the function
Γ ; The function Γ has been adaptively estimated using stability analysis and has been utilized
in the robust control term ur.

In fact, the uncertainty Γ will be observed by an adaptive uncertainty estimator and assumed
to be a constant during the observation. The above assumption is valid in practical applications
of the observer since the sampling period of the observer is short enough compared with the
variation of Γ (i.e., Γ̃ = Γ − Γ̂ → ˙̃Γ = − ˙̂Γ )[50–54].

5 Stability Analysis

The following assumptions are necessary to analyze the stability.
A1 It is assumed that the desired reference trajectory xd is bounded and uniformly con-

tinuous, and its derivatives up to a necessary order are bounded and uniformly continuous[43].
A2 The manipulator operates in a region where J−1(q) is nonsingular.
Theorem 1 If the following rules are applied to the robotic system (5), observer (22) and

controller (29), then x is bounded and ê and ẽ converge to zero.

˙̂
θ = γ1ϕ

TE1, (43)

ur = −Γ̂ − k1E1, (44)
˙̂Γ = γ2E1, (45)

where γ1, γ2 and k1 are positive scalars and Γ̂ is an online estimation of Γ . Because H(s)L(s)
is SPR there exist symmetric positive-definite matrices P and Q such that

A
T

s P + PAs = −Q,

B
T

s P = Cs.
(46)

Proof Consider the Lyapunov function candidate as

V =
1
2
ETPE +

1
2γ1

θ̃Tθ̃ +
1

2γ2
Γ̃TΓ̃ , (47)

in which θ̃ = θ − θ̂ and Γ̃ = Γ − Γ̂ . Taking the time derivative of (47) yields

V̇ =
1
2
ĖTPE +

1
2
ETPĖ − 1

γ1
θ̃T ˙̂

θ − 1
γ2

Γ̃T ˙̂Γ . (48)

By substituting (42) and (46) into (48), we can write

V̇ = −1
2
ETQE +

(
Γ + ϕθ̃ + ur

)T

CsE − 1
γ1

θ̃T ˙̂
θ − 1

γ2
Γ̃T ˙̂Γ . (49)

In other words

V̇ = −1
2
ETQE +

(
Γ + ϕθ̃ + ur

)T

E1 − 1
γ1

θ̃T ˙̂
θ − 1

γ2
Γ̃T ˙̂Γ . (50)
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Using (44), we can write

V̇ = −1
2
ETQE +

(
Γ̃ + ϕθ̃ − k1E1

)T

E1 − 1
γ1

θ̃T ˙̂
θ − 1

γ2
Γ̃T ˙̂Γ . (51)

In other words

V̇ = −1
2
ETQE + Γ̃TE1 + θ̃TϕTE1 − k1 ‖E1‖2 − 1

γ1
θ̃T ˙̂

θ − 1
γ2

Γ̃T ˙̂Γ . (52)

Using (43) and (45), (52) is simplified to

V̇ = −1
2
ETQE − k1 ‖E1‖2 . (53)

Thus, it has been guaranteed that
V̇ ≤ 0. (54)

Using Barbalat’s lemma[55], it can be easily seen that E asymptotically converges to zero.
It is worthy to note that velocity signals have not been used in the adaptation laws, since
E1 = CsE shows that just position signals required. Moreover, calculation of P , Q, Bs and
the filter L(s) is relaxed.

To summarize, Figure 1 shows the overall scheme of the observer-based control proposed in
this paper.

