
Robust Control of Uncertain Markov Decision
Processes with Temporal Logic Specifications

Eric M. Wolff, Ufuk Topcu, and Richard M. Murray

Abstract—We present a method for designing robust con-
trollers for dynamical systems with linear temporal logic spec-
ifications. We abstract the original system by a finite Markov
Decision Process (MDP) that has transition probabilities in
a specified uncertainty set. A robust control policy for the
MDP is generated that maximizes the worst-case probability of
satisfying the specification over all transition probabilities in the
uncertainty set. To do this, we use a procedure from probabilistic
model checking to combine the system model with an automaton
representing the specification. This new MDP is then transformed
into an equivalent form that satisfies assumptions for stochastic
shortest path dynamic programming. A robust version of dy-
namic programming allows us to solve for a ε-suboptimal robust
control policy with time complexity O(log1/ε) times that for the
non-robust case. We then implement this control policy on the
original dynamical system.

I. INTRODUCTION

As the level of autonomous operation expected of robots,
vehicles, and other cyberphysical systems increases, there is a
growing need for formal methods that allow desired system
properties to be precisely specified and allow performance
to be automatically verified. As autonomous systems often
operate over long time periods in uncertain environments, it
is also important that system performance is robust to both
environmental disturbances and modeling errors.

A promising approach for specifying and verifying system
properties uses temporal logics such as linear temporal logic
(LTL) to specify tasks. LTL provides a natural framework
to specify desired properties such as response (if A, then
B), liveness (always eventually A), safety (always not B),
stability (eventually always A), and priority (first A, then B,
then C). This framework requires a finite-state abstraction
for continuous dynamical system, which is possible, in the
simulation sense, for a wide range of systems [1].

We use a Markov Decision Process (MDP) as a finite-state
abstraction of our original dynamical system because it pro-
vides a general framework for modeling the non-determinism
and probabilistic behavior that is present in many real-world
systems. MDPs are also amenable to formal verification tech-
niques for temporal logic properties [4]. These techniques
generate a control policy for the MDP that maximizes the
probability of satisfying a given LTL specification. However,
these techniques assume that the state transition probabilities
of the MDP are known exactly, which is often unrealistic. We
relax this assumption by allowing the transition probabilities

Authors are with the Department of Computing and Mathematical Sciences,
California Institute of Technology, Pasadena, CA, USA. The corresponding
author is ewolff@caltech.edu

of our MDP abstraction to lie in uncertainty sets. We then
generate a control policy that maximizes the worst-case proba-
bility of satisfying a given LTL specification over all transition
probabilities in the uncertainty set.

We argue that it is prudent to consider uncertainty in
the MDP model. Real systems have unmodeled dynamics
and parametric uncertainty that are not fully captured by
mathematical models. So, even if exact finite-state abstraction
techniques are available for a dynamical system model, the
resulting MDP abstraction will only represent the real system
to the extent that the dynamical system model does. Further-
more, when approximate abstraction techniques are used for
a dynamical system model, the MDP abstraction will be a
further approximation of the real system.

There is a large amount of work in addressing the robustness
of control policies for MDPs with uncertain transition proba-
bilities. Our approach most closely follows that of Nilim and
El Ghaoui [24], which addresses a wide variety of uncertainty
models. Other work includes [3], [25], [13].

On the temporal logic side, formal verification is well
developed for discrete systems represented as MDPs with
exact transition matrices [9], [4] and there exist powerful
software tools [18]. While there has been recent work in
verification of uncertain MDPs, these works almost exclusively
use simple interval models of transition probability uncertainty
[28], [7], [6], which our work includes as a special case.

The above references are primarily concerned with discrete
models. Controllers that are guaranteed to satisfy a given
temporal logic specification can be generated for a variety
of non-stochastic hybrid systems [17], [16], [27]. Similar
methods for non-stochastic systems have been implemented
on stochastic systems [14], [19]. Recent work that explicitly
designs controllers for stochastic systems [10], [20] does not
consider robustness. Robustness of non-probabilistic discrete
transition systems to disturbances is explored in [22].

There are two main contributions in our work. First of all,
we create a robust control policy π that maximizes the worst-
case probability of satisfying an LTL specification ϕ for a
system represented as a finite labeled MDPM with transition
matrices in an uncertainty set P . A control policy π is a
mapping from each MDP state to an allowable action. The
set P can be non-convex and it includes interval uncertainty
sets as a special case. This freedom allows more statistically
accurate and less conservative results than interval uncertainty
sets. Our second contribution is a method for generating
an approximate finite-state MDP abstraction from a possibly
nonlinear dynamical system given in state-space form.

We now give an informal overview of our solution tech-
nique; preliminary definitions and the formal problem state-
ment are found in Sections II and III respectively. We first
abstract the dynamical system as a finite labeled MDP using
controllers generated from a linear approximation of the
system and Monte Carlo simulation (Section VI). In Section
V we combine this MDP with an automaton representation of
the LTL specification to form a product MDP that represents
system trajectories that satisfy both the system dynamics
and the specification. We then use a dynamic programming
approach (developed in Section IV) to create a robust control
policy that maximizes the worst-case probability of satisfying
the specification over all transition matrices in the uncertainty
set. This can be viewed as a game between the system
and its environment, where the controller selects actions to
maximize the probability of satisfying the specification, while
the environment selects transition matrices to minimize the
probability of satisfying the specification. Finally, we imple-
ment this robust control policy on the original dynamical
system. We present an example of our approach in Section
VII and conclude with suggestions for future work in Section
VIII.

II. PRELIMINARIES

We now present formal definitions for Markov Decision
Processes (MDPs), which we use as finite-state abstractions
for the original continuous dynamics, and linear temporal logic
(LTL), which is the task specification language. Throughout,
we will assume that equality and inequality is component-wise
for vectors and matrices. Also, 1 denotes a vector of ones of
appropriate dimension.

A. Markov Decision Processes

MDPs are useful models for a wide range of systems
as they provide a unified framework for systems with non-
deterministic and stochastic aspects [5].

Definition 1 (Labeled finite MDP). We specify a labeled
finite MDP, M, by the tuple M = (S,A,P, s0,AP,L),
where S is a finite set of states, A is a finite set of actions,
P ∶ S ×A × S → [0,1] is the transition probability function, s0

is the initial state, AP is a finite set of atomic propositions,
and L ∶ S → 2AP is a labeling function. Let A(s) denote
the set of available actions at state s. ∑s′∈S P (s, a, s′) = 1 if
a ∈ A(s) and P (s, a, s′) = 0 otherwise.

