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ABSTRACT An optimal robust control solution for general nonlinear systems with unknown but 

observable dynamics is advanced here. The underlying Hamilton-Jacobi-Isaacs (HJI) equation of the 

corresponding zero-sum two-player game (ZS-TP-G) is learned using a Q-learning-based approach 

employing only input-output system measurements, assuming system observability. An equivalent virtual 

state-space model is built from the system’s input-output samples and it is shown that controlling the 

former implies controlling the latter. Since the existence of a saddle-point solution to the ZS-TP-G is 

assumed unverifiable, the solution is derived in terms of upper-optimal and lower-optimal controllers. The 

learning convergence is theoretically ensured while practical implementation is performed using neural 

networks that provide scalability to the control problem dimension and automatic feature selection. The 

learning strategy is checked on an active suspension system, a good candidate for the robust control 

problem with respect to road profile disturbance rejection. 

INDEX TERMS active suspension system, approximate dynamic programming, neural networks, optimal 

control, reinforcement learning, state feedback, zero-sum two-player games 

I. INTRODUCTION 

Feedback control systems that are robust when faced with 

external disturbances are a common challenge and also 

frequently pose a direct or indirect design specification.  To 

this end, the robust optimal control design is a highly 

attractive approach that has gained renewed attention lately 

in the zero-sum (ZS) game framework. Although the robust 

optimal design is, for quite some time now, well-posed for 

linear systems and solved by the H-infinity framework, it 

was not until the works by [1], [2] that the framework was 

imported to nonlinear systems robust optimal control in the 

form of the L2-gain optimal control. The goal of this latter 

formulation is to solve the Hamilton-Jacobi-Isaacs (HJI) 

equation, accepting the fact that for general nonlinear 

systems, it is often impossible to find analytical solutions. A 

very well-studied approach to the L2 control design is 

formulated as a ZS differential game [3]–[7] between two 

competing players: the optimal controller and the worst-case 

optimal disturbance controller. Whenever the HJI equation is 

feasible, these two players are the minimax saddle-point 

solution for it, and the feasibility of the HJI equation is well 

studied for linear systems and it depends on the attenuation 

level as a prescribed degree of performance [8]–[10]. 

Whereas, for general nonlinear systems, the common 

approach is to not directly assume the HJI equation 

feasibility and rather to try to search for its solution using the 

concepts of upper-optimal and lower-optimal controllers who 

act as upper and lower bounds for the optimal controller, 

respectively, when the HJI solution exists, or, they act as 

independent optimal solutions when an infeasible HJI exists 

[11], [12]. 

There exists a large number of solution approaches to the 

HJI equation, stemming from the methods employed by 

Approximate Dynamics Programming (ADP) also known as 

Reinforcement Learning (RL), for which ample research is 

very active [13]–[26]. These works from ADP have been 

applied, to name just a few, on discrete-time systems [27] vs. 

continuous-time systems, in known-system [28] or in 

unknown-system approaches [29], [30]. In game theory, [27] 

proposed an iterative ADP algorithm for solving the HJI 

equation related to ZS game problems for discrete-time 

affine nonlinear systems with known dynamics. In [28], ADP 

was derived to find the optimal saddle-point in feedback 

strategies of a nonlinear continuous-time system ZS game 
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with affine input and control constraints using two-player 

policy iterations. In [29] ADP solves a discrete-time zero-

sum game for linear systems with continuous states using Q 

learning for unknown system. In [31], a near optimal solution 

based on successive approximation of HJI equation and 

disturbance inputs and control update was given for a 

discrete time affine nonlinear system subjected to unknown 

internal system dynamics and disturbances. In [32], an online 

adaptive real-time policy learning method based on zero-sum 

games for nonlinear discrete-time systems was proposed for 

learning the HJI equation. In [33], an online adaptive robust 

dynamic programming algorithm using policy iteration 

scheme for ZS-TP-G of continuous-time unknown systems 

subject to uncertainties was considered. In [34], a data-based 

adaptive critic method using output feedback for unknown 

model and system states was described under disturbance 

measurement assumption. In [35], a data-based policy 

iteration Q-learning algorithm for ZS-TP-G was developed 

for linear systems to eliminate process dynamics knowledge. 

Recent game-theoretical contributions (some in nonzero-sum 

games) for nonlinear systems are reported in [36]–[38], in the 

more general framework of robust control [39]–[40]. 

The first ADP-based solution approach for solving the HJI 

equation for unknown system dynamics is the Q-learning one 

[29] in which learning the HJI solution relies on data 

collected from the system to be controlled. In Q-learning, the 

learning process produces the two optimal controllers as 

state-feedback ones that must use the entire state information 

available. This is contradictory to some extent to the model-

free label of the method itself, since knowing the natural 

system state requires a significant insight into the system, 

such as the system order and usually the nature of the 

underlying phenomenological process which is highly 

correlated with, e.g., the time-scale of the system. On the 

other hand, not using the entire state for learning optimal 

control poses great challenges to the learning process since 

the system is a partially observable one. This is the reason 

why some ADP approaches for solving the HJI ZS-TP-G 

were devised for handling observable systems and they rely 

only on input-output (IO) samples collected from the system. 

These IO samples are subsequently used to build a so-called 

virtual state that defines a virtual state-space model 

transformation of the original system. Unfortunately, the 

approach has been tackled for linear systems only, in a 

number of recent works [34], [41], [42] and not for general 

nonlinear systems, to the authors’ best knowledge. This last 

remark serves as an incentive to one of this work’s main 

contributions. 

On another hand, designing off-the-shelf ADP techniques 

is another challenge since a great deal of effort is concerned 

with suitable parameterization of the nonlinear cost function 

and of the controllers, respectively. Most often, automatic 

basis function selection is a difficult task. Whereas, for 

observable systems whose state is built from past IO 

samples, the order of the equivalent virtual state quickly 

increases, which creates a two-fold problem: the adequate 

exploration of the input-state-output space and the time-

correlation of the successive input and output samples [43]. 

These issues are related to the so-called dimensionality 

disaster problem which is well-known to the ADP and RL 

methods. This is why neural networks (NNs) have been the 

most flexible tool employed until now for parameterizing 

function approximators. Their main advantage is the self-

regulated scalability to the control problem dimension, 

approximation capacity boosted by complex architectures 

and overfitting avoidance mechanisms intrinsically embodied 

in the NNs training procedures. Therefore, the NNs are 

considered to be a standard tool in ADP that can automate 

the basis functions (or features) selection in the function 

approximation tasks that are mandatory with the ADP 

approaches. 