Controller
(28)

Observer
(22)

Plant
(5)

Continuous
robust control

term
(42)

Adaptation
laws

(41) and (43)

Uncertainty
estimation
(25)

Measurable
signal E1
(36)

(41)

Desired
trajectory
(53)

Chebyshev
Polynomials

(27)

(43)

Figure 1 Overall scheme of the proposed observer-based controller
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1z

1x
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1x
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2z
3x

3z

Figure 2 Symbolic representation of the SCARA manipulator

6 Simulation Results

6.1 The Proposed Method

The controller (29) and the observer (22) are simulated using an SCARA robot manipulator
with the symbolic representation shown in Figure 2. The matrices D(q), C(q, q̇), G(q) and
the parameters of permanent magnet DC motors are presented in the Appendix. It has been
assumed that the permitted range for motor voltage is umax = 40 V. Consider the desired
trajectory as

xd =

⎡
⎣xd1

xd2

⎤
⎦ =

⎡
⎣hd

ḣd

⎤
⎦ ,

hd =
[

0.85 − 0.1 cos
(

πt

4

)
0.75 − 0.1 sin

(
πt

4

)
0
]T

.

(55)

Suppose that the initial value of θ̂ is zero. The parameters γ1, γ2 and k1 have been set to 600,
10 and 10, respectively. The matrix kT

c is calculated using kc = place(A, B, [−3.1 − 3.2 −
3.3 − 3.4 − 3.5 − 3.6]) and The matrix ko is calculated via ko = place(AT, CT, [−31 −
32 − 33 − 34 − 35 − 36]) . In the proposed method, calculation of P , Q, Bs and the filter
L(s) is relaxed. The voltage signal is obtained by v(t) = R̂K̂−1

m Ĵ(q)Tu(t). It has been assumed
that R̂ = 0.8R, K̂m = 0.8Km and Ĵ(q) = 0.8J(q). The external disturbance is a step function
with amplitude 2 V which is applied to all motors at t = 4 s. Figure 3 illustrates tracking
errors. According to this figure, the tracking errors reduce rapidly. Figure 4 shows the robot
path in the XY plane. As shown in this figure, the controller can track the desired path after
a short transient state. Figure 5 shows control signals. As it can be seen, motor voltages are
smooth. Moreover, no chattering occurs. The velocity of the end-effector along the X axis and
also its estimation are illustrated in Figure 6.
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Figure 3 The task-space tracking errors
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Figure 4 The desired and actual positions in the X-Y plane

Figure 5 Motor voltages
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Figure 6 Comparison of velocity along the X axis and its estimation

As shown in Figure 6, the estimated velocity converges to its actual signal very fast. The
end-effector velocity along the Y axis and its estimation are illustrated in Figure 7. As it can
be seen in Figure 7, the velocity obtained from the designed observer converges to the end-
effector velocity along the Y axis very fast and the observer is capable of tracking this signal.
In order to study the influence of the Chebyshev estimator in the observer performance, we have
omitted it from the observer. The end-effector velocity along the Z axis and its estimation are
presented in Figure 8. As it can be seen in Figure 8, the estimated velocity obtained from the
observer cannot track the end-effector velocity along this axis and there exists a steady state
error. The reason is that in this situation, the lumped uncertainty has not been compensated
in the observer. Now, consider Figure 9 in which the Chebyshev polynomial tries to estimate
and compensate the lumped uncertainty. As shown in Figure 9, the estimated velocity obtained
from the observer converges to the end-effector velocity along the Z axis and there is not any
steady state error. It can be concluded that the Chebyshev polynomials are good approximators
and play important role in the proposed observer.

Figure 7 Comparison of velocity along the Y axis and its estimation
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Figure 8 Comparison of velocity along the Z axis and its estimation in the absence of the Chebyshev

polynomials
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Figure 9 Comparison of velocity along the Z axis and its estimation in the presence of the Chebyshev

polynomials

6.2 Comparison with Extended State Observer (ESO)

The extended state observer presented in [33], has been applied to the described robot
manipulator. According to (5) and (6), we can write

ḧ = δ(t) + u. (56)
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Suppose that the lumped uncertainty δ(t) is an augmented state. In other words, we have
xa1 = h, xa2 = ḣ, xa3 = δ(t). Therefore, the state representation is given by