We assume, for notational convenience, that the available
actions A(s) are the same for every s ∈ S. We use P aij as
shorthand for the transition probability from state i to state j
when using action a. We call P a ∈ Rn×n a transition matrix,
where the (i, j)-th entry of P a is P aij . Where it is clear from
context, we refer to the row vector P ai as p.

To model uncertainty in state transitions, we specify uncer-
tainty sets for the transition matrices of the MDP. We assume
that an uncertainty set Pa corresponding to action a ∈ A is a
set of probability matrices.

Assumption 1. Pa can be factored as the Cartesian product
of its rows, so its rows are uncorrelated. Formally, for every
a ∈ A , Pa = Pa1 × . . . × P

a
n where each Pai is a subset of the

probability simplex in Rn. We follow Nilim and El Ghaoui
and refer to these as rectangular uncertainty sets [24].

Let F a denote the nominal transition matrix for action a.

Assumption 2. F aij = 0 if and only if P aij = 0 for all P a ∈ Pa.

Intuitively, this means that if a nominal transition is zero
(non-zero), then it is zero (non-zero) for all transition matrices
in the uncertainty set. This must be enforced as adding
or removing a transition to an unsafe set may result in a
completely different satisfaction probability for properties over
infinite time.

Definition 2. A control policy for an MDP M is a sequence
π = {µ0, µ1, . . .}, where each µk ∶ S → A such that µk(s) ∈
A(s). We call a policy stationary if it is of the form π =
{µ,µ, . . .}. We let Π be the set of all control policies and Πs

be the set of all stationary control policies.

Definition 3. An environment policy for an MDP M is a
sequence of transition matrices τ = (P ak)a∈A,k=1,2,.... We
call an environment policy stationary if it is of the form
τ = (P a)a∈A. We let T be the set of all environment policies
and Ts be the set of all stationary environment policies.

We now associate a cost with each state in M through
a function c(s, a) ∶ S × A → R. This cost is incurred at
every stage k and the control policy tries to minimize the total
expected cost over the horizon of length N . The total expected
cost of an infinite-horizon problem starting from state s when
using control policy π under environment policy τ is

Jπτ(s) ∶= lim
N→∞

Eπτ[
N−1

∑
k=0

c(sk, µk(sk))∣s0 = s], (1)

where the expectation Eπτ depends on both the control and
environment policies.

The optimal worst-case total expected cost starting from
state s is

J∗(s) ∶= min
π∈Π

max
τ∈T

Jπτ(s). (2)

The optimal worst-case control and environment policies are
denoted π∗ and τ∗. We call π∗ a robust control policy.

B. Linear Temporal Logic

We use linear temporal logic (LTL) to specify the desired
system behavior. We will only touch on the key aspects of
LTL for our problem; we defer the reader to [4] for details.

We describe an execution of a system by an infinite se-
quence of its states. Specifically, for a discrete-time system,
its execution σ can be written as σ = s0s1s2 . . . where st ∈ S
is the state of the system at time t.

Definition 4. An atomic proposition is a statement that has a
unique truth value (True or False). Let s ∈ S be a state of the
system and p be an atomic proposition. We write s ⊩ p if p
is True at the state s.

LTL is a powerful specification language for unambiguously
and concisely expressing a wide range of properties of systems
[12]. It is built up from (a) a set of atomic propositions, (b) the
logic connectives: negation (¬), disjunction (∨), conjunction
(∧) and material implication (Ô⇒), and (c) the temporal
modal operators: next (#), always (◻), eventually (◇) and
until (U).

An LTL formula is defined inductively as follows: (1) any
atomic proposition p is an LTL formula; and (2) given LTL
formulas ϕ and ψ, ¬ϕ, ϕ ∨ ψ, #ϕ and ϕ U ψ are also LTL
formulas. Other operators can be defined as follows: ϕ ∧ ψ ∶=
¬(¬ϕ ∨ ¬ψ), ϕ Ô⇒ ψ ∶= ¬ϕ ∨ ψ, ◇ϕ ∶= True U ϕ, and
◻ϕ ∶= ¬◇ ¬ϕ.

Semantics of LTL: An LTL formula is interpreted over an
infinite sequence of states. Given an execution σ = s0s1s2 . . .
and an LTL formula ϕ, we write si ⊧ ϕ if ϕ holds at position
i ≥ 0 of σ.

The semantics of LTL is defined inductively as follows:
(a) For an atomic proposition p, si ⊧ p if and only if (iff)
si ⊩ p; (b) si ⊧ ¬ϕ iff si ⊭ ϕ; (c) si ⊧ ϕ ∨ ψ iff si ⊧ ϕ or
si ⊧ ψ; (d) si ⊧ #ϕ iff si+1 ⊧ ϕ; and (e) si ⊧ ϕ U ψ iff there
exists j ≥ i such that sj ⊧ ψ and ∀k ∈ [i, j), sk ⊧ ϕ. Based on
this definition, #ϕ holds at position si iff ϕ holds at the next
state si+1, ◻ϕ holds at position i iff ϕ holds at every position
in σ starting at position i, and ◇ϕ holds at position i iff ϕ
holds at some position j ≥ i in σ.

Definition 5. An execution σ = s0s1s2 . . . satisfies ϕ, denoted
by σ ⊧ ϕ, if s0 ⊧ ϕ.

Remark 1. Properties typically studied in the control and hy-
brid systems domains are safety and stability. LTL generalizes
this by also allowing properties such as guarantee, obligation,
liveness, and response.

We next define a deterministic Rabin automaton, which
provides an automaton representation for any LTL formula.
We use this instead of a nondeterministic Buchi automaton
because nondeterminism can change the probability measure
over the product MDP that we define in Section V. We cannot
use a determinstic Buchi automaton, as these cannot express
all LTL formulae [4].

Definition 6. A deterministic Rabin automaton is a tuple A =
(Q,Σ, δ, q0,Acc) where Q is a finite set of states, Σ is an
alphabet, δ ∶ Q × Σ → Q is the transition function, q0 ∈ Q is
the initial state, and accepting state pairs Acc ⊆ 2Q × 2Q.

Let Σω be the set of infinite words over Σ. A run for
σ = A0A1A2 . . . ∈ Σω denotes an infinite sequence q0q1q2 . . .
of states in A such that qi+1 ∈ δ(qi,Ai) for i ≥ 0. The run
q0q1q2 . . . is accepting if there exists a pair (L,K) ∈ Acc and
an n ≥ 0, such that for all m ≥ n we have qk ∉ L and there
exist infinitely many k such that qk ∈K.

Intuitively, a run is accepted by a deterministic Rabin
automaton if the set of states L is visited finitely often and
the set K is visited infinitely often.

III. PROBLEM STATEMENT

We now provide a formal statement of the problem and an
overview of our approach.