Based on the above ideas, the goal of this paper is to 

integrate several concepts into a fully functional approach 

to designing robust control for observable general unknown 

nonlinear systems. The contributions of this work are as 

follows: 

- extension of the Q-learning approach to solve the 

optimal robust control problem as a ZS-TP-G solution to 

the HJI equation of general unknown nonlinear observable 

systems. An equivalent virtual state-space model of the 

original system is built from IO samples and subjected to 

robust control learning. The approach does not assume that 

a solution to HJI is feasible, therefore it searches for one via 

the computation of the intermediate upper-optimal and 

lower-optimal controllers. Theoretical analysis provides 

convergence of the proposed Q-learning-based solution. 

- a NN-based implementation that proves scalability 

to the control problem dimension and automatic feature 

selection, in spite of the highly-dimensional virtual state 

vector. 

- validation on a nonlinear industrial system of 

practical importance: an active suspension system. 

The active suspension system is a well-suited candidate for 

learning robust control since it inherently deals with the road 

profile disturbance rejection when employed on a variety of 

transportation vehicles (cars, trains, etc.) and it presents itself 

as a naturally underdamped system stemming from the two-

mass-spring-damper class of systems. On another hand, the 

suspension system is a high order one (it has six natural 

states when the active hydraulic actuator dynamics is 

considered) and it makes it costly to measure all states. 

Hence it makes a good candidate for an observable system. 

Fortunately, it turns out to be a fully observable one where 

the virtual state can be constructed from present and past 

values of only one output measurement (the deviation of the 

“car body” from the rest position) and from past values of the 

two inputs: the control input of the actuator and the 

disturbance input). Since measuring the road disturbance 

input is not a valid option in practice, a solution is offered to 

this problem, which proves that better attenuation of the road 
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profile impact on the “car body” motion is achieved than 

with respect to a competitive optimal controller which is not 

learned with disturbance rejection ability in mind. While 

there exists a consistent body of scientific literature dealing 

with the optimal active suspension control and in particular 

in that of reinforcement learning applied for the suspension 

control [44]–[48], none of the above solutions deal with the 

nonlinear unknown-dynamics observable case, as done 

herein. 

There are several advantages of learning a disturbance 

rejecting optimal controller for an active suspension 

system:  

- avoidance of the system dynamics knowledge,  

- the observability-based solution that requires only 

IO samples to reconstruct the system state,  

- artificial disturbances that emulate road conditions 

are easily generated in fixed stands in a learning facility. 

The paper structure is oriented as follows. The second 

Section defines the ZS robust optimal control problem 

formulation and proposes a Q-learning-based solution 

employing upper-optimal and lower-optimal controllers. 

Theoretical learning convergence analysis is performed. 

Section III describes the practical implementation of the 

proposed learning strategy, under neural networks used as 

function approximators. The case study in Section IV 

extensively validates the learning concept on a realistic 

quarter-car active suspension model and provides discussions 

and implementation details. Final conclusions are the subject 

of the final Section V. 

 
II.  THE ZS ROBUST OPTIMAL CONTROL PROBLEM 
DEFINITION AND SOLUTION 

A. THE UNKNOWN OBSERVABLE SYSTEM 

Let the nonlinear unknown system 
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mkkk dd  ],...,[ ,1,d , the 

measured (and controlled) output is denoted 
p

Y

T

pkkk yy  ],...,[ ,1,y . The functions hf ,  are 

assumed unknown on their definition domains and also 

continuously differentiable. In addition to unknown system 

dynamics, further system assumptions are listed: 

A1. System (1) is completely state observable. 

A2. System (1) is IO controllable from 
ku  to 

ky . 

A3. System (1) is IO stable inside the domain defined by the 

input and output. 

A1–A3 are common for defining control problems for 

systems with unknown dynamics. Since they are not 

verifiable due to unknown system model, they are validated 

from working experience with the system, or from technical 

datasheets. Assessment efforts of linear systems’ 

controllability and observability was proposed e.g. in the 

works [49], [50]. 

Observation 1. The input vector lumping both the control 

inputs and the disturbance inputs is important for deriving 

the two-player formulation of the optimal robust control 

solution. 

In the attempt to derive state-feedback controllers, the state 

in (1) is not measurable. The observability theory allows to 

derive an alternate state-space model for (1) in terms of a 

virtual state. The support for this claim is given as follows. 

Lemma 1. If pair  hf ,  in (1) is observable, then there 

exists a map Φ  and a positive integer r  such that 

.])...()[(,])...()[(

),,(

1,1,

,1,

TT

rk

T

krkk

TT

rk

T

krkk

rkkrkkk









uuUyyY

UYΦx
 (2) 

Proof: See [51]. 

A virtual state vector is next introduced as 
mrrp
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which is completely observable (the components of 
kz  are 

sequences built from current and past successive IO samples) 

and controllable (since it has the same input and output as 

(1)). 

The summarized ideas from [51] are: 

a) System (3) is IO controllable since it has the same 

input and output as (1);  

b) With unknown state dimension n in (1), r from Lemma 

1 corresponds to an observability index and it is also 

unknown. Increasing r (and, subsequently the dimension of 

the virtual state 
kz ) is the general advice. As [51] shows, 

beyond some value of r, no information gain about the state 

kx  is obtained from 
kz ;  

c) Controlling (1) and (3) is the same issue, except that 

(3) uses a “measurable” state information. It means that 

learning control for (3) will render the control for (1); 

d) Model (1) accommodates a wide range of processes, 

including time-delay ones. By properly introduced 

additional state variables and via variables substitutions, the 

time delay in the control input and in the states will result in 

another virtual state-space model (3) that is fully state 

observable and controllable (Comment 7 from [51]). 

e) When learning state feedback controllers of the form 

)( kk C zu


  (with some function 
UZC :


), note that 

when plugging in this controller to close the control system 
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loop, a recurrent controller emerges, since 
kz  includes past 

samples of the input 
ku . This type of recurrent controller is 

known as a nonlinear output error (NOE) model. 

In order to develop the control solution in terms of 

disturbance rejection, the input 
ku  is split to show 

distinctively the control input and the disturbance input 

(Observation 1) as du m

k

m

k

TT

k

T

kk RR  duduu ,,],[ . The 

final virtual state space model is 

.
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Next, the optimal robust control problem of (4) is 

formulated as a ZS-TP-G. 

