
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.3040185, IEEE Access

VOLUME XX, 2017 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

Robust Control of Unknown Observable
Nonlinear Systems Solved as a Zero-Sum Game

Mircea-Bogdan Radac1, Member, IEEE, and Timotei Lala1
1Department of Automation and Applied Informatics, Politehnica University of Timisoara, Romania

Corresponding author: Mircea-Bogdan Radac (e-mail: mircea.radac@upt.ro).

This work was supported by a grant from the Romanian Ministry of Education and Research, CNCS-UEFISCDI, project number PN-III-P1-1.1-TE-2019-

1089, within PNCDI III

ABSTRACT An optimal robust control solution for general nonlinear systems with unknown but

observable dynamics is advanced here. The underlying Hamilton-Jacobi-Isaacs (HJI) equation of the

corresponding zero-sum two-player game (ZS-TP-G) is learned using a Q-learning-based approach

employing only input-output system measurements, assuming system observability. An equivalent virtual

state-space model is built from the system’s input-output samples and it is shown that controlling the

former implies controlling the latter. Since the existence of a saddle-point solution to the ZS-TP-G is

assumed unverifiable, the solution is derived in terms of upper-optimal and lower-optimal controllers. The

learning convergence is theoretically ensured while practical implementation is performed using neural

networks that provide scalability to the control problem dimension and automatic feature selection. The

learning strategy is checked on an active suspension system, a good candidate for the robust control

problem with respect to road profile disturbance rejection.

INDEX TERMS active suspension system, approximate dynamic programming, neural networks, optimal

control, reinforcement learning, state feedback, zero-sum two-player games

I. INTRODUCTION

Feedback control systems that are robust when faced with

external disturbances are a common challenge and also

frequently pose a direct or indirect design specification. To

this end, the robust optimal control design is a highly

attractive approach that has gained renewed attention lately

in the zero-sum (ZS) game framework. Although the robust

optimal design is, for quite some time now, well-posed for

linear systems and solved by the H-infinity framework, it

was not until the works by [1], [2] that the framework was

imported to nonlinear systems robust optimal control in the

form of the L2-gain optimal control. The goal of this latter

formulation is to solve the Hamilton-Jacobi-Isaacs (HJI)

equation, accepting the fact that for general nonlinear

systems, it is often impossible to find analytical solutions. A

very well-studied approach to the L2 control design is

formulated as a ZS differential game [3]–[7] between two

competing players: the optimal controller and the worst-case

optimal disturbance controller. Whenever the HJI equation is

feasible, these two players are the minimax saddle-point

solution for it, and the feasibility of the HJI equation is well

studied for linear systems and it depends on the attenuation

level as a prescribed degree of performance [8]–[10].

Whereas, for general nonlinear systems, the common

approach is to not directly assume the HJI equation

feasibility and rather to try to search for its solution using the

concepts of upper-optimal and lower-optimal controllers who

act as upper and lower bounds for the optimal controller,

respectively, when the HJI solution exists, or, they act as

independent optimal solutions when an infeasible HJI exists

[11], [12].

There exists a large number of solution approaches to the

HJI equation, stemming from the methods employed by

Approximate Dynamics Programming (ADP) also known as

Reinforcement Learning (RL), for which ample research is

very active [13]–[26]. These works from ADP have been

applied, to name just a few, on discrete-time systems [27] vs.

continuous-time systems, in known-system [28] or in

unknown-system approaches [29], [30]. In game theory, [27]

proposed an iterative ADP algorithm for solving the HJI

equation related to ZS game problems for discrete-time

affine nonlinear systems with known dynamics. In [28], ADP

was derived to find the optimal saddle-point in feedback

strategies of a nonlinear continuous-time system ZS game

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.3040185, IEEE Access

VOLUME XX, 2017 9

with affine input and control constraints using two-player

policy iterations. In [29] ADP solves a discrete-time zero-

sum game for linear systems with continuous states using Q

learning for unknown system. In [31], a near optimal solution

based on successive approximation of HJI equation and

disturbance inputs and control update was given for a

discrete time affine nonlinear system subjected to unknown

internal system dynamics and disturbances. In [32], an online

adaptive real-time policy learning method based on zero-sum

games for nonlinear discrete-time systems was proposed for

learning the HJI equation. In [33], an online adaptive robust

dynamic programming algorithm using policy iteration

scheme for ZS-TP-G of continuous-time unknown systems

subject to uncertainties was considered. In [34], a data-based

adaptive critic method using output feedback for unknown

model and system states was described under disturbance

measurement assumption. In [35], a data-based policy

iteration Q-learning algorithm for ZS-TP-G was developed

for linear systems to eliminate process dynamics knowledge.

Recent game-theoretical contributions (some in nonzero-sum

games) for nonlinear systems are reported in [36]–[38], in the

more general framework of robust control [39]–[40].

The first ADP-based solution approach for solving the HJI

equation for unknown system dynamics is the Q-learning one

[29] in which learning the HJI solution relies on data

collected from the system to be controlled. In Q-learning, the

learning process produces the two optimal controllers as

state-feedback ones that must use the entire state information

available. This is contradictory to some extent to the model-

free label of the method itself, since knowing the natural

system state requires a significant insight into the system,

such as the system order and usually the nature of the

underlying phenomenological process which is highly

correlated with, e.g., the time-scale of the system. On the

other hand, not using the entire state for learning optimal

control poses great challenges to the learning process since

the system is a partially observable one. This is the reason

why some ADP approaches for solving the HJI ZS-TP-G

were devised for handling observable systems and they rely

only on input-output (IO) samples collected from the system.

These IO samples are subsequently used to build a so-called

virtual state that defines a virtual state-space model

transformation of the original system. Unfortunately, the

approach has been tackled for linear systems only, in a

number of recent works [34], [41], [42] and not for general

nonlinear systems, to the authors’ best knowledge. This last

remark serves as an incentive to one of this work’s main

contributions.

On another hand, designing off-the-shelf ADP techniques

is another challenge since a great deal of effort is concerned

with suitable parameterization of the nonlinear cost function

and of the controllers, respectively. Most often, automatic

basis function selection is a difficult task. Whereas, for

observable systems whose state is built from past IO

samples, the order of the equivalent virtual state quickly

increases, which creates a two-fold problem: the adequate

exploration of the input-state-output space and the time-

correlation of the successive input and output samples [43].

These issues are related to the so-called dimensionality

disaster problem which is well-known to the ADP and RL

methods. This is why neural networks (NNs) have been the

most flexible tool employed until now for parameterizing

function approximators. Their main advantage is the self-

regulated scalability to the control problem dimension,

approximation capacity boosted by complex architectures

and overfitting avoidance mechanisms intrinsically embodied

in the NNs training procedures. Therefore, the NNs are

considered to be a standard tool in ADP that can automate

the basis functions (or features) selection in the function

approximation tasks that are mandatory with the ADP

approaches.

Based on the above ideas, the goal of this paper is to

integrate several concepts into a fully functional approach

to designing robust control for observable general unknown

nonlinear systems. The contributions of this work are as

follows:

- extension of the Q-learning approach to solve the

optimal robust control problem as a ZS-TP-G solution to

the HJI equation of general unknown nonlinear observable

systems. An equivalent virtual state-space model of the

original system is built from IO samples and subjected to

robust control learning. The approach does not assume that

a solution to HJI is feasible, therefore it searches for one via

the computation of the intermediate upper-optimal and

lower-optimal controllers. Theoretical analysis provides

convergence of the proposed Q-learning-based solution.

- a NN-based implementation that proves scalability

to the control problem dimension and automatic feature

selection, in spite of the highly-dimensional virtual state

vector.

- validation on a nonlinear industrial system of

practical importance: an active suspension system.

The active suspension system is a well-suited candidate for

learning robust control since it inherently deals with the road

profile disturbance rejection when employed on a variety of

transportation vehicles (cars, trains, etc.) and it presents itself

as a naturally underdamped system stemming from the two-

mass-spring-damper class of systems. On another hand, the

suspension system is a high order one (it has six natural

states when the active hydraulic actuator dynamics is

considered) and it makes it costly to measure all states.

Hence it makes a good candidate for an observable system.

Fortunately, it turns out to be a fully observable one where

the virtual state can be constructed from present and past

values of only one output measurement (the deviation of the

“car body” from the rest position) and from past values of the

two inputs: the control input of the actuator and the

disturbance input). Since measuring the road disturbance

input is not a valid option in practice, a solution is offered to

this problem, which proves that better attenuation of the road

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.3040185, IEEE Access

VOLUME XX, 2017 9

profile impact on the “car body” motion is achieved than

with respect to a competitive optimal controller which is not

learned with disturbance rejection ability in mind. While

there exists a consistent body of scientific literature dealing

with the optimal active suspension control and in particular

in that of reinforcement learning applied for the suspension

control [44]–[48], none of the above solutions deal with the

nonlinear unknown-dynamics observable case, as done

herein.