The system evolves with the discrete-time dynamics

xt+1 = f(xt, ut,wt) for t = 0,1, . . . , (3)

where xt ∈ Rl is the system state, ut ∈ Rm is the control input,
and wt ∈ Rp is a stochastic disturbance input.

We assume that relevant system properties are specified
by a given LTL formula ϕ over a finite set AP of atomic
propositions. Let X ⊂ Rl be partitioned into a finite set R of
regions. Each region r ∈ R has an associated set of True atomic
propositions associated with it, which we will informally call
a label. Let R ∶ X → R be a surjective mapping that associates
each system state x ∈ X with a region r ∈ R. Furthermore, we
associate each region with a labeling function L ∶ R → 2AP .
We assume a bijection between regions r ∈ R and MDP
states s ∈ S, hence we use the same notation for this labeling
function as in Definition 1. Since every system state x ∈ X
in a given region has the same label, this is a proposition-
preserving partition. Finally, let S ∶ 2AP → X which maps
labels to system states.

Given a control policy π = {µ0, µ1, . . .} the MDP abstrac-
tion of the dynamical system (3), we can induce a control
policy π∗proj on (3) by using action µk(R(x)) for the system
state x ∈ X at time k = 0,1, This simply maps the system
state to the corresponding region with R, and thus a unique
MDP state due to the assumed bijection.

Problem 1. Given a labeled finite MDP M with transition
matrices in an uncertainty set Pa for each action a ∈ A and
an LTL specification ϕ over AP , create a robust control policy
π∗ forM. Furthermore, ifM is an abstraction of a dynamical
system (3), create the induced control policy π∗proj for (3).

We present a method for abstracting the original system as
a finite MDPM with transition matrix uncertainty sets in Sec-
tion VI. We then solve Problem 1 by first creating the product
MDPMp which contains system trajectories that satisfy both
M and the deterministic Rabin automaton representing the
given LTL specification. We modify Mp so that all policies
for it are proper, and thus it satisfies the stochastic shortest
path assumptions. We then show that maximizing the worst-
case probability of satisfying the specification is equivalent
to a creating a control policy that maximizes the worst-case
probability of reaching a certain set of states inMp. We solve
for this policy using a robust variant of dynamic programming.
Finally, we map the robust control policy back to M and the
original dynamical system (3).

IV. ROBUST DYNAMIC PROGRAMMING

In this section, we prove when a robust form of dynamic
programming holds for MDPs with uncertain transition matri-
ces.

A. Dynamic Programming

We consider a MDP M with a finite set of states S =
{1,2, . . . , n, t} and actions a ∈ A(s) for all s ∈ S. We assume
that t is a special terminal state, which is absorbing (P att = 1)
and incurs zero cost (c(t) = 0) for all a ∈ A(t) and all P ∈ Pat
[5]. It follows that the total expected cost for t, J(t) = 0 for
all control and environment policies.

We require policies to be proper, i.e. they almost surely
reach the terminal state t for all transition matrices in the
uncertainty set [5].

Definition 7. A stationary control policy µ is proper if, under
that policy, there is positive probability that the terminal state
will be reached after at most n stages, regardless of the initial
state and transition matrices, that is, if

ρµτ ∶= max
s=1,...,n

max
P ∈Pµ(s)

P (sn ≠ t∣s0 = s, µ) < 1. (4)

Assumption 3. All stationary control policies are proper.

Remark 2. This assumption intuitively means that the termi-
nal state will eventually be reached under any stationary policy.
This will allow us to make statements regarding convergence
rates. While this is usually a rather strong condition, these
assumptions are not restrictive for Problem 1, as shown in
Section V.

In preparation for the main result of this section, we give
the following classical definition and theorem [23].

Definition 8. Let (M,d) be a metric space and f ∶M →M .
We say that f is a contraction if there is a real number β,
0 ≤ β < 1, such that

d(f(x), f(y)) ≤ βd(x, y)

for all x and y in M .

Theorem 1 (Contraction Mapping Theorem). Let (M,d) be
a complete metric space and let f ∶M →M be a contraction.
Then there exists a unique point x∗ in M such that

f(x∗) = x∗.

Additionally, if x is any point in M , then

lim
k→∞

fk(x) = x∗,

where fk is the composition of f with itself k times.

We now define mappings that play an important role in the
rest of this section. We loosely follow the notation of [5]. The
scalar J(s) corresponds to the total expected cost to go when
starting at state s ∈ S. The shorthand J ∈ Rn represents the
cost vector for all s ∈ S/t. Since the cost is always zero at the
terminal state t, we do not include it. The T and Tµτ operators
are mappings from Rn to Rn. For each state s ∈ S/t, define
the s-th component of TJ and TµτJ respectively as

(TJ)(s) ∶= min
a∈A(s)

[c(s, a) +max
p∈Pas

pTJ], (5)

(TµτJ)(s) ∶= c(s, µ(s)) + pTJ. (6)

In the following two lemmas, we show that these mappings
are monotonic and contractive. We prove these for (5); the
proofs for (6) follow by limiting the actions and transition
probabilities at each state s to µ(s) and P as respectively. T k

is the composition of T with itself k times.

Lemma 1 (Monotonicity). For any vectors u, v ∈ Rn, such
that u ≤ v, we have that T ku ≤ T kv for k = 1,2,

Proof: Immediate from (5) and definition of Pas .

Definition 9. The weighted maximum norm ∥ ⋅ ∥w of a vector
u ∈ Rn is defined by

∥ u ∥w= max
i=1,...,n

∣u(i)∣

w(i)

where vector w ∈ Rn and w > 0.

Lemma 2 (Contraction). If all stationary control policies are
proper, then there exists a vector w > 0 and a scalar γ ∈ [0,1)
such that ∥ Tu − Tv ∥w ≤ γ ∥ u − v ∥w for all u, v ∈ Rn.

Sketch of proof: The proof of Lemma 2 closely follows
that in [5] (Vol. II, Section 2.4) where the environment policy
is fixed. More specifically, the proof in [5] is modified to allow
maximization over environment policies. This modification
holds due to Assumption 3 and Lemma 1. Details are available
in the Appendix.

We now prove the main result of this section. We remind the
reader that the vector J∗ ∈ Rn, defined in (2), is the optimal
worst-case total expected cost starting from state s ∈ S.

Theorem 2 (Robust Dynamic Programming). Under the as-
sumption that all stationary control policies µ are proper for
a finite MDP M with transition matrices in the uncertainty
set Pa for a ∈ A, the following statements hold.
(a) The optimal worst-case cost vector J∗ is the unique fixed-

point of T ,
J∗ = TJ∗. (7)

(b) The optimal worst-case cost vector J∗ is given by,

J∗ = lim
k→∞

T kJ, (8)

for all J ∈ Rn. This limit is unique.
(c) A stationary control policy µ and a stationary environ-

ment policy τ are optimal if and only if

TµτJ
∗ = TJ∗. (9)

Proof: Parts (a) and (b) follow immediately from Theo-
rem 1 and Lemmas 1 and 2.