ẋa = Aaxa + Bau + Ψ ,

y = Caxa,

Aa =

⎡
⎢⎢⎣

0 I 0

0 0 I

0 0 0

⎤
⎥⎥⎦ , Ba =

⎡
⎢⎢⎣

0

I

0

⎤
⎥⎥⎦ , Ψ =

⎡
⎢⎢⎣

0

0

δ̇

⎤
⎥⎥⎦ ,

Ca =
[
I 0 0

]
,

(57)

in which 0 and I are the n× n zero and identity matrices, respectively. Consider the following
linear state observer[33]:

˙̂xa = Aax̂a + Bau + LC(xa − x̂a). (58)

The gain vector L is calculated using L = place(AT
a , CT

a , [−50 − 55 − 60 − 65 − 70 − 75 −
80 − 85 − 90]). According to [33], the control law is given by

u = ḧd + Kd(ḣd − x̂a2) + Kp(hd − x̂a1) − x̂a3. (59)
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Figure 12 Comparison of velocity along the X axis and its estimation using ESO

Figure 13 Comparison of velocity along the Y axis and its estimation using ESO

Figure 14 Comparison of velocity along the Z axis and its estimation using ESO
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The gains Kp and Kd have been set to 700 and 250, respectively. The desired trajectory
in task-space is the same as (55). Figure 10 shows the motor voltage for this controller. In
comparison with motor voltages of the proposed method in Figure 5, it is obvious that the
proposed controller is superior, since actuator saturation occurs in ESO at initial times. The
tracking performance of ESO in the x-y plain is presented in Figure 11. Comparison of this
figure with Figure 4 reveals the superiority of the proposed method. It seems that the transient
state of the proposed method is better. The reason can be proper compensation of nonlin-
earities of observer and controller in this paper using Chebyshev polynomials. The estimation
performances of ESO for the velocity signals are presented in Figure 12 to Figure 14. As shown
in these figures, ESO can estimate the state variables well, nevertheless the controller transient
performance is not suitable.

6.3 Comparison with Fuzzy Observer

In order to design a fuzzy observer, the uncertainty defined in (26) should be estimated
using adaptve fuzzy systems. Suppose that δ̂ is the output of an adaptive fuzzy system in the
normalized form with the inputs ê and ˙̂e. For each fuzzy input, 3 linguistic fuzzy sets have been
defined. Overall, there are 9 fuzzy rules described as

R(l) : if ê is Al and ˙̂e is Bl then δ̂ is Cl, l = 1, 2, · · · , 9, (60)

where R(l) is the lth rule. The fuzzy membership functions Al, Bl and Cl have been described
in [10]. According to [10, 56], we have:

δ̂(ê, ˙̂e) =
∑9

l=1 μAl(ê)μBl( ˙̂e)θ̂l∑9
l=1 μAl(ê)μBl( ˙̂e)

, (61)

where μAl(ê) ∈ [0, 1] and μBl( ˙̂e) ∈ [0, 1] are the membership functions for the fuzzy sets Al and
Bl, respectively and θ̂l is the the center of fuzzy set Cl. According to (61), we can write:

δ̂(ê, ˙̂e) =
9∑

l=1

ϕlθ̂l = ϕθ̂, ϕ = [ϕ1ϕ2 · · ·ϕ9], θ̂ = [θ̂1θ̂2 · · · θ̂9], (62)

in which

ϕl =
μAl(ê)μBl( ˙̂e)∑9
l=1 μAl(ê)μBl( ˙̂e)

. (63)

In this paper, there are 3 motors. Thus, the above formula are used for all motors. In other
words, we have ϕli = µ

Al (êi)µBl ( ˙̂ei)∑ 9
l=1 µ

Al (êi)µBl ( ˙̂ei)
, where i is the motor index.

The tracking performance in the task space is plotted in Figure 15. According to this figure,
the tracking performance of fuzzy system and also the voltage signals are suitable. In order
to have a quantitative comparison, consider the fitness function F1 =

∫ 8

0 [
∑

i |ei|]dt[57–60]. For
Chebyshev estimator we have F1 = 0.0498 and for fuzzy estimator we have F1 = 0.0645. Thus,
Chebyshev estimator outperforms the fuzzy system.