There are several advantages of learning a disturbance

rejecting optimal controller for an active suspension

system:

- avoidance of the system dynamics knowledge,

- the observability-based solution that requires only

IO samples to reconstruct the system state,

- artificial disturbances that emulate road conditions

are easily generated in fixed stands in a learning facility.

The paper structure is oriented as follows. The second

Section defines the ZS robust optimal control problem

formulation and proposes a Q-learning-based solution

employing upper-optimal and lower-optimal controllers.

Theoretical learning convergence analysis is performed.

Section III describes the practical implementation of the

proposed learning strategy, under neural networks used as

function approximators. The case study in Section IV

extensively validates the learning concept on a realistic

quarter-car active suspension model and provides discussions

and implementation details. Final conclusions are the subject

of the final Section V.

II. THE ZS ROBUST OPTIMAL CONTROL PROBLEM
DEFINITION AND SOLUTION

A. THE UNKNOWN OBSERVABLE SYSTEM

Let the nonlinear unknown system

),(

),,(
:

1

kk

kkk
S

xhy

uxfx (1)

defined in discrete-time, comprise of a transition function

equation and output equation respectively. The system state

is n

X

T

nkkk xx]...[,1,x , the system’s input is

,,,,],[du

m

k

m

k

m

U

TT

k

T

kk mmmRR du duduu

the control input is u

u

m

U

T

mkkk uu],...,[,1,u , the

disturbance input is d

d

m

D

T

mkkk dd],...,[,1,d , the

measured (and controlled) output is denoted
p

Y

T

pkkk yy],...,[,1,y . The functions hf , are

assumed unknown on their definition domains and also

continuously differentiable. In addition to unknown system

dynamics, further system assumptions are listed:

A1. System (1) is completely state observable.

A2. System (1) is IO controllable from
ku to

ky .

A3. System (1) is IO stable inside the domain defined by the

input and output.

A1–A3 are common for defining control problems for

systems with unknown dynamics. Since they are not

verifiable due to unknown system model, they are validated

from working experience with the system, or from technical

datasheets. Assessment efforts of linear systems’

controllability and observability was proposed e.g. in the

works [49], [50].

Observation 1. The input vector lumping both the control

inputs and the disturbance inputs is important for deriving

the two-player formulation of the optimal robust control

solution.

In the attempt to derive state-feedback controllers, the state

in (1) is not measurable. The observability theory allows to

derive an alternate state-space model for (1) in terms of a

virtual state. The support for this claim is given as follows.

Lemma 1. If pair hf , in (1) is observable, then there

exists a map Φ and a positive integer r such that

.])...()[(,])...()[(

),,(

1,1,

,1,

TT

rk

T

krkk

TT

rk

T

krkk

rkkrkkk

uuUyyY

UYΦx
 (2)

Proof: See [51].

A virtual state vector is next introduced as
mrrp

Z

TT

rkk

T

rkkk R
)1(

,1,])(,)[(UYz . Then, Theorem

1 in [51] showed that, based on (1) and (2), a new virtual

state-space system with output equation is defined as

,

),,(

1,

1

kk

kkk

zy

uzFz

 (3)

which is completely observable (the components of
kz are

sequences built from current and past successive IO samples)

and controllable (since it has the same input and output as

(1)).

The summarized ideas from [51] are:

a) System (3) is IO controllable since it has the same

input and output as (1);

b) With unknown state dimension n in (1), r from Lemma

1 corresponds to an observability index and it is also

unknown. Increasing r (and, subsequently the dimension of

the virtual state
kz) is the general advice. As [51] shows,

beyond some value of r, no information gain about the state

kx is obtained from
kz ;

c) Controlling (1) and (3) is the same issue, except that

(3) uses a “measurable” state information. It means that

learning control for (3) will render the control for (1);

d) Model (1) accommodates a wide range of processes,

including time-delay ones. By properly introduced

additional state variables and via variables substitutions, the

time delay in the control input and in the states will result in

another virtual state-space model (3) that is fully state

observable and controllable (Comment 7 from [51]).

e) When learning state feedback controllers of the form

)(kk C zu

 (with some function
UZC :

), note that

when plugging in this controller to close the control system

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.3040185, IEEE Access

VOLUME XX, 2017 9

loop, a recurrent controller emerges, since
kz includes past

samples of the input
ku . This type of recurrent controller is

known as a nonlinear output error (NOE) model.

In order to develop the control solution in terms of

disturbance rejection, the input
ku is split to show

distinctively the control input and the disturbance input

(Observation 1) as du m

k

m

k

TT

k

T

kk RR duduu ,,],[. The

final virtual state space model is

.

),,,(

1,

1

kk

kkkk

zy

duzFz

 (4)

Next, the optimal robust control problem of (4) is

formulated as a ZS-TP-G.

B. THE ZS CONTROL PROBLEM DEFINITION AND

SOLUTION

The goal is to minimize a certain cost serving as performance

index, with the optimization problem of the optimal control

problem defined as

,),,()(maxminarg, **

kj jjjk
DC

UJDC duzz (5)

with
uZjj CC :),(zu is the state feedback

controller w.r.t. input
ku and

dzjj DD :),(zd is

the state feedback disturbance controller w.r.t. to input
kd .

Here,
duZ ,, are domain spaces of appropriate

dimension. In (5), the penalty function U is of the form

)()()()()(),,(jD

T

jjC

T

jjjjj DDCCU zWzzWzzduz

where Rj 0)(z is a state penalty term capturing the

desired learning goal (regulation or tracking w.r.t. the state

trajectory
kz), and

DC WW , are square positive definite

weight matrices. A controller pair {C, D} is called admissible

if it renders a finite cost J in (5) and it stabilizes the closed-

loop control system. Minimization of the cost from (5) is

interpreted as a degree of attenuation achieved by the control

system faced with any disturbance
dk d , when only the

optimal controller)(*

kC z is used in closed-loop.

Definition 1. [12] In the existence domains spaces of the

controllers DC, , the optimal controllers ** ,DC are a saddle-

point solution for the ZS-TP-G (5) if, for all DC, , it holds

that

)).(),(,(

))(),(,()())(),(,(

*

kkk

kkkkkkk

DCJ

DCJJDCJ

zzz

zzzzzzz

 (6)

For general nonlinear systems with intractable analytical

solutions for (5) and moreover, for those nonlinear systems

with unknown dynamics, the existence of a saddle-point

equilibrium is not guaranteed, as pointed out in [12]. In this

sense, according to [2], upper-optimal and lower-optimal

costs were introduced as

)).(),(,(minmax)(

)),(),(,(maxmin)(

*

*

kkk
CD

k

kkk
DC

k

DCJJ

DCJJ

zzzz

zzzz

 (7)

These upper-optimal and lower-optimal costs ensure that

)()()(***

kkk JJJ zzz when the saddle-point solution

)(*

kJ z exists and also that)()(**

kk JJ zz when such a

solution is not feasible. Moreover,)(),(**

kk JJ zz satisfy the

Hamilton-Jacobi-Isaacs optimality equations which suggests

using iterative ADP solutions to overcome the difficulty of

calculating the upper optimal and lower optimal costs for

general nonlinear systems.

Notice that when the saddle-point solution (5) does not

exist, the optimal controllers from (7) differ, i.e.

))(),(,(maxminarg)(),(**

kkk
DC

kk DCJDC zzzzz differ from

))(),(,(minmaxarg)(),(
**

kkk
CD

kk DCJDC zzzzz .

To compute the optimal controllers from (7) for both

upper and lower costs, upper and lower extended costs called

Q-functions are defined as

),(),,(

))(),(,(),,(),,(

),(),,(

))(),(,(),,(),,(

1

11111

1

11111

kkkk

kkkkkkkkkkk

kkkk

kkkkkkkkkkk

JU

DCQUQ

JU

DCQUQ

zduz

zdzuzduzduz

zduz

zdzuzduzduz

 (8)

having the well-known meaning: they are the cost of taking

any action (uk, dk) in state zk and afterwards acting only

subject to controller actions calculated by C and D in all

subsequent states. They are directly connected to the original

upper and lower costs J as shown in (8). The advantage of

such Q-functions is that the optimal controllers are

computable by directly minimizing w.r.t. uk and dk the upper

optimal and lower-optimal Q-functions

),,(),,,(**

kkkkkk QQ duzduz , once these are found.

Value Iteration (VI)-like algorithms are next proposed to

calculate the upper-optimal and lower-optimal Q-functions.