Part (c): First assume that TµτJ∗ = TJ∗. Thus TµτJ∗ =
TJ∗ = J∗ from (7) and Jµτ = J∗ from the uniqueness of the
fixed-point. Thus, µ and τ are optimal policies. Now assume
that µ and τ are optimal policies so that Jµτ = J∗. We then
have that TµτJ∗ = TµτJµτ = Jµτ = J∗.

Corollary 1. Given the optimal worst-case cost vector J∗, the
optimal control actions a∗ satisfy

a∗(s) ∈ arg min
a∈A(i)

[c(s, a) +max
p∈Pas

pTJ∗], s ∈ S. (10)

and, with some abuse of notation, the optimal transition
vectors (for the environment) are

P ∗a
s ∈ arg max

p∈Pas
pTJ∗, s ∈ S, a ∈ A(s). (11)

Proof: Follows from Part (c) in Theorem 2 and (5).
To recap, we showed that T is monotone and a contraction

with respect to a weighted max norm. This allowed us to prove
in Theorem 2 that T has a unique fixed-point that can be found
by an iterative procedure (often called value iteration). We
further gave conditions on the optimality of stationary policies
and showed how to determine optimal actions for the system
and the environment.

B. Uncertainty Set Representations

Refering back to the T operator (5), we see that it is com-
posed of two nested optimization problems–the outer problem
for the system and the inner problem for the environment. To
be clear, the environment optimization problem for a given
state s ∈ S and control action a ∈ A(s) refers to

max
p∈Pas

pTJ. (12)

The tractability of this optimization problem depends on the
structure of the uncertainty set Pas . In the remainder of this
section, we investiate interval and likelihood uncertainty sets,
as these are both statistically meaningful and computationally
efficient. Due to lack of space, we do not discuss maximum
a priori, entropy, scenario, or ellipsoidal uncertainty models,
even though these are included in this framework. The inter-
ested reader should refer to Nilim and El Ghaoui for details
[24].

1) Interval Models: A common description of uncertainty
for transition matrices corresponding to action a ∈ A is by
intervals

Pa = {P a ∣P a ≤ P a ≤ P
a
, P a1 = 1}, (13)

where P a and P
a

are nonnegative matrices P a ≤ P
a
. This

representation is motivated by statistical estimates of confi-
dence intervals on the individual components of the transition
matrix. The environmental optimization problem can be solved
in O(nlog(n)) time using a bisection method [24].

2) Likelihood Models: The likelihood uncertainty model is
motivated by determining the transition probabilities between
states through experiments. We denote the experimentally
measured transition probability matrix corresponding to action
a by F a and the optimal log-likelihood by βmax.

Uncertainty in the transition matrix for each action a ∈ A is
described by the likelihood region [21]

Pa = {P a ∈ Rn×n∣P a ≥ 0, P a1 = 1,∑
i,j

F aij logP aij ≥ β
a}, (14)

where βa < βamax and can be estimated for a desired confidence
level by using a large sample Gaussian approximation [24]. As
described in Assumption 2, we enforce that F aij = 0 if and only
if P aij = 0 for all i, j ∈ S and all a ∈ A.

Since the likelihood region above is not rectangular (con-
trary to Assumption 1), it must be approximated by projection

onto each row of the transition matrix. Even with the approx-
imation, likelihood regions are less conservative uncertainty
representations than intervals, which arise from further pro-
jection onto the row’s components. A bisection algorithm can
approximate the environment optimization problem to within
an accuracy δ in O(log(Jmax/δ)) time, where Jmax is the
maximum value of the cost vector, J [24].

V. CREATING THE ROBUST CONTROL POLICY

We now solve Problem 1 by creating a robust control policy.
First, we form the product MDP Mp which allows behaviors
that satisfy both the system MDPM and the LTL specification
ϕ. We show that Mp can be transformed into an equivalent
form Mssp where all stationary control policies are proper.
Next, we use the robust dynamic programming developed
in Section IV to find a control policy that maximizes the
probability of satisfying ϕ. Finally, we project this control
policy to a policy for M.

A. Forming the product MDP

The product MDP Mp restricts behaviors to those that
satisfy both the system transitions and the determinstic Rabin
automaton A representing the LTL specification.

Definition 10. For labeled finite MDP M =
(S,A,P, s0,AP,L) and deterministic Rabin automaton
A = (Q,2AP , δ, q0,Acc), the product MDP
Mp = (Sp,A,Pp, s0p,Q,Lp) with

● Sp = S ×Q,

● Pp((s, q), α, (s′, q′)) =
⎧⎪⎪
⎨
⎪⎪⎩

P (s,α, s′) if q′ = δ(q,L(s′))
0 otherwise,

● s0p = (s0, q) such that q = δ(q0, L(s0)),
● Lp((s, q)) = {q}.

The accepting product state pairs Accp =
{(Lp1,K

p
1), . . . , (L

p
k,K

p
k)} are lifted directly from Acc.

Formally, for every (Li,Ki) ∈ Acc, state (s, q) ∈ Sp is in Lpi
if q ∈ Li, and (s, q) ∈Kp

i if q ∈Ki.

There is a one-to-one correspondence between the paths on
Mp and M, which induces a one-to-one correspondence for
policies on Mp and M. So, given a policy πp = {µp0, µ

p
1, . . .}

on Mp, we can induce a policy π = {µ0, µ1, . . .} on M by
setting µi(si) = µ

p
i ((si, qi)) for every stage i = 0,1, This

is always valid since Mp and M have the same action set A.
If πp is stationary, π is guaranteed to be finite-memory, but
not necessarily stationary [4].

B. Reachability in product MDP

We now show how to use the product MDP Mp to deter-
mine a robust control policy that maximizes the worst-case
probability that a given LTL specification is satisfied. Given a
control and environment policy, the probability of satisfying
an LTL formula is equivalent to the probability of reaching
a certain set of states in Mp, which are accepting maximal
end components [4]. We call this probability the reachability
probability. Informally, accepting maximal end components
are sets of states that the system can remain in forever and

where the acceptance condition of the determinsitic Rabin
automaton is satisfied.

Definition 11. A sub-MDP of a MDP is a pair of states and
action sets (C,D) where: (1) ∅ ≠ C ⊆ S and D ∶ C → 2A is a
function such that ∅ ≠D(s) ⊆ A(s) for all states s ∈ C and (2)
s ∈ C and a ∈D(s) implies Post(s, a) = {t ∈ S∣P ast > 0} ⊆ C.