B.  THE ZS CONTROL PROBLEM DEFINITION AND 

SOLUTION 

The goal is to minimize a certain cost serving as performance 

index, with the optimization problem of the optimal control 

problem defined as 

,),,()(maxminarg, ** 
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with  
uZjj CC  :),(zu  is the state feedback 

controller w.r.t. input 
ku  and 

dzjj DD  :),(zd  is 

the state feedback disturbance controller w.r.t. to input 
kd . 

Here, 
duZ  ,,  are domain spaces of appropriate 

dimension. In (5), the penalty function U is of the form 
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where Rj  0)(z  is a state penalty term capturing the 

desired learning goal (regulation or tracking w.r.t. the state 

trajectory 
kz ), and 

DC WW ,  are square positive definite 

weight matrices. A controller pair {C, D} is called admissible 

if it renders a finite cost J in (5) and it stabilizes the closed-

loop control system. Minimization of the cost from (5) is 

interpreted as a degree of attenuation achieved by the control 

system faced with any disturbance 
dk d , when only the 

optimal controller )(*

kC z  is used in closed-loop. 

Definition 1. [12] In the existence domains spaces of the 

controllers DC, , the optimal controllers ** ,DC  are a saddle-

point solution for the ZS-TP-G (5) if, for all DC, , it holds 

that 

)).(),(,(

))(),(,()())(),(,(

*

*****

kkk

kkkkkkk

DCJ

DCJJDCJ

zzz

zzzzzzz






 (6) 

For general nonlinear systems with intractable analytical 

solutions for (5) and moreover, for those nonlinear systems 

with unknown dynamics, the existence of a saddle-point 

equilibrium is not guaranteed, as pointed out in [12]. In this 

sense, according to [2], upper-optimal and lower-optimal 

costs were introduced as 
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These upper-optimal and lower-optimal costs ensure that 

)()()( ***

kkk JJJ zzz   when the saddle-point solution 

)(*

kJ z  exists and also that )()( **

kk JJ zz   when such a 

solution is not feasible. Moreover, )(),( **

kk JJ zz  satisfy the 

Hamilton-Jacobi-Isaacs optimality equations which suggests 

using iterative ADP solutions to overcome the difficulty of 

calculating the upper optimal and lower optimal costs for 

general nonlinear systems. 

Notice that when the saddle-point solution (5) does not 

exist, the optimal controllers from (7) differ, i.e. 

))(),(,(maxminarg)(),( **
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))(),(,(minmaxarg)(),(
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kkk
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kk DCJDC zzzzz  . 

To compute the optimal controllers from (7) for both 

upper and lower costs, upper and lower extended costs called 

Q-functions are defined as 
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having the well-known meaning: they are the cost of taking 

any action (uk, dk) in state zk and afterwards acting only 

subject to controller actions calculated by C and D in all 

subsequent states. They are directly connected to the original 

upper and lower costs J as shown in (8). The advantage of 

such Q-functions is that the optimal controllers are 

computable by directly minimizing w.r.t. uk and dk the upper 

optimal and lower-optimal Q-functions 

),,(),,,( **

kkkkkk QQ duzduz , once these are found. 

Value Iteration (VI)-like algorithms are next proposed to 

calculate the upper-optimal and lower-optimal Q-functions. 

Their style is similar. For the upper optimal Q-function 

calculation, the VI Algorithm 1 is as follows. 

Algorithm 1. Starting from initial (not necessarily 

admissible) controllers 
00 , DC , and an initial upper Q-

function estimate 
0Q , for all the possible combinations of 

the tuple ),,( kkk duz , alternate the following two steps at 

each iteration j (starting with j=1): 

S1. Update the Q-function as 

))(),(,(
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11111111  
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S2. Improve the controllers as in 
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S3. If stopping criterion (no more changes from 
1jQ  to 

jQ ) is not met, go to S1, else stop the algorithm. 

The sense of the update operator “” in (9) is understood 

as the update of an infinitely dense table ),,( kkkjQ duz , for 

all (infinitely) possible combinations ),,( kkk duz . 

A compacted update form of the Algorithm 1 is possible, 

by repeating the Q-function update as in 

),,(maxmin),,(),,( 11 duzduzduz
du

 kjkkkkkkj QUQ  (11) 

and to compute the upper-optimal controllers ** , DC  by 

directly minimizing ),,(*

kkkQ duz , once ),,( kkkjQ duz  has 

converged. 

It is important to notice the order of the min max 

operations in the VI updates for the upper Q-function, 

namely, max(.) is performed before min(.). This is the 

important difference w.r.t. the VI Algorithm 2 update for 

finding the lower-optimal Q-function, described as follows: 

Algorithm 2. Starting from initial (not necessarily 

admissible) controllers 
00 , DC , and an initial lower Q-

function estimate 
0

Q , for all the possible combinations of 

the tuple ),,( kkk duz , alternate the following two steps at 

each iteration j (starting with j=1): 

S1. Update the Q-function as 
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S2. Improve the controllers as in 

).),,(,(maxarg)(

),,,(minarg),(

ddzzz

duzdz

d

u

kjkjkj

kkjkkj

CQD

QC




 (13) 

S3. If stopping criterion (no more changes from 
1j

Q  to 

j
Q ) is not met, go to S1, else stop the algorithm. 

A compacted update form of Algorithm 2 is again possible 

by repeating the Q-function update as in 

),,(minmax),,(),,( 11
duzduzduz

ud


 kjkkkkkkj
QUQ
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and to compute the upper-optimal controllers ** , DC  by 

directly minimizing ),,(*

kkkQ duz , once ),,( kkkjQ duz  has 

converged. 

Convergence of the VI update for the upper Q-function to 

the upper-optimal controllers and to the upper-optimal 

original cost is next analysed. 

Theorem 1. The updates (9)–(10) (in compacted form as 

in (11)) starting from 
00 , DC  and from an initial upper Q-

function estimate 0))(),(,( 000 kkk DCQ zzz , generating the 

sequences }{},{},{ jjj DCQ  according to Algorithm 1, will 

converge to the upper-optimal Q-function ),,(*

kkkQ duz , to 

the upper-optimal original cost )(*

kJ z  and to the upper-

optimal controllers )(),( **

kk DC zz . 