Their style is similar. For the upper optimal Q-function

calculation, the VI Algorithm 1 is as follows.

Algorithm 1. Starting from initial (not necessarily

admissible) controllers
00 , DC , and an initial upper Q-

function estimate
0Q , for all the possible combinations of

the tuple),,(kkk duz , alternate the following two steps at

each iteration j (starting with j=1):

S1. Update the Q-function as

))(),(,(

),,(),,(

11111111

kjkkjkkj

kkkkkkj

DCQ

UQ

zdzuz

duzduz
 (9)

S2. Improve the controllers as in

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.3040185, IEEE Access

VOLUME XX, 2017 9

)).,(,,(minarg)(

),,,(maxarg),(

uzuzz

duzuz

u

d

kjkjkj

kkjkkj

DQC

QD

 (10)

S3. If stopping criterion (no more changes from
1jQ to

jQ) is not met, go to S1, else stop the algorithm.

The sense of the update operator “” in (9) is understood

as the update of an infinitely dense table),,(kkkjQ duz , for

all (infinitely) possible combinations),,(kkk duz .

A compacted update form of the Algorithm 1 is possible,

by repeating the Q-function update as in

),,(maxmin),,(),,(11 duzduzduz
du

 kjkkkkkkj QUQ (11)

and to compute the upper-optimal controllers ** , DC by

directly minimizing),,(*

kkkQ duz , once),,(kkkjQ duz has

converged.

It is important to notice the order of the min max

operations in the VI updates for the upper Q-function,

namely, max(.) is performed before min(.). This is the

important difference w.r.t. the VI Algorithm 2 update for

finding the lower-optimal Q-function, described as follows:

Algorithm 2. Starting from initial (not necessarily

admissible) controllers
00 , DC , and an initial lower Q-

function estimate
0

Q , for all the possible combinations of

the tuple),,(kkk duz , alternate the following two steps at

each iteration j (starting with j=1):

S1. Update the Q-function as

))(),(,(

),,(),,(

11111111

kjkkjkkj

kkkkkkj

DCQ

UQ

zdzuz

duzduz
 (12)

S2. Improve the controllers as in

).),,(,(maxarg)(

),,,(minarg),(

ddzzz

duzdz

d

u

kjkjkj

kkjkkj

CQD

QC

 (13)

S3. If stopping criterion (no more changes from
1j

Q to

j
Q) is not met, go to S1, else stop the algorithm.

A compacted update form of Algorithm 2 is again possible

by repeating the Q-function update as in

),,(minmax),,(),,(11
duzduzduz

ud

 kjkkkkkkj
QUQ

 (14)

and to compute the upper-optimal controllers ** , DC by

directly minimizing),,(*

kkkQ duz , once),,(kkkjQ duz has

converged.

Convergence of the VI update for the upper Q-function to

the upper-optimal controllers and to the upper-optimal

original cost is next analysed.

Theorem 1. The updates (9)–(10) (in compacted form as

in (11)) starting from
00 , DC and from an initial upper Q-

function estimate 0))(),(,(000 kkk DCQ zzz , generating the

sequences }{},{},{ jjj DCQ according to Algorithm 1, will

converge to the upper-optimal Q-function),,(*

kkkQ duz , to

the upper-optimal original cost)(*

kJ z and to the upper-

optimal controllers)(),(**

kk DC zz .

Proof. From the compact update (11), notice that on the

right-hand side we have, based on (8), that

))},,((),,({maxmin),,(maxmin 111

)8(

11 duzduzduz
dudu

 kjkkj FJUQ

 (15)

where)(1 kjJ z
 is the upper original cost associated with the

upper extended cost),,(1 kkkjQ duz
. Notice that the right-

hand side of (15) is in fact the VI update performed in the

space of the upper original cost:

))},,((),,({maxmin)(1111 duzduzz
du

 kjkkj FJUJ (16)

which holds for all zk+1. In addition, notice that

0)())(),(,(0000 kkkk JDCQ zzzz is a positive definite

initialization of the upper original cost sequence)}({ kjJ z .

Altogether, update (11), based on (15) and (16) define a

uniquely associated paired sequence })(),({ kjkj JQ zz .

It was shown in Lemma 1 from [12] that, with a proper

positive definite initialization 0)(0 kJ z , the VI update

performed in the space of the original cost preserves

0)(kjJ z for all iterations j. Theorem 2 in [12] shows that

)()(lim *

kkjj JJ zz , for all zk.

Following that the update (11) in the upper Q-function’s

space embeds the update (16) in the space of the original

upper cost and the latter converges to)(*

kJ z , it implies by

definition (8), that

),,(),,(lim *

kkkkkkjj QQ duzduz

)(),,(1

*

 kkkk JU zduz . It also implies that the controller

sequences)}({)},({ kjkj DC zz converge to their upper-

optimal values)(),(**

kk DC zz . ■

By similar reasoning, convergence of the VI update for the

lower Q-function to the lower-optimal controllers and to the

lower-optimal original cost is captured by the next Theorem

2.

Theorem 2. The updates (12)–(13) (in compacted form as

in (14)) starting from
00 , DC and from an initial lower Q-

function estimate 0))(),(,(000
kkk DCQ zzz , generating the

sequences }{},{},{ jjj
DCQ according to Algorithm 2, will

converge to the lower-optimal Q-function),,(
*

kkkQ duz , to

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.3040185, IEEE Access

VOLUME XX, 2017 9

the lower-optimal original cost)(
*

kJ z and to the lower-

optimal controllers)(),(
**

kk DC zz .

Proof. The proof uses a similar reasoning with the proof of

Theorem 1, but relies instead on the convergence of the lower

original cost sequence updates, shown in Lemma 2 and in

Corollary 2 from [12]. It is therefore not detailed here. ■

Observation 2. The proposed algorithms for computing the

upper-optimal and lower-optimal Q-functions corresponding

to the ZS-TP-G game do not use the system dynamics

knowledge. Practical implementations of the proposed

algorithms are detailed in the following Section.

Observation 3. Following Theorem 5 and Corollary 7

from [12], important practical implications of the

convergence of the upper-optimal and lower-optimal Q-

function updates exist. Convergence of the upper-optimal

and lower-optimal Q-functions to the same value is a

necessary and sufficient condition for the existence of the

saddle-point solution to the ZS-TP-G game. Meaning that

QQQ , where *Q is the saddle-point solution in the

space of Q-functions. This is a consequence of ***
JJJ

in the space of the original costs. On the other hand,

convergence of the upper and lower Q-functions to different

values **
QQ means that a saddle-point solution to the ZS-

TP-G game is infeasible.

III. PRACTICAL ALGORITHMS IMPLEMENTATION

A. ZS-TP-G NN IMPLEMENTATION

Algorithms 1 and 2 described in the previous Section are

practically implemented using function approximators, to

deal with large continuous state and action spaces affected by

high dimensionality. Neural networks (NNs) are the most

common structures employed to this purpose, owing to their

high approximation capability and well-established tuning

rules.

Let the NN function approximators for the Q-function, and

for the controllers C, D, be denoted

),(ˆ),,,,(ˆ
CkQkkk CQ πzπduz and),(ˆ

DkD πz , respectively,

where },,{, DCQii π represents the tuneable NN weights

of each individual approximator. Most VI-like algorithms

such as the batch-fitted Q-learning variant that is going to be

implemented in this work, operate batch-wise and rely on a

dataset of transition samples collected from the process by

interaction. These samples form a collection (set) of tuples

)},,,{(1 kkkkM zduz which allows the calculation of the

penalty function. Especially for the VI for unknown

dynamics case, these tuples must efficiently explore the state-

action space and to cover as uniformly as possible the entire

space
duz , i.e. to try all possible actions (uk, dk) in

every state zk. The advantage of the VI algorithms is that they

are off-policy in nature and they learn the optimal controllers

from transition samples collected under any other controllers

that can be used for efficient state-action space exploration.

In terms of updating the approximated Q-function

iteratively, based on the transition samples dataset M, the

step S1 from Algorithms 1 and 2 ((9) and (12) respectively) is

captured by the optimization problem

M

k
j

Q

j

Dk

j

Ckk

kkkkkkj

Q

DCQ

UQ

M 1

2

111

1

)),,(ˆ),,(ˆ,(ˆ

),,(),,,(ˆ
1

minarg
ππzπzz

duzπduz
π

π

, (17)

where DCQ ˆ,ˆ,ˆ can be any of DCQ ,, (Algorithm 1) or

DCQ ,, (Algorithm 2). The iteration number j has been

moved from the subscript of DCQ ,, (DCQ ,,) to the

superscript of their corresponding parameterizations.