Definition 12. An end component is a sub-MDP (C,D)
such that the digraph G(C,D) induced by (C,D) is strongly
connected.

An end component (C,D) is maximal if there is no end
component (C ′,D′) such that (C,D) ≠ (C ′,D′) and C ⊆
C ′ and D(s) ⊆ D′(s) for all s ∈ C. Furthermore, (C,D) is
accepting for the deterministic Rabin automaton A if for some
(L,K) ∈ Acc, L ∉ C and K ∈ C.

After computing the accepting maximal end components of
Mp, we need to determine a control policy that maximizes the
worst-case probability of reaching an accepting maximal end
component from our initial state. Without considering transi-
tion probability uncertainty, this policy can now be computed
using either linear or dynamic programming methods [4]. We
need to use the robust dynamic programming approach from
Section IV. Note that this approach does not directly apply to
Mp, as not all stationary control policies on Mp are proper.
We can transform Mp into an equivalent MDP where all
stationary policies are proper, as shown in the next subsection.

C. Transformation to Stochastic Shortest Path
We now show how to transform the product MDPMp into

an equivalent formMssp where all stationary control policies
µ are proper (cf. Assumption 3). It is important to note that
Mp andMssp are equivalent only in terms of the probability
of reaching an accepting maximal end component—both the
states and the transition probabilities will likely change.

In the remainder of this section, we use the simplified
notation Mp = (S,A,P) to describe the states, actions, and
transition matrices of the product MDP. We refer to the state
of Mp as s instead of (s, q) when clear from context.

We first partition the states S of Mp into three disjoint
sets. We let B be the union of all accepting maximal end
components in Mp. By definition, every state s ∈ B has a
maximum reachability probability of 1. We define the set of
states that have zero probability of reaching B by S0. These
can be found efficiently by graph algorithms [4]. Finally, we
define the set Sr = S − (B ∪ S0) as all of states not in an
accepting maximal end component with non-zero maximum
reachability probability. It is easy to see that these three sets
form a partition of S.

Algorithm 1 Appending the terminal state
Require: Mp = (S,A,P) and Sr, S0,B
S ∶= S ∪ {t} and A(t) ∶= {u} and c(t, u) ∶= 0
A(s) ∶= {u} and Pust ∶= 1 for all s ∈ B ∪ S0

In Algorithm 1, we augment S with a terminal state t which
is absorbing and incurs zero cost (cf. Section IV).

Remark 3. Algorithm 1 does not change the probabilty of
reaching an accepting maximal end component for any state
s ∈ S under any control and environment policies.

Algorithm 2 End component elimination (de Alfaro [9])
Require: MDP Mp = (S,A,P) and Sr, S0,B
Ensure: MDP Mssp = (Ŝ, Â, P̂)

{(C1,D1), . . . , (Ck,Dk)} max end components in Sr
Ŝ0 ∶= S0 and B̂ ∶= B
Ŝ ∶= S ∪ {ŝ1, . . . , ŝk} − ∪

k
i=1Ci

Ŝr ∶= Sr ∪ {ŝ1, . . . , ŝk} − ∪
k
i=1Ci

Â(s) ∶= {(s, a) ∣ a ∈ A(s)} for s ∈ S − ∪ki=1Ci
Â(ŝi) ∶= {(s, a) ∣ s ∈ Ci ∧ a ∈ A(s) −D(s)} for 1 ≤ i ≤ k

For s ∈ Ŝ, t ∈ S − ∪ki=1Ci and (u, a) ∈ Â(s), P̂ (u,a)st ∶= P aut
and P̂ (u,a)sŝi

∶= ∑t∈Ci P
a
ut

Algorithm 2 eliminates the maximal end components in Sr
and replaces them with new states. This procedure is from
Algorithm 3.3 of [9], where it is also proven (Theorem 3.8 in
[9]) that the reachability probabilities are unchanged by this
procedure. The intuition behind this result is that one can move
between any two states r and s in a maximal end component
in Sr with probability one and zero cost.

After applying Algorithms 1 and 2, we call the resulting
MDP Mssp. We note that Ŝr, B̂, and Ŝ0 form a disjoint
partition of Ŝ. All stationary control policies for Mssp are
proper, i.e., they will almost surely reach the terminal state t.

Theorem 3. All stationary control policies for Mssp are
proper.

Proof: By contradiction. Suppose instead that there exists
a stationary control policy µ such that the system starting in
state s0 ∈ Ŝr never reaches the terminal state t (i.e. there
does not exist an integer k such that sk = t). It should be
clear that we only need to look at s0 ∈ Ŝr, as all s ∈ B̂ ∪ Ŝ0

deterministically transition to t. This implies that there does
not exist a transition between any states r ∈ Ŝr and s ∈ B̂∪ Ŝ0.
Therefore, we have that under µ, there exists a set U ∈ Ŝr
such that if state sk ∈ U for some finite integer k, then sk ∈ U
for all k. This means that U must be an end component in Ŝr,
which is the contradiction.

Thus, Mssp is equivalent in terms of reachability proba-
bilities to the original product MDP Mp. Furthermore, all
stationary control policies are proper.

D. Computing the optimal control policy

We now perform robust value iteration as described in
Section IV on the transformed product MDP Mssp. This
method applies because Mssp has been constructed so that
all stationary policies are proper.

As we formulated the dynamic programming approach in
terms of total expected cost minimization, we define the total
expected cost as the negative of the reachability probabilty,
which is equivalent to the probability of satisfying the LTL
formula. We refer to cost and probability interchangably in

the remainder. Thus, for all a ∈ Â, the appropriate costs are
c(s, a) = −1 for all s ∈ B̂ and c(s, a) = 0 for all s ∈ Ŝ0. For the
remaining states, s ∈ Ŝr, we initialize the costs arbitrarily in
[−1,0] and compute the optimal worst-case cost vector using
the iteration presented in Theorem 2. The resulting cost vector
is J∗ssp ∈ Rm, where m is the number of states in Mssp.

We first determine the cost vector J∗p ∈ Rn for Mp from
J∗ssp ∈ Rm. For sp ∈ Sp, we determine the corresponding
state sssp ∈ Ŝ and let J∗p (sp) = J∗ssp(sssp). This mapping
is surjective, as there is at least one sp for each sssp.