Proof. From the compact update (11), notice that on the 

right-hand side we have, based on (8), that 

))},,((),,({maxmin),,(maxmin 111

)8(

11 duzduzduz
dudu

  kjkkj FJUQ

 (15) 

where )(1 kjJ z
 is the upper original cost associated with the 

upper extended cost  ),,(1 kkkjQ duz
. Notice that the right-

hand side of (15) is in fact the VI update performed in the 

space of the upper original cost: 

))},,((),,({maxmin)( 1111 duzduzz
du

  kjkkj FJUJ  (16) 

which holds for all zk+1. In addition, notice that 

0)())(),(,( 0000  kkkk JDCQ zzzz  is a positive definite 

initialization of the upper original cost sequence )}({ kjJ z . 

Altogether, update (11), based on (15) and (16) define a 

uniquely associated paired sequence  })(),({ kjkj JQ zz . 

It was shown in Lemma 1 from [12] that, with a proper 

positive definite initialization 0)(0 kJ z , the VI update 

performed in the space of the original cost preserves 

0)( kjJ z  for all iterations j. Theorem 2 in [12] shows that 

)()(lim *

kkjj JJ zz  , for all zk. 

Following that the update (11) in the upper Q-function’s 

space embeds the update (16) in the space of the original 

upper cost and the latter converges to )(*

kJ z , it implies by 

definition (8), that  


  ),,(),,(lim *

kkkkkkjj QQ duzduz  

)(),,( 1

*





 kkkk JU zduz . It also implies that the controller 

sequences )}({)},({ kjkj DC zz  converge to their upper-

optimal values )(),( **

kk DC zz .          ■ 

By similar reasoning, convergence of the VI update for the 

lower Q-function to the lower-optimal controllers and to the 

lower-optimal original cost is captured by the next Theorem 

2. 

Theorem 2. The updates (12)–(13) (in compacted form as 

in (14)) starting from 
00 , DC  and from an initial lower Q-

function estimate 0))(),(,( 000
kkk DCQ zzz , generating the 

sequences }{},{},{ jjj
DCQ  according to Algorithm 2, will 

converge to the lower-optimal Q-function ),,(
*

kkkQ duz , to 
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the lower-optimal original cost )(
*

kJ z  and to the lower-

optimal controllers )(),(
**

kk DC zz . 

Proof. The proof uses a similar reasoning with the proof of 

Theorem 1, but relies instead on the convergence of the lower 

original cost sequence updates, shown in Lemma 2 and in 

Corollary 2 from [12]. It is  therefore not detailed here.         ■ 

Observation 2. The proposed algorithms for computing the 

upper-optimal and lower-optimal Q-functions corresponding 

to the ZS-TP-G game do not use the system dynamics 

knowledge. Practical implementations of the proposed 

algorithms are detailed in the following Section. 

Observation 3. Following Theorem 5 and Corollary 7 

from [12], important practical implications of the 

convergence of the upper-optimal and lower-optimal Q-

function updates exist. Convergence of the upper-optimal 

and lower-optimal Q-functions to the same value is a 

necessary and sufficient condition for the existence of the 

saddle-point solution to the ZS-TP-G game. Meaning that 
***

QQQ  , where *Q  is the saddle-point solution in the 

space of Q-functions. This is a consequence of ***
JJJ   

in the space of the original costs. On the other hand, 

convergence of the upper and lower Q-functions to different 

values **
QQ   means that a saddle-point solution to the ZS-

TP-G game is infeasible. 

III. PRACTICAL ALGORITHMS IMPLEMENTATION 

A. ZS-TP-G NN IMPLEMENTATION 

Algorithms 1 and 2 described in the previous Section are 

practically implemented using function approximators, to 

deal with large continuous state and action spaces affected by 

high dimensionality. Neural networks (NNs) are the most 

common structures employed to this purpose, owing to their 

high approximation capability and well-established tuning 

rules. 

Let the NN function approximators for the Q-function, and 

for the controllers C, D, be denoted 

),(ˆ),,,,(ˆ
CkQkkk CQ πzπduz  and ),(ˆ

DkD πz , respectively, 

where },,{, DCQii π  represents the tuneable NN weights 

of each individual approximator. Most VI-like algorithms 

such as the batch-fitted Q-learning variant that is going to be 

implemented in this work, operate batch-wise and rely on a 

dataset of transition samples collected from the process by 

interaction. These samples form a collection (set) of tuples 

)},,,{( 1 kkkkM zduz  which allows the calculation of the 

penalty function. Especially for the VI for unknown 

dynamics case, these tuples must efficiently explore the state-

action space and to cover as uniformly as possible the entire 

space 
duz  , i.e. to try all possible actions (uk, dk) in 

every state zk. The advantage of the VI algorithms is that they 

are off-policy in nature and they learn the optimal controllers 

from transition samples collected under any other controllers 

that can be used for efficient state-action space exploration. 

In terms of updating the approximated Q-function 

iteratively, based on the transition samples dataset M, the 

step S1 from Algorithms 1 and 2 ((9) and (12) respectively) is 

captured by the optimization problem 
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minarg
ππzπzz

duzπduz
π

π

, (17) 

where DCQ ˆ,ˆ,ˆ  can be any of DCQ ,,  (Algorithm 1) or 

DCQ ,,  (Algorithm 2). The iteration number j has been 

moved from the subscript of DCQ ,,  ( DCQ ,, ) to the 

superscript of their corresponding parameterizations. 

Equation (17) improves the Q-function estimate by 

bootstrapping on its most recent estimate: (17) is the mean 

sum of squared errors (MSE) training cost of the neural 

network ),,,(ˆ πduz kkkQ , having targets 

 )),,(ˆ),,(ˆ,(ˆ),,( 111

j

Q

j

Dk

j

Ckkkkk DCQU ππzπzzduz   . This 

makes the Q-function estimate improvement directly 

amenable to standard NN training procedures (e.g. gradient-

based backpropagation). The squared error term under the 

sum in (17) is the well-known one-step temporal difference. 

For the controller improvement steps in Algorithms 1 and 

2 (equations (10) and (13) respectively), the controller 

parameters 11,  j

D

j

C ππ  are obtained from the cascaded NN 

)),,(ˆ),,(ˆ,(ˆ 1j
Q

j

Dk

j

Ckk DCQ ππzπzz  again by gradient descent 

and ascent steps (per the min(.) and max(.) operations 

required by Algorithms 1 and 2). Since the succession of the 

min(.) and max(.) operations is different for the upper-

optimal Q-function calculation Algorithm 1 and for the 

lower-optimal Q-function calculation Algorithm 2, the details 

are next given for the former. 