Equation (17) improves the Q-function estimate by

bootstrapping on its most recent estimate: (17) is the mean

sum of squared errors (MSE) training cost of the neural

network),,,(ˆ πduz kkkQ , having targets

)),,(ˆ),,(ˆ,(ˆ),,(111

j

Q

j

Dk

j

Ckkkkk DCQU ππzπzzduz . This

makes the Q-function estimate improvement directly

amenable to standard NN training procedures (e.g. gradient-

based backpropagation). The squared error term under the

sum in (17) is the well-known one-step temporal difference.

For the controller improvement steps in Algorithms 1 and

2 (equations (10) and (13) respectively), the controller

parameters 11, j

D

j

C ππ are obtained from the cascaded NN

)),,(ˆ),,(ˆ,(ˆ 1j
Q

j

Dk

j

Ckk DCQ ππzπzz again by gradient descent

and ascent steps (per the min(.) and max(.) operations

required by Algorithms 1 and 2). Since the succession of the

min(.) and max(.) operations is different for the upper-

optimal Q-function calculation Algorithm 1 and for the

lower-optimal Q-function calculation Algorithm 2, the details

are next given for the former.

In Algorithm 1, the max(.) operation is performed first,

aiming at maximizing)),,(),,(,(1j
QDk

j

Ckk DCQ ππzπzz

w.r.t.
Dπ . This is equivalent to setting the targets of

)),,(),,(,(1j
QDk

j

Ckk DCQ ππzπzz equal to zero and take a

number of gradient ascent steps

1

][][1

1][

1

1][]1[),()),,(),,(,(B

k

k

j

Q

i

Dk

j

Ckki

D

i

D
i

D
i

D

D

D

DCQ

B ππ
π
πzππzπzz

ππ

 (18)

for a specified number T1 of gradient ascent steps, starting

from an initial inner-loop iteration value j

D

i

D ππ][, over a

number of B1 selected states zk (either randomly picked from

the dataset M or randomly generated in the domain
z), and

using a step-size
1 . At each iteration of (18), the number of

B1 states zk are first forward propagated through

),(),,(][i

Dk

j

Ck DC πzπz and afterwards through

)),,(),,(,(1][j
Q

i

Dk

j

Ckk DCQ ππzπzz . Then, the gradient of

)),,(),,(,(1][j
Q

i

Dk

j

Ckk DCQ ππzπzz w.r.t. input),(DkD πz is

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.3040185, IEEE Access

VOLUME XX, 2017 9

calculated with backpropagation and multiplied by the

gradient of),(DkD πz w.r.t.
Dπ , again calculated by

backpropagation. After T1 iterations of (18),][1 1T

D

j

D ππ is

rendered.

The min(.) operation in Algorithm 1 follows, to minimize

)),,(),,(,(11 j

Q

j

DkCkk DCQ ππzπzz w.r.t.
Cπ . Notice that the

),(1j
DkD πz NN already employs the most recent updated

parameter obtained after (18). Similarly, this is equivalent to

setting zero targets for)),,(),,(,(11 j

Q

j

DkCkk DCQ ππzπzz

and minimize w.r.t.
Cπ , accomplished by a specified number

T2 of gradient descent steps of the form

2

][][1

11][

2

2][]1[),()),,(),,(,(B

k

k

j

Q

j

Dk

i

Ckki

C

i

C
i

C
i

C

C

C

DCQ

B ππ
π
πzππzπzz

ππ

 (19)

performed by starting from an initial inner-loop iteration

value j

C

i

C ππ][, over a number of B2 selected states zk (either

randomly picked from the dataset M or randomly generated

in the domain
z), and using a step-size

2 . The same

computation mechanism applies, as in the case of the max(.)

operation (18). After T2 iterations of (19),][1 2T

C

j

C ππ is

rendered.

Algorithm 2 dedicated to the optimal lower Q-function and

optimal lower controllers’ calculations differs in the order of

the min(.) and afterwards max(.) operations. Meaning that
1j

Cπ is first updated, then used to update 1j
Dπ . They are

given as

1

][
][1

1][

1

1][]1[),()),,(),,(,(B

k

k

j

Q

j

Dk

i

Ckki

C

i

C
i

Ci
C

C

C

DCQ

B ππ
π
πzππzπzz

ππ

 (20)

2

][
][1

1][1

2

2][]1[),()),,(),,(,(B

k

k

j

Q

i

Dk

j

Ckki

D

i

D
i

Di
D

D

D

DCQ

B ππ
π
πzππzπzz

ππ

 (21)

We summarize the NN-based solutions to the ZS-TP-G

aiming at computing the upper-optimal and lower-optimal Q-

functions and upper-optimal and lower-optimal controllers,

respectively, using the batch-fitted Q-learning style. For the

upper-optimal Q-function and upper-optimal controller,

Algorithm 3 is described first.

Algorithm 3. NN-based solution for the upper-optimal

Q-function and upper-optimal controller for the ZS-TP-

G.

1. Take the dataset M of collected transition samples as

input.

2. Initialize ,,,,,,, 212121 TTBBj , all NNs’

architecture and training settings and the values
000 ,,,0 DCQj πππ .

3. At a certain iteration step j, obtain an improved NN

estimate of the upper Q-function as the solution 1j
Qπ of (17),

using the entire dataset M of transition samples.

4. Initialize j

D

i

D ππ][and iterate for T1 times on (18) to

find 1j
Dπ . A set of B1 states zk is used.

5. Initialize j

C

i

C ππ][and iterate for T2 times on (19) to

find 1j
Cπ . A set of B2 states zk is used.

6. If the stopping criteria is not met in terms of maximum

number of iterations (jj) and in terms of significant

changes in the Q-function NN parameters between iterations

(

 j

Q

j

Q ππ 1), update j=j+1 and go to 3, otherwise stop.

For the lower-optimal Q-function and lower-optimal

controller calculations, the following Algorithm 4 is

described.

Algorithm 4. NN-based solution for the lower-optimal

Q-function and lower-optimal controller for the ZS-TP-

G.

1. Take the dataset M of collected transition samples as

input.

2. Initialize ,,,,,,, 212121 TTBBj , all NNs’

architecture and training settings and the values
000 ,,,0 DCQj πππ .

3. At a certain iteration step j, obtain an improved NN

estimate of the upper Q-function as the solution 1j
Qπ of (17),

using the entire dataset M of transition samples.

4. Initialize j

C

i

C ππ][and iterate for T1 times on (20) to

find 1j
Cπ . A set of B1 states zk is used.

5. Initialize j

D

i

D ππ][and iterate for T2 times on (21) to

find 1j
Dπ . A set of B2 states zk is used.

6. If the stopping criteria is not met in terms of maximum

number of iterations (jj) and in terms of significant

changes in the Q-function NN parameters between iterations

(

 j

Q

j

Q ππ 1), update j=j+1 and go to 3, otherwise stop.

Observation 4. After Algorithms 3 and 4 converge, it is

established whether the saddle-point solution to the ZS-TP-G

exists (the upper-optimal and lower-optimal Q-functions

converge to the same value) or, on the contrary, the saddle-

point solution does not exist. In practice, it is more

convenient to measure and analyse the upper and lower

original costs values, evaluated with the current iteration

controllers on a test scenario, that is,

)),,(),,(,()(j

Q

j

Dk

j

Ckkkj DCQJ ππzπzzz and

)),,(),,(,()(j

Q

j

Dk

j

Ckkkj DCQJ ππzπzzz , respectively.

)(kjJ z and)(kjJ z will be measured in the next case study.

In the following, a state feedback optimal controller is

introduced for comparing the performance of the upper and

lower optimal controllers in terms of disturbance rejection

capability.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.3040185, IEEE Access

VOLUME XX, 2017 9

B. A STATE FEEDBACK OPTIMAL CONTROLLER NN

IMPLEMENTATION

To assess the performance of the learned optimal upper and

lower controllers, a state feedback optimal controller (SFOC)

is learned, that is set to solve the next optimization problem:

.),(),()(),(with

,),()(minarg*

T

CjC

T

Cjjjj

kj jjk
C

CCU

UJC

πxWπxxux

uxx

 (22)

The above cost preserves a part of the penalty term in the

original cost from (5), without penalizing the disturbance

term (WD=0). The controller that learns to solve (22) uses

the straightforward system state and not a virtual state but it

is not designed to aim for disturbance attenuation. (22) is

solvable by any variant of Algorithm 3 or 4, without a

dedicated disturbance controller NN approximator

),(j

DkD πx , but only with a NN controller),(j

CkC πx that is

improved at each step by minimizing the current iteration

Q-function NN),,(j

Qkk uQ πx . Let the Algorithm 5 used for

SFOC learning be

Algorithm 5. SFOC learning

1. Collect another dataset M1 of transition samples from

the system, to be used as input to the algorithm. The

collection task takes place under dk=0.