Now that we have the optimal worst-case cost vector J∗p
for the original product MDP Mp, we need to determine the
optimal actions a∗(s) ∈ A(s) for each s ∈ Sr. We do not
consider actions for states in S0 ∪ B at this time. However,
we cannot simply use the approach for selecting actions given
by (10), because not all stationary control policies on Mp

are proper. For states in a maximal end component in Sr,
there may be multiple actions that satisfy (10). Arbitrarily
selecting actions can lead to situations where the stationary
control policy stays in the maximal end component forever and
thus never satisfies the specification. We avoid this situation by
only selecting an action if it is both optimal (i.e., satisfies (10))
and it has a non-zero probability of transitioning to a state that
is not in a maximal end component in Sr. Algorithm 3 selects
the action with the highest probability of transitioning to a
state not in a maximal end component in Sr.

Algorithm 3 Product MDP Control Policy
Require: J∗p ∈ Rn, Mp = (S,A,P), Sr, S0, B
visited ∶= S0 ∪B
possAct(s) ∶= {a ∈ A(s)∣(TaJ

∗
p)(s) = J

∗
p (s)}

for s ∈ Sr do
if ∣possAct(s)∣ = 1 then
µ(s) ∶= possAct(s) and visited ∶= visited ∪ {s}

end if
end for
while visited ≠ S do

for s ∈ Sr/visited do
maxLeaveProb ∶= 0
leaveProb ∶= maxa∈possAct(s)∑t∈visited P ast
if leaveProb >maxLeaveProb then
optAct ∶= a and optState ∶= s

end if
end for
µ(s) ∶= optAct and visited ∶= visited ∪ {optState}

end while

Theorem 4. Algorithm 3 returns a robust control policy µ that
satisfies Jµτp = J∗p for the worst-case environmental policy τ .

Proof: For each state s ∈ Sr, we only need to consider
actions a ∈ A(s) that satisfy (TaJ

∗)(s) = J∗(s) as all
other actions cannot be optimal with respect to the worst-
case environmental policy τ . We call these possible actions.
From the previous dynamic programming on Mssp and the

definition of end component, every state has at least one
possible action. We say state s ∈ visited if a possible action
has been selected for it that also has a positive probability of
leaving Sr. Thus, states in visited are not in an end component
in Sr. Initialize visited = S0 ∪ B. For every state with only
one possible action, select that action and add the state to
visited. For states with multiple possible actions, only select
an action if it has a non-zero probability of reaching visited,
and thus, leaving Sr. It is always possible to choose an action
in this manner from the definition of Sr. Select actions this
way until visited = S and return the corresponding policy µ.
By construction, µ satisfies TµJ∗ = J∗ and is guaranteed to
eventually exit Sr.

The optimal control policy for satisfying the LTL speci-
fication ϕ consists of two parts: a stationary deterministic
policy for reaching an accepting maximal end component, and
a finite-memory deterministic policy for staying there. The
former policy is given by Algorithm 3 and denoted µreach.
The latter policy is a finite-memory controller πB that selects
actions in a round-robin fashion to ensure that the system
stays inside the accepting maximal end component for all
time and thus satisfies ϕ [4]. The overall optimal policy is
π∗p = µreach if s ∉ B and π∗p = πB if s ∈ B. We induce an
optimal policy π∗ on M as described in Section V-A.

Remark 4. If there is another criteria that is important besides
maximizing the probability of satisfying the specification, the
control policy inside the AMEC can be modified accordingly.
The only requirement is that it still ensure that the AMEC is
never left and all states inside are visited infinitely often. An
example of this approach is given in [11].

E. Complexity

We now detail the complexity of our approach for solving
Problem 1. The number of states in the system MDPM is the
number of labeled regions in R due to the bijection between
MDP states and regions. The number of transitions for each
state is given by the reachability between regions r ∈ R, and
is usually sparse for robot motion planning problems.

The size of the deterministic Rabin automaton A is, in
the worst case, doubly-exponential in the length of the LTL
formula [8]. Experimental work in [15] has shown that de-
terministic Rabin automaton sizes are often exponential or
lower for many common types of LTL formulae. Also, there
are fragments of LTL, which include all safety and guaran-
tee properties, that generate a determinstic Rabin automaton
whose size is singly-exponential in the length of the formula
[2].

The size of the product MDP Mp is equal to the size of
M times the size of A. Mp has n states and m transitions.
Maximal end components can be found in O(n2) time. Since
T is a contraction, an ε-suboptimal control policy can be
computed in O(n2mlog(1/ε)) time without uncertainty sets
[5] and O(n2mlog(1/ε)2) when using likelihood transition
uncertainty sets. Thus, the computational cost for incorporat-
ing robustness is O(log(1/ε)) times the non-robust case.

VI. CREATION OF MDP AND UNCERTAINTY SETS

We now discuss a simulation-based approach for creating
a finite MDP abstraction M of a dynamical system (3). It
should be noted that the main contribution of our work, the
solution of Problem 1, does not depend on the method for
creatingM and its corresponding transition matrix uncertainty
sets P . Thus, if specific systems are more amenable to other
abstraction methods, these can be used to create M and P ,
after which our methods can compute a robust control policy.
An approach using control primitives is given in [19].

Given a dynamical system (3) and a set R of labeled
regions, where the labels correspond to sets of True atomic
propositions that an LTL formula is defined over, we want to
compute reachability for the system between all regions in R.
We say that for two regions a, b ∈ R, region b is reachable
from region a, if there exists a control sequence u1∶t for every
system state in a that evolves the system to some system state
in region b in finite time.

Computing reachability is hard in general, so it is often nec-
essary to consider a simplified model of (3) where reachability
can be efficiently computed. Given candiate control sequences
based on reachability analysis of the simplified system, one
can use simulations to estimate the effect of these control
actions on the full system dynamics and use these estimates of
reachability to create an MDP abstraction. For every region,
randomly sample N initial system states inside it and apply
the candidate control sequences. Based on the average of all
N simulated trajectories of the system (3) between regions
i and j, create the estimated transition probability matrix
F aij entries. It is important to consider a transition between
regions i and j successful only if the trajectory remains in
the union of the two regions. This is because one cannot
guarantee that a LTL specification is satisfied if the system
visits other regions in between. Trajectories that visit multiple
regions can transition to a special ’catch-all’ state that has
zero probability of satisfying the specification. The designer
can tradeoff between the number of samples N and the size
of the transition matrix uncertainty sets.

An uncertanty set for the transition matrices of M can be
generated using the simulation data. Methods for determining
these sets in a principled manner can be found in [24].

Remark 5. Even after simulating an arbitrary number of
samples, we still can’t be sure that the estimated transition
matrices are exact, as the system (3) might not accurately
model the physical system. Thus, even if an abstraction method
could generate an MDP from (3) that was exact, uncertainty
sets should still be considered on the transition matrices.

The uncertanty set for the transition matrices of M can be
generated using the results of the above simulation. Methods
for determining these sets in a principled manner can be found
in [24].