1376 GHOLIPOUR REZA · FATEH MOHAMMAD MEHDI

Figure 15 The tracking performance using fuzzy observer

The performance of fuzzy observer in estimation of velocity signals is plotted in Figure 16
to Figure 18. According to these figures, the fuzzy observer has a satisfactory performance.
However, comparison of Figure 16 to Figure 17 and Figure 6 to Figure 7 reveals the superiority
of Chebyshev estimator, since in the time interval t ∈ [5, 8] Chebyshev estimator has a better
performance. In order to compare the velocity signals along the z axis, see Figure 18 (fuzzy
observer) and Figure 9 (Chebyshev observer). As seen in Figure 9, Chebyshev observer can
reduce the observer error within 0.5 seconds, while this time for the fuzzy observer is 1.5 seconds
as seen in Figure 18. In order to have a quantitative comparison, consider the fitness function
F2 =

∫ 8

0
[
∑

i |ẽi|]dt. For Chebyshev estimator we have F2 = 1.4173 and for fuzzy estimator we
have F2 = 1.8493. Therefore, Chebyshev estimator has a better performance.
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Figure 16 Comparison of velocity along the X axis and its estimation using fuzzy observer

Figure 17 Comparison of velocity along the Y axis and its estimation using fuzzy observer
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Figure 18 Comparison of velocity along the Z axis and its estimation using fuzzy observer
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7 Conclusion

In this paper, an adaptive observer has been proposed for robot manipulators using Cheby-
shev polynomials. To relax the requirement for the upper bound of the lumped uncertainty, in
this paper, an estimator using Chebyshev polynomials has been proposed to compensate the
uncertainties in the observer and controller. The controller has been designed based on the
assumption that the velocity signals cannot be measured. The estimated states are used to
design the control law which consists of a state feedback and a robust control term. Based on
the Lyapunov theorem, the closed-loop stability has been guaranteed. According to the simula-
tions, Chebyshev polynomials contribute significantly in improving the observer performance.
In comparison with extended state observer, the proposed observer-controller structure is su-
perior due to its better transient state in the control law and also task-space tracking errors.
Also, in comparison with fuzzy observer, the proposed method is more accurate in estimation
of velocity signals.
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Appendix

A three-link SCARA robot is adopted here for verifying the effectiveness of the proposed
scheme. The dynamic equations, which can be derived via the Euler-Lagrangian method, are
represented as follows[61]:

D(q) =

⎡
⎢⎢⎣

D11 D12 D13

D21 D22 D23

D31 D32 D33

⎤
⎥⎥⎦ ,
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D11 = l21

(
m1

3
+ m2 + m3

)
+ l1l2(m2 + 2m3) cos(q2) + l22

(
m2

3
+ m3

)
,

D12 = D21 = −l1l2

(
m2

2
+ m3

)
cos(q2) − l22

(
m2

3
+ m3

)
,

D22 = l22

(
m2

3
+ m3

)
, D13 = D31 = D23 = D32 = 0, D33 = m3,

C(q, q̇) = l1l2 sin(q2)

⎡
⎢⎢⎣

C11 C12 C13

C21 C22 C23

C31 C32 C33

⎤
⎥⎥⎦ ,

C11 = −q̇2(m2 + 2m3), C12 = −q̇2

(
m2

3
+ m3

)
,

C21 = −q̇1

(
m2

3
+ m3

)
, C13 = C31 = C23 = C32 = C22 = C33 = 0,

G(q) =

⎡
⎢⎢⎣

0

0

−m3g

⎤
⎥⎥⎦ .

Moreover, the system parameters of the SCARA robot are selected as[18]

m1 = 95.23 Kg, m2 = 158.09 Kg, m3 = 16.63 Kg, l1 = 0.621 m, l2 = 1.064 m.

The parameters of permanent magnet DC motors for all joints are the same and have been
selected as follows[18]

R = 1.26Ω , L = 0.001H, Km = 0.26, r = 0.01, Jm = 0.0002, Bm = 0.001.