2. Initialize ,,,, TBj and initialize architectures and

training settings for the NNs),,(j

Qkk uQ πx and),(j

CkC πx .

Initialize the values 00 ,,0 CQj ππ .

3. At a certain iteration step j, using the entire dataset M1

of transition samples, obtain an improved NN estimate of the

Q-function as the solution 1j
Qπ of

1

1

2

111

1

)),,(ˆ,(ˆ

),(),,(ˆ
1

minarg
M

k
j

Q

j

Ckk

kkkkj

Q

CQ

UQ

M ππzz

uzπuz
π

π
, (23)

4. Initialize j

C

i

C ππ][and iterate for T times on

B

k

k

j

Q

i

Ckki

C

i

C

i
C

i
C

C

C

CQ

B 1

1][

][]1[

][][

),(ˆ

ˆ

)),,(ˆ,(ˆ

ππ
π
πxππxx

ππ , (24)

to find 1j
Cπ . A number of || 1MB states xk from the

dataset M1 can be used.

5. If the stopping criteria is not met in terms of maximum

number of iterations (jj) and in terms of significant

changes in the Q-function NN parameters between iterations

(

 j

Q

j

Q ππ 1), update j=j+1 and go to 3, otherwise stop.

IV. VALIDATION CASE STUDY

A. THE ACTIVE SUSPENSION SYSTEM

The continuous-time state-space model of the active

suspension system for a quarter-car is [52]

,)sgn(])sgn(sgn[with

)(

))(

)()()()((
1

))()()((
1

5

2

5

2

1

16

24255

514

63

3

3131424

43

5

3

3131422

21

x
uP

x
uP

xy

dx

uxxAxx

x
A

dxb

xxkxxkxxkxxb
m

x

xx

x
A

xxkxxkxxb
m

x

xx

ss

t

tsnss

u

snss

s

 (25)

where the model parameters are given as [52]: kgms 600 ,

kgmu 60 , mNk t 200000 , mNsbt 1000 ,

mNk sn 1000 , mNk s 18000 , mNsbs 2500 ,

7101 , 11 s , 241035.3 mA , PaPs 10342500 ,

251310151.4 mN , 25910545.1 mN . The

displacements
1x and

3x of the sprung (car body) and

unsprung mass (wheel), respectively, are defined in (25)

w.r.t. to their resting position. A four-way valve-piston that is

actuated hydraulically, generates the force denoted as
5x in

(25) as a consequence of applying a voltage on the actuator

input – this is the control input u. The road profile derivative

w.r.t. time models the input disturbance d. To normalize the

disturbance in]1;1[d (corresponding to +/– 3 cm/s

maximum amplitude of the road profile derivative), a scaling

constant 03.01 multiplies the input d in the model (25).

Similarly, the input u is brought to]1;1[u by using the

scaling constant 001.02 . In (25), the sgn(.) denotes the

sign function. Clearly from (25), the output equation extracts

1x as a measurable. The active suspension is schematically

depicted in Fig. 1.

Since the IO data from model (25) will be collected at the

fixed sample period of sec01.0sT , the model is regarded

as an equivalent discrete-time one (with a zero-order hold on

the inputs that preserves their value constant for one sample

period) and used for IO measurement. Importantly, the active

suspension model is not used in the learning process. Let the

states of the discrete-time equivalent model (25) be grouped

by T

kkk xx],...,[,6,1x (i.e.
kix ,
 corresponds to

ix). It then

follows that (25) can be expressed as

)],[,(1

T

kkkkk duf uxx .

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.3040185, IEEE Access

VOLUME XX, 2017 9

FIGURE 1. Diagram of the active suspension system.

For the active suspension, the artificial disturbance

]1;1[d is easily generated in fixed indoor stands and is

therefore measurable for learning purposes.

B. ACTIVE SUSPENSION SYSTEM OBSERVABILITY

DISCUSSION

The observability of (25) is next discussed, according to the

analysis of [53]. The system observability does not depend

on the inputs),(kk du who are set to zero in (25). The

analysis is carried out on the continuous-time system (25)

and if the continuous-time system is observable, the

observability of its discrete-time counterpart is implied when

a sufficiently small sampling period is employed for

discretization. Kou et al. showed in [53] that for a nonlinear

dynamic autonomous continuous-time system with state

equation nRxtft)),(()(xx and with output equation

mRtht))(()(xy , under smoothness assumptions for)(ty

implying the existence of the kth order derivative of (.)h such

that nkm , under Taylor series expansion of)(ty on a time

interval],[10 ttt in the vicinity of any initial time
0t , a

nonlinear map H(.) is built as in

)).(())(())((
)(

)(

...

)),(())(())((
)(

))(()(

)),(())(()(

where

,]))((,...,))((,))(([))((

,])(,...,)(,)([

where)),((

0100

0

2
0

)1(

0100

0

0
0

0
0

0000

0100000

0

)1(

0

)1(

0

0

thtft
t

h
t

thtft
t

h
t

t

h
t

ththt

thththtH

ttt

tH

k
kk

TT

k

TT

TTkTT

xxx
x

y

xxx
x

xy

xxy

xxxx

yyyz

xz

 (26)

The dynamic system described above is completely

observable on],[10 ttt , if H(.) is injective (univalent, or

one-to-one) from an initial state)(0tx to z . The univalence

of H(.) is a sufficient observability condition, since z

contains only the output and its derivatives at initial time
0t

[53] and not on the entire],[10 ttt . If one can show the

map H(x) is (locally) invertible (i.e., a bijection) then its

injectivity follows. Local map invertibility is ensured by the

non-singularity of its Jacobian matrix determinant at a

certain given point, which for a square map H(x) is

equivalent to the maximum matrix rank of the Jacobian at

the given point.

For system (25), by repeated substitutions

(
211, xxyxy , …) using the model equations (25), it is

verified that the Jacobian of H(x) is of full rank six,

irrespective of the point at which it is calculated. Meaning

that (25) is observable in continuous-time (and

subsequently in discrete-time, for a small enough sampling

period). This implies that a virtual state can be constructed

from past inputs-outputs samples.

In practice, the model (25) is assumed unknown and the

observability must be assumed if not verifiable from

literature or from working experience with the process.

Since the number of true states as well as the observability

index are unknown, the virtual state should be built from

more inputs-outputs past samples. It was reported in [51]

that beyond a certain number (the presumed observability

index) of past IO samples, there is no gain in information

about the state value.

C. COLLECTIONG TRANSITION SAMPLES FOR THE

LEARNING PROCESS

The first goal is to collect a transition samples dataset

)},,,{(1 kkkkM zduz . Since the system (25) is observable,

a controllability index equal to six builds a virtual state from

past samples of the inputs
kk du , and from present and past

samples of the output
ky . The virtual state has the form

19

61616],...,,,...,,,...,[Rdduuyy T

kkkkkkk z and the

system (25) is transformed to a virtual state-space model of

the form),,(1 kkkk duzFz with output equation
kk zy ,1 .

In addition, the system is IO stable due to existing friction

and therefore it can be open-loop excited.

Then, the transition samples are gathered using the next

parameters for uk and dk: the input]1;1[ku is modelled

as a sequence of piece-wise constant steps, while the

amplitude follows a random uniform distribution. Each step

last for 0.5 sec, and it is perturbed with a random noise

extracted from another uniform distribution of amplitudes

inside]2.0;2.0[. This noise is added to
ku every

sT

seconds. The disturbance input]1;1[kd is modelled

similar to
ku but each constant portion lasts 0.6 sec. And it

is additively perturbed by a similar uniform random noise

with the same random uniform noise of amplitude

]2.0;2.0[every
sT seconds. The additive noise on the two

input channels
kk du , are uncorrelated. The database M of

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.3040185, IEEE Access

VOLUME XX, 2017 9

000'20M transition samples is built from 200 sec

experiment time with the system (25) in open-loop, excited

by the above
kk du , . Since the inputs were already

normalized in]1;1[by introducing the input normalizing

coefficients in the model (25), the output is normalized to

Mkyk ,1],1;1[by dividing each sample with the

maximal absolute value
k

k
ymax from the recorded history.

Usually, all the inputs and outputs should be normalized,

leading to all the components of the virtual state being

normalized.

The virtual state’s components normalization is

extremely important since NNs approximators are going to

be used. The normalization coefficients of all states are

memorized and used to de-normalize the states, when

running the learned controller in the loop.

D. CONTROLLER LEARNING SETTINGS AND RESULTS

Before the learning process, the penalty in the original cost

(5) is constructed as 222 420 kkk duy (for 4,1 DC WW).