VII. EXAMPLE

We demonstrate our robust control framework on a mobile
robot, where there is uncertainty in the control inputs from

Algorithm 4 Create MDP abstraction
Require: N , original (3) and simplified system, regions R
Ensure: MDP M= (S,A,F,AP,L)
S = {r∣r ∈ R} and determine AP and L from R
Let r′ ∈ reach(r) if r′ is reachable from r for simplified
system
for r ∈ R do

for r′ ∈ reach(r) do
for i = 1→ N do
x← random system state in r
u1∶T−1 ← getControl(x, r, r′)
for t = 1→ T − 1 do
xt+1 ← f(xt, ut,wt) {simulate full dynamics}

end for
r′′ ← R(xT) {R ∶ X → R}
F (r,Ar,r′ , r

′′)+ = 1
N

{where F (i, u, j) = Fuij}
end for

end for
end for

stochastic disturbances caused by terrain variation.
We use the discrete-time form of the standard unicycle

model for our system

xk+1 = xk + (v + dv) cos(θ)∆t

yk+1 = yk + (v + dv) sin(θ)∆t

θk+1 = θk + (ω + dω)∆t

where ∆t = tk+1 − tk, v is the velocity input, ω is the angular
velocity input, and d = (dv, dω)

T is a stochastic disturbance.
In order to determine candidate control sequences, we ig-

nore the stochastic disturbances and use feedback linearization
to map between the original control inputs u = (vx, vy)

T and
new inputs ulin = (v,ω)T . This map is given by

v = vx cos(θ) + vy sin(θ),

ω = 1/ε (−vx sin(θ) + vy cos(θ)),

where ε is a tuning parameter related to the wheel base length.
We then check reachability for the simplified model

xk+1 = xk + vx and yk+1 = yk + vy , where vx and vy are the
velocities in the x and y directions. This system is linear, so
we can use TuLiP to check reachability [26]. We ignore θ here
because our labels only depend on x and y.

The task for the robot is to sequentially visit two regions of
interest while always remaining safe. Once the robot has vis-
ited the regions in order, it should return to the start and remain
there. The atomic propositions are {home,unsafe,R1,R2}.
The LTL specification formalizing this task is ϕ = home ∧
◇◻ home ∧ ◻¬unsafe ∧ ◇(R1 ∧ ◇R2).

We used the procedure outlined in Section VI to create a
finite MDP abstraction M of (15), where each state of M
is a square region in R. The actions at each state include
transitioning to a neighbor, rotating in place, or not moving.
As the system does not satisfy the Markov property (due to
the θ term), we add four MDP states per region as a coarse

discretization for θ. Due to symmetry of the regions and
robot, we only need to calculate transitions for one region.
An additional 16-fold speedup is possible by also exploiting
rotational symmetries, but this is not implemented.

All computations were run on an 2.4 GHz dual core
desktop desktop with 2 GB of RAM. It took 20 minutes to
construct the MDP abstraction and uncertainty sets using 400
samples for the Monte Carlo simulation. We used large sample
approximations to estimate βa (14) for an uncertainty level
of 0.9 [24]. The deterministic Rabin automaton representing
ϕ has seven states. The product MDP has 597 states and
18455 transitions and took 1.1 seconds to compute. It took
25.4 seconds to compute Mssp. It took 44.3 seconds to
generate an ε-suboptimal robust control policy with likelihood
uncertainty sets. We also generated a non-robust control policy
(no uncertainty sets), for comparison, 3.4 seconds. In both
cases, ε = 1e − 5.

The calculated maximum probability of satisfying the spec-
ification was 0.763 for the non-robust policy and 0.526 for
the robust policy. However, as the non-robust policy does not
account for transition matrix uncertainties, it is likely to be
overly optimistic when implemented on a real system. In this
case, the non-robust policy only had a 0.491 probability of
satisfying the specification given the worst-case transition ma-
trices in the uncertainty set. Figure 1 shows sample trajectories
of the robot using the robust and non-robust control policies.

Fig. 1. Sample trajectories of the robot using the robust and non-robust
control policies. The robust control policy takes a more conservative path.

VIII. CONCLUSIONS AND FUTURE DIRECTIONS

We have presented a method for creating robust control
policies for finite MDP abstractions of dynamical systems with
temporal logic specifications. This robustness is useful both
when the abstraction is not exact or when the dynamical sys-
tem model does not adequately represent the physical system.
Designing an ε-suboptimal robust control policy increases the
time complexity only by a factor of O(log(1/ε)) compared to
the non-robust policy for statistically meaningful uncertainty
models.

In the future, we plan to extend these results to other
temporal logics, such as probabilistic computational tree logic

(PCTL). We are also looking into weakening the rectangu-
larity assumption on the transition matrix uncertainty sets to
allow for correlation. Finally, further work needs to be done
on principled methods for abstraction of selected classes of
dynamical systems as finite MDPs.

ACKNOWLEDGEMENTS

The authors would like to thank Scott Livingston for helpful
comments. This work was supported by an NSF Graduate
Research Fellowship and the Boeing Corporation.

APPENDIX

Theorem 2: The proof closely follows that of [5].
We add additional quantification over all possible probability
distributions in (15) and (16). First, partition the state space.
Let S1 = {1} and for k = 2,3, . . . , and define

Sk = {i∣i ∉ S1 ∪⋯ ∪ Sk−1 , min
a∈A(i)

max
j∈S1∪⋯∪Sk−1

min
p∈Pai

pij > 0}.

(15)
Let m be the largest integer such that Sm is nonempty. It
can be seen that the sets Sk cover the entire state space, i.e.,
∪mk=1Sk = S.

Choose a vector w > 0 such that T is a contraction with
respect to ∥ ⋅ ∥w. Take the ith component wi to be the same
for states i in the same set Sk. We choose the components wi
of the vector w by

wi = yk if i ∈ Sk,

where y1, . . . , ym are appropriately chosen scalars satisfying

1 = y1 < y2 < ⋯ < ym.

Let

ε ∶= min
k=2,...,m

min
µ∈M

min
i∈Sk

min
p∈Pai

∑
j∈S1∪⋯∪Sk−1

Pµij , (16)

and note that 0 < ε ≤ 1. We will show that it is sufficient to
choose y2, . . . , ym so that for some β < 1, we have

ym
yk

(1 − ε) +
yk−1

yk
ε ≤ β < 1, k = 2, . . . ,m,

and then show that such a choice exists.
For all vectors u, v ∈ Rn, select a µ such that Tµu = Tu.

We then have for all i,

(Tv)(i) − (Tu)(i) = (Tv)(i) − (Tµu)(i)

≤ (Tµv)(i) − (Tµu)(i)

=
n

∑
j=1

pij(µ(i))(v(j) − u(j)).