In Algorithm 1, the max(.) operation is performed first, 

aiming at maximizing )),,(),,(,( 1j
QDk

j

Ckk DCQ ππzπzz  

w.r.t.  
Dπ . This is equivalent to setting the targets of 

)),,(),,(,( 1j
QDk

j

Ckk DCQ ππzπzz  equal to zero and take a 

number of gradient ascent steps 
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 (18) 

for a specified number T1 of gradient ascent steps, starting 

from an initial inner-loop iteration value j

D

i

D ππ ][  , over a 

number of B1 selected states zk (either randomly picked from 

the dataset M or randomly generated in the domain 
z ), and 

using a step-size 
1 . At each iteration of (18), the number of 

B1 states zk are first forward propagated through 

),(),,( ][i

Dk

j

Ck DC πzπz  and afterwards through 

)),,(),,(,( 1][ j
Q

i

Dk

j

Ckk DCQ ππzπzz . Then, the gradient of 

)),,(),,(,( 1][ j
Q

i

Dk

j

Ckk DCQ ππzπzz  w.r.t. input ),( DkD πz  is 
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calculated with backpropagation and multiplied by the 

gradient of ),( DkD πz  w.r.t. 
Dπ , again calculated by 

backpropagation. After T1 iterations of (18), ][1 1T

D

j

D ππ   is 

rendered. 

The min(.) operation in Algorithm 1 follows, to minimize 

)),,(),,(,( 11  j

Q

j

DkCkk DCQ ππzπzz  w.r.t. 
Cπ . Notice that the 

),( 1j
DkD πz  NN already employs the most recent updated 

parameter obtained after (18). Similarly, this is equivalent to 

setting zero targets for )),,(),,(,( 11  j

Q

j

DkCkk DCQ ππzπzz  

and minimize w.r.t. 
Cπ , accomplished by a specified number 

T2 of gradient descent steps of the form 
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 (19) 

performed by starting from an initial inner-loop iteration 

value j

C

i

C ππ ][  , over a number of B2 selected states zk (either 

randomly picked from the dataset M or randomly generated 

in the domain 
z ), and using a step-size 

2 . The same 

computation mechanism applies, as in the case of the max(.) 

operation (18). After T2 iterations of (19), ][1 2T

C

j

C ππ   is 

rendered. 

Algorithm 2 dedicated to the optimal lower Q-function and 

optimal lower controllers’ calculations differs in the order of 

the min(.) and afterwards max(.) operations. Meaning that 
1j

Cπ  is first updated, then used to update 1j
Dπ . They are 

given as 
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We summarize the NN-based solutions to the ZS-TP-G 

aiming at computing the upper-optimal and lower-optimal Q-

functions and upper-optimal and lower-optimal controllers, 

respectively, using the batch-fitted Q-learning style. For the 

upper-optimal Q-function and upper-optimal controller, 

Algorithm 3 is described first. 

Algorithm 3. NN-based solution for the upper-optimal 

Q-function and upper-optimal controller for the ZS-TP-

G. 

1. Take the dataset M of collected transition samples as 

input. 

2. Initialize  ,,,,,,, 212121 TTBBj , all NNs’ 

architecture and training settings and the values 
000 ,,,0 DCQj πππ . 

3. At a certain iteration step j, obtain an improved NN 

estimate of the upper Q-function as the solution 1j
Qπ  of (17), 

using the entire dataset M of transition samples. 

4. Initialize j

D

i

D ππ ][  and iterate for T1 times on (18) to 

find 1j
Dπ . A set of B1 states zk is used. 

5. Initialize j

C

i

C ππ ][  and iterate for T2 times on (19) to 

find 1j
Cπ . A set of B2 states zk is used. 

6. If  the stopping criteria is not met in terms of maximum 

number of iterations ( jj  ) and in terms of significant 

changes in the Q-function NN parameters between iterations 

(


  j

Q

j

Q ππ 1 ), update j=j+1 and go to 3, otherwise stop. 

 

For the lower-optimal Q-function and lower-optimal 

controller calculations, the following Algorithm 4 is 

described. 

Algorithm 4. NN-based solution for the lower-optimal 

Q-function and lower-optimal controller for the ZS-TP-

G. 

1. Take the dataset M of collected transition samples as 

input. 

2. Initialize  ,,,,,,, 212121 TTBBj , all NNs’ 

architecture and training settings and the values 
000 ,,,0 DCQj πππ . 

3. At a certain iteration step j, obtain an improved NN 

estimate of the upper Q-function as the solution 1j
Qπ  of (17), 

using the entire dataset M of transition samples. 

4. Initialize j

C

i

C ππ ][  and iterate for T1 times on (20) to 

find 1j
Cπ . A set of B1 states zk is used. 

5. Initialize j

D

i

D ππ ][  and iterate for T2 times on (21) to 

find 1j
Dπ . A set of B2 states zk is used. 

6. If  the stopping criteria is not met in terms of maximum 

number of iterations ( jj  ) and in terms of significant 

changes in the Q-function NN parameters between iterations 

(


  j

Q

j

Q ππ 1 ), update j=j+1 and go to 3, otherwise stop. 

Observation 4. After Algorithms 3 and 4 converge, it is 

established whether the saddle-point solution to the ZS-TP-G 

exists (the upper-optimal and lower-optimal Q-functions 

converge to the same value) or, on the contrary, the saddle-

point solution does not exist. In practice, it is more 

convenient to measure and analyse the upper and lower 

original costs values, evaluated with the current iteration 

controllers on a test scenario, that is, 

)),,(),,(,()( j

Q

j

Dk

j

Ckkkj DCQJ ππzπzzz   and 

)),,(),,(,()( j

Q

j

Dk

j

Ckkkj DCQJ ππzπzzz  , respectively. 

)( kjJ z  and )( kjJ z  will be measured in the next case study. 

In the following, a state feedback optimal controller is 

introduced for comparing the performance of the upper and 

lower optimal controllers in terms of disturbance rejection 

capability. 
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B. A STATE FEEDBACK OPTIMAL CONTROLLER NN 

IMPLEMENTATION 

To assess the performance of the learned optimal upper and 

lower controllers, a state feedback optimal controller (SFOC) 

is learned, that is set to solve the next optimization problem: 

.),(),()(),(with

,),()(minarg*

T

CjC

T

Cjjjj

kj jjk
C

CCU

UJC

πxWπxxux

uxx



 

  (22) 

The above cost preserves a part of the penalty term in the 

original cost from (5), without penalizing the disturbance 

term (WD=0). The controller that learns to solve (22) uses 

the straightforward system state and not a virtual state but it 

is not designed to aim for disturbance attenuation. (22) is 

solvable by any variant of Algorithm 3 or 4,  without a 

dedicated disturbance controller NN approximator 

),( j

DkD πx , but only with a NN controller ),( j

CkC πx  that is 

improved at each step by minimizing the current iteration 

Q-function NN ),,( j

Qkk uQ πx . Let the Algorithm 5 used for 

SFOC learning be 

Algorithm 5. SFOC learning 

1. Collect another dataset M1 of transition samples from 

the system, to be used as input to the algorithm. The 

collection task takes place under dk=0. 