It is computed for each transition sample),,,(1kkkk zduz .

In order to find the upper-optimal and lower-optimal

controllers and Q-functions according to Algorithms 3 and

4 respectively, some approximators are selected as follows.

For each algorithm the same architectures are being used.

The Q-function is a 21501 feedforward NN with tanh(.)

activation in the hidden layer and linear output activation.

The input of this approximator),,,(ˆ
Qkkk duQ πz is formed

from 19 components of the virtual state and the two control

inputs
kk du , , while

Qπ formally captures the NN weights.

These weights are initialized with uniform random numbers

inside]005.0;005.0[. A random 80% of the training

samples are used for effective training and the rest are used

as validation data, for forcing early stopping in order to

prevent training overfitting. The training algorithm is a fast,

scaled conjugate gradient, for maximum 500 episodes. The

training uses the MSE criterion over the entire batch of

transition samples. The Q-function NN training (in both

optimal upper and optimal lower Q-function search

process) solves in fact (17).

For the controllers),(ˆ
CkC πz and),(ˆ

DkD πz , the NN

approximators are also feedforward NNs of the form 19–

101, with tanh(.) activation in the hidden layer and linear

output activation. Their weights captured by
DC ππ , are

initialized as for the Q-function NN, but the two NNs’

training must comply with the gradient ascent/descent steps

imposed by the upper-optimal controllers’ search

(equations (18) and (19) performed inside Algorithm 3) and

by the lower-optimal controllers’ search (equations (20) and

(21) performed inside Algorithm 4).

Other parameters are selected as follows. For Algorithm

3, 53

2121 10,10,50,500

 TTj , while the

gradient ascent/descent steps from (18) and (19) are

performed on a number of B1=B2=256 values
kz randomly

picked from the dataset M at each ascent or descent step.

For the Algorithm 4, the same parameter settings are used.

The results obtained after the learning process takes

place is shown in Fig. 2, in terms of the normed difference

between successive Q-function weights vectors and in

terms of the measured attenuation cost [27], [31]

10000

0

210000

0

22 4/20
k kk kktest duyJ , (27)

defined and measured on test scenario lasting 100 seconds,

where a disturbance]1;1[kd (modelled as successive

piece-wise constant steps of uniform random amplitudes

and lasting for 0.5 sec) is used. The sequence
kd has not

been presented to the system in the transition samples

collection phase used for learning the upper-optimal and

lower-optimal controllers.

FIGURE 2. The learning process for the upper-optimal upper and lower-
optimal controllers.

Observation 5. Importantly, at every iteration,
testJ is

measured with the upper and lower controllers (),(j

CkC πz

and),(j

CkC πz respectively) in closed-loop, without using

the disturbance controllers),(j

DkD πz and),(j

DkD πz , their

outputs being replaced by the test input signal
kd . These

latter disturbance controllers are necessary only throughout

the learning process of Algorithms 3 and 4.

Inspecting the bottom subplot in Fig. 2, the original costs

)(kjJ z and)(kjJ z converge to the same value, meaning

that the saddle-point solution to the game exists. The upper

subplot in Fig. 2 also indicates that after many iterations, no

more changes tend to occur in the upper and lower Q-

function estimates, a sign of learning process’ convergence.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.3040185, IEEE Access

VOLUME XX, 2017 9

E. COMPARISONS AND DISCUSSIONS OF THE

RESULTS

For learning the SFOC via Algorithm 5 for comparison

purposes, the following optimization problem is solved

),(with

,20)(minarg 22

,1

*

jj

kj jjk
C

Cu

uxJC

x

x

 (28)

which is computed for the transition samples collected

under the same uk settings used in the previous subsection,

letting dk=0. As a consequence of null disturbance, a fifth

order state model version of (25) results. Two feed-forward

NNs of 6–30–1 and 5–5–1 are employed for the Q-function

estimate and for the controller estimate, respectively.

50T gradient descent steps (24) are repeated with each

major iteration of the Algorithm 5. Each state component

kix ,
 from

kx is normalized
1, ,1,5,1],1;1[Mkix ki by

dividing each sample with its greatest modulus
ki

k
x ,max

over the recorded history.

The rest of the parameters in Algorithm 5 are
510,128,005.0,500

 Bj . After the maximum

number of 500 elapsed iterations, the optimal controller and

the optimal Q-function estimates result.

For comparison, on the same test scenario, the control

obtained with the upper-optimal controller and with the

SFOC are shown in Fig. 3.

The Fig. 3 is interpreted as follows. The black line in all

subplots correspond to open-loop (uk=0) and the profile of

kx ,1
 (the “car body”) is the same as the profile of

kx ,3
 (“the

wheel” as the unsprung mass). It means that the wheel

follows the road profile obtained as the discrete-time

integral of
kd from Fig. 3. Therefore, 0,3,1 kk xx in Fig.

3A in black line. On the other hand, the blue line
kx ,1
 in

Fig. 3B means that the car body is insensitive to the road

disturbance and the active suspension control manages to

absorb the road profile via the unsprung mass
kx ,3
 using the

control input in blue line from Fig. 3D. The SFOC control

(red line
kx ,1
 in Fig. 3B) does not reject the disturbance as

the upper-optimal controller, since it was not learned

having in mind the disturbance rejection goal. After

measuring the attenuation obtained with both the upper-

optimal controller and with the SFOC controller, it results

that 33 105.34,106.6 SFOC

test

rOptUppCont

test JJ , clearly

indicating the effective attenuation attained by the former.

This is despite the SFOC using the full state information

directly, which may be considered an advantage.

On another hand, the virtual state used for learning the

upper-optimal and lower-optimal controllers incorporates

the measured disturbance which is the road profile

derivative. This may not be acceptable in practice since it is

difficult to measure the road profile disturbance. The

learned upper-optimal controller is tested next, by setting
19

61616]0,...,0,,...,,,...,[Rdduuyy T

kkkkkkk z

with null disturbance in the virtual state. The actual

disturbance
kd affects the controlled system, and the

closed-loop is tested under the same scenario as before,

under both the upper-optimal controller and under the

SFOC. The results are shown again in Fig. 4.

FIGURE 3. The response obtained with the optimal upper controller
(blue), with the SFOC (red) and in open-loop with uk=0 (black).

10
4

0 0.5 1 1.5 2
-0.2
-0.1

0
0.1

10
4

0 0.5 1 1.5 2
-0.1

0

0.1

10
4

0 0.5 1 1.5 2

-1

0

1

10
4

0 0.5 1 1.5 2

-0.2

0

0.2

A

B

D

C

FIGURE 4. The response obtained with the upper-optimal controller
(blue), with the SFOC (red) and in open-loop with uk=0 (black). This time,
the virtual state is fed with dk=0.

The conclusion from Fig. 4 is obvious. Even in the case

when a null disturbance is fed to the virtual state, the

disturbance rejection is better with the upper-optimal

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.3040185, IEEE Access

VOLUME XX, 2017 9

controller than with the SFOC, in terms of
kx ,1
 in Fig. 4B

being closer to zero than the same
kx ,1
 obtained with the

SFOC. Meaning that effective disturbance attenuation is

still obtained, without measuring the road profile derivative.

The transmissibility from the disturbance input
kd to the

output
kk xy ,1 is also measured in the frequency domain,

assuming an approximate linear model both for the open-

loop suspension system and for the closed-loop suspension

control system. The frequency response function estimator

is identified in three cases: a) in open-loop setting (uk=0); b)

the loop closed with the upper-optimal controller, with the

virtual state zk fed by the disturbance input dk and c) the

loop closed with the upper-optimal controller with zk fed by

dk=0. The results captured by Fig. 5 were obtained after

exciting either of the open-loop system or the closed-loop

control system with a zero-mean sine-stream signal
kd of

amplitude 0.5, for 100 logarithmically-spaced frequencies

in the range of 0.01–1000 Hz. Then the magnitudes of the

ratio between the Fast Fourier Transform (FFT) of the

output
kk xy ,1 and the FFT of the input

kd obtained at

each particular frequency, are calculated. Even in the active

suspension provides natural attenuation in open-loop, it is

observed that in the case b) (corresponding to measured

disturbance in the virtual state), the low-frequency

attenuation is significantly stronger than that obtained with

the SFOC (Fig. 5, left). Still, better low-frequency

attenuation obtained with the upper-optimal controller is

measured in the case c) (Fig. 5, right), when the disturbance

is not measured and it enters as a null value in the virtual

state.

FIGURE 5. Transmissibility in open-loop (uk=0), with the SFOC and with
the upper-optimal controller. In the left, the virtual state zk is fed by the
actual disturbance input values dk; on the right, dk=0 in zk.