Let k(j) be such that j belongs to the set sk(j). Then we have
for any constant c,

∥ v − u ∥w≤ c Ô⇒ v(j) − u(j) ≤ cyk, j = 2, . . . , n,

and thus for all i,

(Tv)(i) − (Tu)(i)

cyk(i)
≤

1

yk(i)

n

∑
j=1

pij(µ(i))yk(j)

≤
yk(i)−1

yk(i)
∑

j∈S1∪⋯∪Sk(i)−1
pij(µ(i))

+
ym
yk(i)

∑
j∈Sk(i)∪⋯∪Sm

pij(µ(i))

= (
yk(i)−1

yk(i)
−
ym
yk(i)

) ∑
j∈S1∪⋯∪Sk(i)−1

pij(µ(i))

+
ym
yk(i)

≤ (
yk(i)−1

yk(i)
−
ym
yk(i)

)ε +
ym
yk(i)

≤ β.

Thus, we have that

(Tv)(i) − (Tu)(i)

wi
≤ cβ, i = 1, . . . , n,

which taking the max over i gives

∥ Tv − Tu ∥w≤ cβ,

for all u, v ∈ Rn with ∥ u − v ∥w≤ c.
Thus, we have that T is a contraction mapping under the

∥ ⋅ ∥w norm.
We now show that scalars y1, y2, . . . , ym exist such that the

above assumptions hold. Let y0 = 0, y1 = 1, and suppose that
y1, y2, . . . , yk have been chosen. If ε = 1, we choose yk+1 =
yk + 1. If ε < 1, we choose yk+1 to be

yk+1 =
1

2
(yk +Mk)

where

Mk = min
1≤i≤k

{yi +
ε

1 − ε
(yi − yi−1)}.

Using the fact that

Mk = min{Mk, yk+1 +
ε

1 − ε
(yk+1 − yk)},

we have by induction that for all k, yk < yk+1 < Mk+1 and
thus we can construct the required sequence.

REFERENCES

[1] R. Alur, T. A. Henzinger, G. Lafferriere, and G. J. Pappas. Discrete
abstractions of hybrid systems. Proc. IEEE, 88(7):971–984, 2000.

[2] R. Alur and S. La Torre. Deterministic generators and games for LTL
fragments. ACM Trans. Comput. Logic, 5(1):1–25, 2004.

[3] J. A. Bagnell, A. Y. Ng, and J. G. Schneider. Solving uncertain Markov
decision processes. Technical report, Carnegie Mellon University, 2001.

[4] C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press,
2008.

[5] D. P. Bertsekas. Dynamic Programming and Optimal Control (Vol. I
and II). Athena Scientific, 2001.

[6] O. Buffet. Reachability analysis for uncertain ssps. In Proceedings of the
17th IEEE International Conference on Tools with Artificial Intelligence,
2005.

[7] K. Chatterjee, K. Sen, and T. Henzinger. Model-checking omega-
regular properties of interval Markov chains. In R. M. Amadio, editor,
Foundations of Software Science and Computation Structure (FoSSaCS),
pages 302–317, March 2008.

[8] C. Courcoubetis and M. Yannakakis. The complexity of probabilistic
verification. Journal of the Association for Computing Machinery,
42:857–907, 1995.

[9] L. de Alfaro. Formal Verification of Probabilistic Systems. PhD thesis,
Stanford University, 1997.

[10] X. C. Ding, S. L. Smith, C. Belta, and D. Rus. LTL control in uncertain
environments with probabilistic satisfaction guarantees. In Proceedings
of 18th IFAC World Congress, 2011.

[11] X. C. Ding, S. L. Smith, C. Belta, and D. Rus. MDP optimal control
under temporal logic constraints. In Proceedings of the IEEE Conference
on Decision and Control, 2011.

[12] E. A. Emerson. Temporal and modal logic. In Handbook of theoretical
computer science (vol. B): formal models and semantics, pages 995–
1072. MIT Press, Cambridge, MA, USA, 1990.

[13] R. Givan, S. Leach, and T. Dean. Bounded-parameter Markov decision
processes. Artificial Intelligence, 122:71–109, 2000.

[14] B. Johnson and H. Kress-Gazit. Probabilistic analysis of correctness of
high-level robot behavior with sensor error. In Proceedings of Robotics:
Science and Systems, 2011.

[15] J. Klein and C. Baier. Experiments with deterministic omega-automata
for formulas of linear temporal logic. Theoretical Computer Science,
363:182–195, 2006.

[16] M. Kloetzer and C. Belta. A fully automated framework for control of
linear systems from temporal logic specifications. IEEE Transaction on
Automatic Control, 53(1):287–297, 2008.

[17] H. Kress-Gazit, G. Fainekos, and G. Pappas. Where’s Waldo? Sensor-
based temporal logic motion planning. In Proc. of IEEE International
Conference on Robotics and Automation, pages 3116–3121, 2007.

[18] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: verification
of probabilistic real-time systems. In Proceedings of 23rd International
Conference on Computer Aided Verification, 2011.

[19] M. Lahijanian, S. B. Andersson, and C. Belta. A probabilistic approach
for control of a stochastic system from LTL specifications. In IEEE
Conference on Decision and Control, 2009.

[20] M. Lahijanian, S. B. Andersson, and C. Belta. Control of Markov
decision processes from PCTL specifications. In Proceedings of the
American Control Conference, 2011.

[21] E. L. Lehmann and J. P. Romano. Testing Statistical Hypotheses.
Springer, 2005.

[22] R. Majumdar, E. Render, and P. Tabuada. Robust discrete synthesis
against unspecified disturbances. In Proc. Hybrid Systems: Computation
and Control, pages 211–220, 2011.

[23] A. W. Naylor and G. R. Sell. Linear Operator Theory in Engineering
and Science. Springer-Verlag, 1982.

[24] A. Nilim and L. El Ghaoui. Robust control of Markov decision processes
with uncertain transition matrices. Operations Research, 53:780–798,
2005.

[25] J. K. Satia and R. E. L. Jr. Markovian decision processes with uncertain
transition probabilities. Operations Research, 21(3):pp. 728–740, 1973.

[26] T. Wongpiromsarn, U. Topcu, and R. M. Murray. Receding horizon con-
trol for temporal logic specifications. In Proc. of the 13th International
Conference on Hybrid Systems: Computation and Control, 2010.

[27] T. Wongpiromsarn, U. Topcu, and R. M. Murray. Receding horizon
temporal logic planning. IEEE Transactions on Automatic Control, 2010.
submitted.

[28] D. Wu and X. Koutsoukos. Reachability analysis of uncertain systems
using bounded-parameter Markov decision processes. Artif. Intell.,
172:945–954, 2008.