2. Initialize ,,,, TBj  and initialize architectures and 

training settings for the NNs ),,( j

Qkk uQ πx  and ),( j

CkC πx . 

Initialize the values 00 ,,0 CQj ππ . 

3. At a certain iteration step j, using the entire dataset M1 

of transition samples, obtain an improved NN estimate of the 

Q-function as the solution 1j
Qπ  of 
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4. Initialize j

C

i

C ππ ][  and iterate for T times on 
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to find 1j
Cπ . A number of || 1MB  states xk from the 

dataset M1 can be used. 

5. If the stopping criteria is not met in terms of maximum 

number of iterations ( jj  ) and in terms of significant 

changes in the Q-function NN parameters between iterations 

(


  j

Q

j

Q ππ 1 ), update j=j+1 and go to 3, otherwise stop. 

IV. VALIDATION CASE STUDY 

A. THE ACTIVE SUSPENSION SYSTEM 

The continuous-time state-space model of the active 

suspension system for a quarter-car is [52] 
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 (25) 

where the model parameters are given as [52]: kgms 600 , 

kgmu 60 , mNk t 200000 , mNsbt 1000 , 

mNk sn 1000 , mNk s 18000 , mNsbs 2500 , 

7101  , 11  s , 241035.3 mA  , PaPs 10342500 , 

251310151.4 mN , 25910545.1 mN . The 

displacements 
1x  and 

3x  of the sprung (car body) and 

unsprung mass (wheel), respectively, are defined in (25) 

w.r.t. to their resting position. A four-way valve-piston that is 

actuated hydraulically, generates the force denoted as 
5x  in 

(25) as a consequence of applying a voltage on the actuator 

input – this is the control input u. The road profile derivative 

w.r.t. time models the input disturbance d. To normalize the 

disturbance in ]1;1[d  (corresponding to +/– 3 cm/s 

maximum amplitude of the road profile derivative), a scaling 

constant 03.01   multiplies the input d in the model (25). 

Similarly, the input u is brought to ]1;1[u  by using the 

scaling constant 001.02  . In (25), the sgn(.)  denotes the 

sign function. Clearly from (25), the output equation extracts 

1x  as a measurable. The active suspension is schematically 

depicted in Fig. 1. 

Since the IO data from model (25) will be collected at the 

fixed sample period of sec01.0sT , the model is regarded 

as an equivalent discrete-time one (with a zero-order hold on 

the inputs that preserves their value constant for one sample 

period) and used for IO measurement. Importantly, the active 

suspension model is not used in the learning process. Let the 

states of the discrete-time equivalent model (25) be grouped 

by T

kkk xx ],...,[ ,6,1x  (i.e. 
kix ,
 corresponds to 

ix ). It then 

follows that (25) can be expressed as 

)],[,(1

T

kkkkk duf  uxx . 
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FIGURE 1.  Diagram of the active suspension system. 

 

For the active suspension, the artificial disturbance 

]1;1[d  is easily generated in fixed indoor stands and is 

therefore measurable for learning purposes. 

B. ACTIVE SUSPENSION SYSTEM OBSERVABILITY 

DISCUSSION 

The observability of (25) is next discussed, according to the 

analysis of [53]. The system observability does not depend 

on the inputs ),( kk du  who are set to zero in (25). The 

analysis is carried out on the continuous-time system (25) 

and if the continuous-time system is observable, the 

observability of its discrete-time counterpart is implied when 

a sufficiently small sampling period is employed for 

discretization. Kou et al. showed in [53] that for a nonlinear 

dynamic autonomous continuous-time system with state 

equation nRxtft  )),(()( xx  and with output equation 

mRtht  ))(()( xy , under smoothness assumptions for )(ty  

implying the existence of the kth order derivative of (.)h  such 

that nkm  , under Taylor series expansion of )(ty  on a time 

interval ],[ 10 ttt  in the vicinity of any initial time 
0t , a 

nonlinear map H(.) is built as in 
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 (26) 

The dynamic system described above is completely 

observable on ],[ 10 ttt , if H(.) is injective (univalent, or 

one-to-one) from an initial state )( 0tx  to z . The univalence 

of H(.) is a sufficient observability condition, since z  

contains only the output and its derivatives at initial time 
0t  

[53] and not on the entire ],[ 10 ttt . If one can show the 

map H(x) is (locally) invertible (i.e., a bijection) then its 

injectivity follows. Local map invertibility is ensured by the 

non-singularity of its Jacobian matrix determinant at a 

certain given point, which for a square map H(x) is 

equivalent to the maximum matrix rank of the Jacobian at 

the given point. 

For system (25), by repeated substitutions 

(
211, xxyxy   , …) using the model equations (25), it is 

verified that the Jacobian of H(x) is of full rank six, 

irrespective of the point at which it is calculated. Meaning 

that (25) is observable in continuous-time (and 

subsequently in discrete-time, for a small enough sampling 

period). This implies that a virtual state can be constructed 

from past inputs-outputs samples. 

In practice, the model (25) is assumed unknown and the 

observability must be assumed if not verifiable from 

literature or from working experience with the process. 

Since the number of true states as well as the observability 

index are unknown, the virtual state should be built from 

more inputs-outputs past samples. It was reported in [51] 

that beyond a certain number (the presumed observability 

index) of past IO samples, there is no gain in information 

about the state value. 

C. COLLECTIONG TRANSITION SAMPLES FOR THE 

LEARNING PROCESS 

The first goal is to collect a transition samples dataset 

)},,,{( 1 kkkkM zduz . Since the system (25) is observable, 

a controllability index equal to six builds a virtual state from 

past samples of the inputs 
kk du ,  and from present and past 

samples of the output 
ky . The virtual state has the form 

19

61616 ],...,,,...,,,...,[ Rdduuyy T

kkkkkkk  z  and the 

system (25) is transformed to a virtual state-space model of 

the form ),,(1 kkkk duzFz   with output equation 
kk zy ,1 . 