The learned upper-optimal and lower-optimal controllers

for the active suspension observable system was shown

feasible. For the active suspension system, the proposed

ZS-TP-G robust control learning approach is highly

attractive since it takes place in a fixed test rig where

artificial disturbances that emulate the road conditions are

easily generated. Afterwards, the disturbance controller is

discarded and the control loop is closed by either the upper-

optimal controller or the lower-optimal controller.

Subsequently, the active suspension can then be used in

real-world road conditions. The learned attenuation was

shown efficient even in the case when the virtual state is

constructed from a null measured disturbance. This aspect

expands the applicability range of the approach. All

features above may stimulate industrial implementation

owing to the reduced number of sensors and to the on-site

learning ability.

VII. CONCLUSION

The approach presented in this paper proposes several

features, enumerated next. It learns an optimal robust

controller using ADP formulated as a ZS-TP-G for systems

with unknown dynamics. The learned controller is the

saddle-point of the ZS-TP-G when the solution is feasible,

otherwise it can be any of the upper-optimal or lower-

optimal controllers that solve the game. The learning

process consisting of the operations that are specific to the

upper-optimal and lower-optimal controllers’ calculations,

was shown to converge by theoretical analysis.

NNs approximators were used for the practical learning

implementation. This is advantageous for general nonlinear

systems since it enables automatic feature selection in the

Q-function and controller parameterization. The proposed

framework deals with observable systems perceived from

IO data, therefore solving the partial observability problem

that can prevent successful learning. It relies on the virtual

state built from present and past values of the input and

output samples. Learning a robust control for the virtual

state space system is shown equivalent to learning a robust

control for the underlying system. Since the virtual state

construction leads to a higher-order virtual state-space

system, NNs ensure the scalability of the learning problem

in all aspects, except for the efficient exploration problem

which is one of the major issues with ADP and

reinforcement learning.

The approach presented here is believed to handle many

practical systems (such as Markov jump systems and

nonlinear multiagent systems [54]–[57]), therefore it is a

further goal to validate it on observable systems of even

higher order who, similarly to the active suspension, show

significant practical interest.

REFERENCES
[1] A. J. van der Schaft, “L2-gain analysis of nonlinear systems and

nonlinear state-feedback H∞ control,” IEEE Trans. Autom. Control,

vol. 37, no. 6, pp. 770–784, 1992.

[2] T. Basar and P. Bernhard, H∞-Optimal Control and Related Minimax

Design Problems: A Dynamic Game Approach, 2nd ed. Boston, MA,

USA: Birkhäuser, 1995.

[3] K. G. Vamvoudakis, F. L. Lewis, and G. R. Hudas, “Multi-agent

differential graphical games: Online adaptive learning solution for

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.3040185, IEEE Access

VOLUME XX, 2017 9

synchronization with optimality,” Automatica, vol. 48, no. 8, pp.

1598–1611, Aug. 2012.

[4] H. Zhang, L. Cui, and Y. Luo, “Near-optimal control for nonzero-

sum differential games of continuous-time nonlinear systems using

single-network ADP,” IEEE Trans. Cybern., vol 43, no. 1, pp. 206–

216, Feb. 2013.

[5] D. Liu, H. Li, and D. Wang, “Online synchronous approximate

optimal learning algorithm for multi-player non-zero-sum games

with unknown dynamics,” IEEE Trans. Syst., Man, Cybern. Syst.,

vol. 44, no. 8, pp. 1015–1027, Aug. 2014.

[6] D. Zhao, Q. Zhang, D. Wang, and Y. Zhu, “Experience replay for

optimal control of nonzero-sum game systems with unknown

dynamics,” IEEE Trans. Cybern., vol. 46, no. 3, pp. 854–865, Mar.

2016.

[7] R. Song, F. L. Lewis, and Q. Wei, “Off-policy integral reinforcement

learning method to solve nonlinear continuous-time multiplayer

nonzero-sum games,” IEEE Trans. Neural Netw. Learn. Syst., vol.

28, no. 3, pp. 704–713, Mar. 2017.

[8] H. Xu and K. Mizukami, “Linear-quadratic zero-sum differential

games for generalized state space systems,” IEEE Trans. Autom.

Control, vol. 39, no. 1, pp. 143–147, Jan. 1994.

[9] J. Engwerda, “Uniqueness conditions for the affine open-loop linear

quadratic differential game,” Automatica, vol. 44, no. 2, pp. 504–

511, Feb. 2008.

[10] X. Yang and J. Gao, “Linear–Quadratic uncertain differential game

with application to resource extraction problem,” IEEE Trans. Fuzzy

Syst., vol. 24, no. 4, pp. 819–826, Aug. 2016.

[11] H. Zhang, Q. Wei, and D. Liu, “An iterative adaptive dynamic

programming method for solving a class of nonlinear zero-sum

differential games,” Automatica, vol. 47, no. 1, pp. 207–214, Jan.

2011.

[12] Q. Wei, D. Liu, Q. Lin, and R. Song, “Adaptive dynamic

programming for discrete-time zero-sum games,” IEEE Trans. on

Neural Netw. Learn. Syst., vol. 29, no. 4, pp. 957–969, Apr. 2018.

[13] R. E. Bellman, Dynamic Programming. Princeton, NJ, USA:

Princeton Univ. Press, 1957.

[14] K. V. Berkel, B. D. Jager, T. Hofman, and M. Steinbuch,

“Implementation of dynamic programming for optimal control

problems with continuous states,” IEEE Trans. Control Syst.

Technol., vol 23, no. 3, pp. 1172–1179, 2015.

[15] P. J. Werbos, “Advanced forecasting methods for global crisis

warning and models of intelligence,” Gen. Syst. Yearbook, vol. 22,

pp. 25–38, 1977.

[16] P. J. Werbos, “A menu of designs for reinforcement learning over

time, in Neural Networks for Control,” W. T. Miller, R. S. Sutton,

and P. J. Werbos Eds., Cambridge, MA: MIT Press, 1990, pp. 67–95.

[17] Z. Ni, H. He, D. Zhao, X. Xu, and D. Prokhorov, “GrDHP: A general

utility function representation for dual heuristic dynamic

programming,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no.

3, pp. 614–627, Mar. 2015.

[18] H. Modares, F. L. Lewis, and Z. P. Jiang, “H tracking control of

completely unknown continuous-time systems via off-policy

reinforcement learning,” IEEE Trans. Neural Netw. Learn. Syst., vol.

26, no. 10, pp. 2550–2562, Oct. 2015.

[19] C. Mu, Z. Ni, C. Sun, and H. He, “Data-driven tracking control with

adaptive dynamic programming for a class of continuous-time

nonlinear systems,” IEEE Trans. Cybern., vol. 47, no. 6, pp. 1460–

1470, Jun. 2017.

[20] P. Deptula, J. A. Rosenfeld, R. Kamalapurkar, and W. E. Dixon,

“Approximate dynamic programming: combining regional and local

state following approximations,” IEEE Trans. Neural Netw. Learn.

Syst., vol. 29, no. 6, pp. 2154–2166, Jun. 2018.

[21] T. Sardarmehni and A. Heydari, “Suboptimal scheduling in switched

systems with continuous-time dynamics: a least squares approach,”

IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 6, pp. 2167–

2178, Jun. 2018.

[22] W. Guo, J. Si, F. Liu, and S. Mei, “Policy approximation in policy

iteration approximate dynamic programming for discrete-time

nonlinear systems,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29,

no. 7, pp. 2794–2807, Jul. 2018.

[23] L. Bușoniu, T. de Bruin, D. Tolic, J. Kober, and I. Palunko,

“Reinforcement learning for control: Performance, stability, and deep

approximators,” Ann. Rev. Control, vol. 46, pp. 8–28, 2018.

[24] S. Al-Dabooni and D. Wunsch, “The boundedness conditions for

model-free HDP(λ),” IEEE Trans. Neural Netw. Learn. Syst., vol. 30,

no. 7, pp. 1928–1942, Jul 2019.

[25] B. Luo, Y. Yang, D. Liu, and H.-N. Wu, “Event-triggered optimal

control with performance guarantees using adaptive dynamic

programming,” IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no.

1, Jan. 2020.

[26] B. Zhao, D. Liu, and C. Luo, “Reinforcement learning-based optimal

stabilization for unknown nonlinear systems subject to inputs with

uncertain constraints,” IEEE Trans. Neural Netw. Learn. Syst., to be

published, DOI: 10.1109/TNNLS.2019.2954983.

[27] D. Liu, H. Li, and D. Wang, “Neural-network-based zero-sum game

for discrete-time nonlinear systems via iterative adaptive dynamic

programming algorithm,” Neurocomputing, vol. 110, no. 13, pp. 92–

100, Jun. 2013.