In addition, the system is IO stable due to existing friction 

and therefore it can be open-loop excited. 

Then, the transition samples are gathered using the next 

parameters for uk and dk: the input ]1;1[ku  is modelled 

as a sequence of piece-wise constant steps, while the 

amplitude follows a random uniform distribution. Each step 

last for 0.5 sec, and it is perturbed with a random noise 

extracted from another uniform distribution of amplitudes 

inside ]2.0;2.0[ . This noise is added to 
ku  every 

sT  

seconds. The disturbance input ]1;1[kd  is modelled 

similar to 
ku  but each constant portion lasts 0.6 sec. And it 

is additively perturbed by a similar uniform random noise 

with the same random uniform noise of amplitude 

]2.0;2.0[  every 
sT  seconds. The additive noise on the two 

input channels 
kk du ,  are uncorrelated. The database M of 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.3040185, IEEE Access

 

VOLUME XX, 2017 9 

000'20M  transition samples is built from 200 sec 

experiment time with the system (25) in open-loop, excited 

by the above 
kk du , . Since the inputs were already 

normalized in ]1;1[  by introducing the input normalizing 

coefficients in the model (25), the output is normalized to 

Mkyk ,1],1;1[   by dividing each sample with the 

maximal absolute value 
k

k
ymax  from the recorded history. 

Usually, all the inputs and outputs should be normalized, 

leading to all the components of the virtual state being 

normalized. 

The virtual state’s components normalization is 

extremely important since NNs approximators are going to 

be used. The normalization coefficients of all states are 

memorized and used to de-normalize the states, when 

running the learned controller in the loop. 

D. CONTROLLER LEARNING SETTINGS AND RESULTS 

Before the learning process, the penalty in the original cost 

(5) is constructed as 222 420 kkk duy   (for 4,1  DC WW ). 

It is computed for each transition sample ),,,( 1kkkk zduz . 

In order to find the upper-optimal and lower-optimal 

controllers and Q-functions according to Algorithms 3 and 

4 respectively, some approximators are selected as follows. 

For each algorithm the same architectures are being used. 

The Q-function is a 21501 feedforward NN with tanh(.) 

activation in the hidden layer and linear output activation. 

The input of this approximator ),,,(ˆ
Qkkk duQ πz  is formed 

from 19 components of the virtual state and the two control 

inputs 
kk du , , while 

Qπ  formally captures the NN weights. 

These weights are initialized with uniform random numbers 

inside ]005.0;005.0[ . A random 80% of the training 

samples are used for effective training and the rest are used 

as validation data, for forcing early stopping in order to 

prevent training overfitting. The training algorithm is a fast, 

scaled conjugate gradient, for maximum 500 episodes. The 

training uses the MSE criterion over the entire batch of 

transition samples. The Q-function NN training (in both 

optimal upper and optimal lower Q-function search 

process) solves in fact (17). 

For the controllers ),(ˆ
CkC πz  and ),(ˆ

DkD πz , the NN 

approximators are also feedforward NNs of the form 19–

101, with tanh(.) activation in the hidden layer and linear 

output activation. Their weights captured by 
DC ππ ,  are 

initialized as for the Q-function NN, but the two NNs’ 

training must comply with the gradient ascent/descent steps 

imposed by the upper-optimal controllers’ search 

(equations (18) and (19) performed inside Algorithm 3) and 

by the lower-optimal controllers’ search (equations (20) and 

(21) performed inside Algorithm 4). 

Other parameters are selected as follows. For Algorithm 

3, 53

2121 10,10,50,500 


  TTj , while the 

gradient ascent/descent steps from (18) and (19) are 

performed on a number of B1=B2=256 values 
kz  randomly 

picked from the dataset M at each ascent or descent step. 

For the Algorithm 4, the same parameter settings are used. 

The results obtained after the learning process takes 

place is shown in Fig. 2, in terms of the normed difference 

between successive Q-function weights vectors and in 

terms of the measured attenuation cost [27], [31] 

    


10000

0

210000

0

22 4/20
k kk kktest duyJ , (27) 

defined and measured on test scenario lasting 100 seconds, 

where a disturbance ]1;1[kd  (modelled as successive 

piece-wise constant steps of uniform random amplitudes 

and lasting for 0.5 sec) is used. The sequence 
kd  has not 

been presented to the system in the transition samples 

collection phase used for learning the upper-optimal and 

lower-optimal controllers. 

 

FIGURE 2.  The learning process for the upper-optimal upper and lower-
optimal controllers. 

Observation 5. Importantly, at every iteration, 
testJ  is 

measured with the upper and lower controllers ( ),( j

CkC πz  

and ),( j

CkC πz  respectively) in closed-loop, without using 

the disturbance controllers ),( j

DkD πz  and ),( j

DkD πz , their 

outputs being replaced by the test input signal 
kd . These 

latter disturbance controllers are necessary only throughout 

the learning process of Algorithms 3 and 4. 

Inspecting the bottom subplot in Fig. 2, the original costs 

)( kjJ z  and )( kjJ z  converge to the same value, meaning 

that the saddle-point solution to the game exists. The upper 

subplot in Fig. 2 also indicates that after many iterations, no 

more changes tend to occur in the upper and lower Q-

function estimates, a sign of learning process’ convergence. 
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E. COMPARISONS AND DISCUSSIONS OF THE 

RESULTS 

For learning the SFOC via Algorithm 5 for comparison 

purposes, the following optimization problem is solved 

),(with

,20)(minarg 22

,1

*

jj

kj jjk
C

Cu

uxJC

x

x



 

  (28) 

which is computed for the transition samples collected 

under the same uk settings used in the previous subsection, 

letting dk=0. As a consequence of null disturbance, a fifth 

order state model version of (25) results. Two feed-forward 

NNs of 6–30–1 and 5–5–1 are employed for the Q-function 

estimate and for the controller estimate, respectively. 

50T  gradient descent steps (24) are repeated with each 

major iteration of the Algorithm 5. Each state component 

kix ,
 from 

kx  is normalized 
1, ,1,5,1],1;1[ Mkix ki   by 

dividing each sample with its greatest modulus 
ki

k
x ,max  

over the recorded history. 

The rest of the parameters in Algorithm 5 are 
510,128,005.0,500 

  Bj . After the maximum 

number of 500 elapsed iterations, the optimal controller and 

the optimal Q-function estimates result. 

For comparison, on the same test scenario, the control 

obtained with the upper-optimal controller and with the 

SFOC are shown in Fig. 3. 

The Fig. 3 is interpreted as follows. The black line in all 

subplots correspond to open-loop (uk=0) and the profile of 

kx ,1
 (the “car body”) is the same as the profile of 

kx ,3
 (“the 

wheel” as the unsprung mass). It means that the wheel 

follows the road profile obtained as the discrete-time 

integral of 
kd  from Fig. 3. Therefore, 0,3,1  kk xx  in Fig. 

3A in black line. On the other hand, the blue line 
kx ,1
 in 

Fig. 3B means that the car body is insensitive to the road 

disturbance and the active suspension control manages to 

absorb the road profile via the unsprung mass 
kx ,3
 using the 

control input in blue line from Fig. 3D. The SFOC control 

(red line 
kx ,1
 in Fig. 3B) does not reject the disturbance as 

the upper-optimal controller, since it was not learned 

having in mind the disturbance rejection goal. After 

measuring the attenuation obtained with both the upper-

optimal controller and with the SFOC controller, it results 

that 33 105.34,106.6   SFOC

test

rOptUppCont

test JJ , clearly 

indicating the effective attenuation attained by the former. 

This is despite the SFOC using the full state information 

directly, which may be considered an advantage. 

On another hand, the virtual state used for learning the 

upper-optimal and lower-optimal controllers incorporates 

the measured disturbance which is the road profile 

derivative. This may not be acceptable in practice since it is 

difficult to measure the road profile disturbance. The 

learned upper-optimal controller is tested next, by setting 
19

61616 ]0,...,0,,...,,,...,[ Rdduuyy T

kkkkkkk  z  

with null disturbance in the virtual state. The actual 

disturbance 
kd  affects the controlled system, and the 

closed-loop is tested under the same scenario as before, 

under both the upper-optimal controller and under the 

SFOC. The results are shown again in Fig. 4. 

 

FIGURE 3.  The response obtained with the optimal upper controller 
(blue), with the SFOC (red) and in open-loop with uk=0 (black). 
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FIGURE 4.  The response obtained with the upper-optimal controller 
(blue), with the SFOC (red) and in open-loop with uk=0 (black). This time, 
the virtual state is fed with dk=0. 

 

The conclusion from Fig. 4 is obvious. Even in the case 

when a null disturbance is fed to the virtual state, the 

disturbance rejection is better with the upper-optimal 
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controller than with the SFOC, in terms of 
kx ,1
 in Fig. 4B 

being closer to zero than the same 
kx ,1
 obtained with the 

SFOC. Meaning that effective disturbance attenuation is 

still obtained, without measuring the road profile derivative. 

 

The transmissibility from the disturbance input 
kd  to the 

output 
kk xy ,1  is also measured in the frequency domain, 

assuming an approximate linear model both for the open-

loop suspension system and for the closed-loop suspension 

control system. The frequency response function estimator 

is identified in three cases: a) in open-loop setting (uk=0); b) 

the loop closed with the upper-optimal controller, with the 

virtual state zk fed by the disturbance input dk and c) the 

loop closed with the upper-optimal controller with zk fed by 

dk=0. The results captured by Fig. 5 were obtained after 

exciting either of the open-loop system or the closed-loop 

control system with a zero-mean sine-stream signal 
kd  of 

amplitude 0.5, for 100 logarithmically-spaced frequencies 

in the range of 0.01–1000 Hz. Then the magnitudes of the 

ratio between the Fast Fourier Transform (FFT) of the 

output 
kk xy ,1  and the FFT of the input 

kd  obtained at 

each particular frequency, are calculated. Even in the active 

suspension provides natural attenuation in open-loop, it is 

observed that in the case b) (corresponding to measured 

disturbance in the virtual state), the low-frequency 

attenuation is significantly stronger than that obtained with 

the SFOC (Fig. 5, left). Still, better low-frequency 

attenuation obtained with the upper-optimal controller is 

measured in the case c) (Fig. 5, right), when the disturbance 

is not measured and it enters as a null value in the virtual 

state. 

 

FIGURE 5.  Transmissibility in open-loop (uk=0), with the SFOC and with 
the upper-optimal controller. In the left, the virtual state zk is fed by the 
actual disturbance input values dk; on the right, dk=0 in zk. 

 

The learned upper-optimal and lower-optimal controllers 

for the active suspension observable system was shown 

feasible. For the active suspension system, the proposed 

ZS-TP-G robust control learning approach is highly 

attractive since it takes place in a fixed test rig where 

artificial disturbances that emulate the road conditions are 

easily generated. Afterwards, the disturbance controller is 

discarded and the control loop is closed by either the upper-

optimal controller or the lower-optimal controller. 

Subsequently, the active suspension can then be used in 

real-world road conditions. The learned attenuation was 

shown efficient even in the case when the virtual state is 

constructed from a null measured disturbance. This aspect 

expands the applicability range of the approach. All 

features above may stimulate industrial implementation 

owing to the reduced number of sensors and to the on-site 

learning ability. 

VII. CONCLUSION 

The approach presented in this paper proposes several 

features, enumerated next. It learns an optimal robust 

controller using ADP formulated as a ZS-TP-G for systems 

with unknown dynamics. The learned controller is the 

saddle-point of the ZS-TP-G when the solution is feasible, 

otherwise it can be any of the upper-optimal or lower-

optimal controllers that solve the game. The learning 

process consisting of the operations that are specific to the 

upper-optimal and lower-optimal controllers’ calculations, 

was shown to converge by theoretical analysis. 

NNs approximators were used for the practical learning 

implementation. This is advantageous for general nonlinear 

systems since it enables automatic feature selection in the 

Q-function and controller parameterization. The proposed 

framework deals with observable systems perceived from 

IO data, therefore solving the partial observability problem 

that can prevent successful learning. It relies on the virtual 

state built from present and past values of the input and 

output samples. Learning a robust control for the virtual 

state space system is shown equivalent to learning a robust 

control for the underlying system. Since the virtual state 

construction leads to a higher-order virtual state-space 

system, NNs ensure the scalability of the learning problem 

in all aspects, except for the efficient exploration problem 

which is one of the major issues with ADP and 

reinforcement learning. 

The approach presented here is believed to handle many 

practical systems (such as Markov jump systems and 

nonlinear multiagent systems [54]–[57]), therefore it is a 

further goal to validate it on observable systems of even 

higher order who, similarly to the active suspension, show 

significant practical interest. 
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