[28] M. Abu-Khalaf, F. L. Lewis, and J. Huang, “Policy iterations and the

Hamilton-Jacobi-Isaacs equation for the H state feedback control

with input saturation,” IEEE Trans. Autom. Control, vol. 51, pp.

1989–1995, Dec. 2006.

[29] A. Al-Tamimi, M. Abu-Khalaf, and F. L. Lewis, “Adaptive critic

designs for discrete-time zero-sum games with application to H∞

control,” IEEE Trans. Syst. Man Cybern. B Cybern., vol. 37, no. 1,

pp. 240–247, Feb. 2007.

[30] K. H. Kim, and F. L. Lewis, “Model-free H control design for

unknown linear discrete-time systems via Q-learning with LMI,”

Automatica, vol. 46, pp. 1320–1326, Aug. 2010.

[31] S. Mehraeen, T. Dierks, S. Jagannathan, and M. L. Crow, “Zero-sum

two-player game theoretic formulation of affine nonlinear discrete-

time systems using neural networks,” IEEE Trans. Cybern., vol. 43,

no. 6, pp. 1641–1655, Dec. 013.

[32] H. Zhang, C. Qin, B. Jiang, and Y. Luo, “Online adaptive policy

learning algorithm for H∞ state feedback control of unknown affine

nonlinear discrete-time systems,” IEEE Trans. Cybern., vol. 44, no.

12, pp. 2706–2718, Dec. 2014.

[33] Y. Fu. J. Fu, and T. Chai, “Robust adaptive dynamic programming

of two-player zero-sum games for continuous-time linear systems,”

IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 12, pp. 3314–

3319, Dec. 2015.

[34] L. Cui, H. Zhang, X. Zhang, and Y. Luo, “Data-based adaptive critic

design for discrete-time zero-sum games using output feedback,” in

Proc. IEEE Symposium on Adaptive Dynamic Programming and

Reinforcement Learning, Paris, France, 2011, pp. 190–195.

[35] B. Luo, Y. Yang, and D. Liu, “Policy iteration Q-learning for data-

based two-player zero-sum game of linear discrete-time systems,”

IEEE Trans. Cybern., to be published,

DOI:10.1109/TCYB.2020.2970969.

[36] J. Li and Z. Xiao, “H∞ control for discrete-time multi-player systems

via off-policy Q-Learning,” IEEE Access, vol. 8, pp. 28831–28846,

Jan. 2020.

[37] Y. Ji and H. Zhou, and B. Bai, “Event-driven-modular adaptive

backstepping optimal control for strict-feedback systems through

zero-sum differential games,” IEEE Access, vol. 8, pp. 126511–

126522, Jul. 2020.

[38] B. Dong, T. An, F. Zhou, K. Liu, W. Yu, and Y. Li, “Actor-critic-

identifier structure-based decentralized neuro-optimal control of

modular robot manipulators with environmental collisions,” IEEE

Access, vol. 7, pp. 96148–96165, Jul. 2019.

[39] X.-K. Du, H. Zhao, X.-H. Chang, “Unknown input observer design

for fuzzy systems with uncertainties,” Applied Mathematics and

Computation, vol. 266, pp. 108-118, Sep. 2015.

[40] Z.-M. Li, X.-H. Chang, “Robust H∞ control for networked control

systems with randomly occurring uncertainties: Observer-based

case,” ISA Transactions, vol. 83, pp. 13-24, Dec. 2018.

[41] W. Wang, X. Chen, H. Fu, and M. Wu, “Data-driven adaptive

dynamic programming for partially observable nonzero-sum games

via Q-learning method,” Int. J. Syst. Sci., vol. 50, no. 7, pp. 1338–

1352, 2019.

[42] Y. Liu, H. Zhang, R. yu, Z. Xing, “H∞ tracking control of discrete-

time system with delays via data-based adaptive dynamic

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.3040185, IEEE Access

VOLUME XX, 2017 9

programming,” IEEE Trans. Syst. Man Cybern. Syst., to be

published, DOI: 10.1109/TSMC.2019.2946397.

[43] T. de Bruin, J. Kober, K. Tuyls, and R. Babuska, “Integrating state

representation learning into deep reinforcement learning,” IEEE

Robot. Autom. Lett., vol. 3, no. 3, 1394–1401, Jul. 2018.

[44] M. N. Howell, G. P. Frost, T. J. Gordon, and Q. H. Wu, “Continuous

action reinforcement learning applied to vehicle suspension control,”

Mechatronics, vol. 7, no. 3, pp. 263–276, Apr. 1997.

[45] S. Tognetti, S. M. Savaresi, C. Spelta, and M Restelli, “Batch

reinforcement learning for semi-active suspension control,” in Proc.

18th IEEE Intl. Conf. Control Appl., Saint Petersburg, Russia, 2009,

pp. 582–587.

[46] I. O. Bucak, and H. R. Oz, “Vibration control of a nonlinear quarter-

car active suspension system by reinforcement learning,” Intl. J. Syst.

Sci., vol. 43, no. 6, pp. 1177–1190, 2012.

[47] M. Akraminia, M. Tatari, M. Fard., M., and R. N. Jazar, “Designing

active vehicle suspension system using critic-based control strategy,”

Nonl. Eng., vol. 4, no. 3, pp. 141–154, Jun. 2015.

[48] X. Wang, “Semi-active adaptive optimal control of vehicle

suspension with a magnetorheological damper based on policy

iteration,” J. Intell. Material Syst. Struct., vol. 29, no. 2, pp. 255–264,

Jan. 2018.

[49] Z. Wang and D. Liu, “Data-based controllability and observability

analysis of linear discrete-time systems,” IEEE Trans. Neural Netw.,

vol. 22, no. 12, pp. 2388–2392, Dec. 2011.

[50] D. Liu, P. yan, and Q. Wei, “Data-based analysis of discrete-time

linear systems in noisy environment: Controllability and

observability,” Inf. Sci., vol. 288, pp. 314–329, Dec. 2014.

[51] M.-B. Radac, R.-E. Precup, E.-L. Hedrea, and I.-C. Mituletu, “Data-

driven model-free model-reference nonlinear virtual state feedback

control from input-output data,” in Proc. of 2018 26th Mediterranean

Conference on Control and Automation, Zadar, Croatia, 2018, pp.

332–338.

[52] Y. Huang, J. Na, X. Wu, and G. Gao, “Approximation-free control

for vehicle active suspension with hydraulic actuator,” IEEE Trans.

Ind. Electron., vol. 65, no. 9, pp. 7258–7267, Sep. 2018.

[53] S. R. Kou, D. L. Elliott, and T. J. Tarn, “Observability of nonlinear

systems,” Information and Control, vol. 22, pp. 89–99, 1973.

[54] C. Ren, S. He, X. Luan, F. Liu, and H. R. Karimi, ‘‘Finite-time L2-

gain asynchronous control for continuous-time positive hidden

Markov jump systems via T-S fuzzy model approach,’’ IEEE Trans.

Cybern., 2020, doi: 10.1109/TCYB.2020.2996743.

[55] C. Ren, S. He, “Finite-time stabilization for positive Markovian

jumping neural networks,” Applied Mathematics and Computation,

vol. 365, pp. 124631, Jan. 2020.

[56] C. Ren, R. Nie, S. He, “Finite-time positiveness and distributed

control of Lipschitz nonlinear multi-agent systems,” Journal of the

Franklin Institute, vol. 356, issue 15, pp. 8080-8092, Oct. 2019.

[57] C. Liu, G. Zhao, J. Wang, H. Wu, H. Li, C. Fietkiewicz, K. A.

Loparo “Neural Network-Based Closed-Loop Deep Brain

Stimulation for Modulation of Pathological Oscillation in

Parkinson’s Disease,” IEEE Access, vol. 8, pp. 161067-161079, Aug.

2020.

MIRCEA-BOGDAN RADAC (Member IEEE)

received the Dipl.Ing. degree in systems and

computer engineering and the Ph.D. degree in

systems engineering from the Politehnica

University of Timisoara, Romania, in 2008 and

2011, respectively.

He is the co-author of more than 150 papers

published in scientific journals, refereed

conference proceedings, and contributions to

books. His current research interests cover

learning control systems, with a focus on

machine learning methods applied in data-driven control.

Dr. Radac is a member of the Romanian Society of Control Engineering

and Technical Informatics.

TIMOTEI LALA received the B. Sc. degree

from the Politehnica University of Timisoara,

in 2019, and he is currently pursuing the M.Sc.

degree with the same university.

His current research interests include adaptive

dynamic programming, neural networks, and

their control applications.

