
Robust Control Synthesis with General Frequency Domain Specifications:
Static Gain Feedback Case

Tetsuya Iwasaki
Mechanical and Aerospace Engineering

University of Virginia, 122 Engineer’s Way
Charlottesville, VA 22904-4746

iwasaki@virginia.edu

Shinji Hara
Information Physics and Computing

The University of Tokyo, 7-3-1 Hongo
Bunkyo, Tokyo 113-8656, Japan

Shinji Hara@ipc.i.u-tokyo.ac.jp

Abstract— This paper considers a robust control synthesis
problem for uncertain linear systems to meet design specifica-
tions given in terms of multiple frequency domain inequalities
in (semi)finite ranges. In this paper, we restrict our attention to
static gain feedback controllers. We will develop a new multi-
plier method that allows for reduction of synthesis conditions to
linear matrix inequality problems. We study conditions under
which the reduction is exact (nonconservative) in the single-
objective nominal setting. Although the multiplier method is
conservative in the general setting of multi-objective robust
control, numerical design examples demonstrate the utility of
the method for the state feedback case.

I. INTRODUCTION

Design specifications for practical control synthesis are
often given in terms of frequency domain inequalities (FDIs).
Most state space approaches to such design problems rely
on the Kalman-Yakubovich-Popov (KYP) lemma [1], [2]
that converts an FDI to a linear matrix inequality (LMI)
which is numerically tractable. While the standard KYP
lemma characterizes FDIs in the entire frequency range,
practical requirements are usually described by multiple
FDIs in (semi)finite ranges; e.g., small sensitivity in a low
frequency range and control roll-off in a high frequency
range. Hence some sort of “adaptors,” such as the weighting
functions, have been used to fit the requirements into the
KYP framework. However, the design iterations to search
for the right weighting functions can be tedious and time
consuming, and the controller complexity (order) tends to
increase with the complexity of the weighting functions.

The objective of this paper is to develop a state space
design theory that is capable of directly treating multiple FDI
specifications in various frequency ranges without introduc-
ing weighting functions. To our knowledge, this problem has
not been addressed in the literature. Our approach is based on
the generalized Kalman-Yakubovich-Popov (GKYP) lemma
[3], [4], recently developed by the authors, that provides
an LMI characterization of FDIs in (semi)finite frequency
ranges. We will first give a dual version of the GKYP lemma
which is more suitable than the primal for feedback synthesis.
A multiplier method is then developed to render the synthesis
conditions convex through a simple change of variable, in
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the static gain feedback setting. We discuss cases where
the multiplier method is nonconservative for the single-
objective nominal design. The method is extended, with some
conservatism, for the multi-objective robust control synthesis
for systems with polytopic uncertainties. Design examples
will demonstrate applicability of our results.

We use the following notation. For a matrix M , its
transpose, complex conjugate transpose, the Moore-Penrose
inverse, and the null space are denoted by M T, M∗, M †, and
N (M), respectively. The Hermitian part of a square matrix
M is denoted by He(M) := M+M∗. The symbol Hn stands
for the set of n×n Hermitian matrices. The subscript n will
be omitted if n = 2. For matrices Φ and P , Φ ⊗ P means
their Kronecker product. For G ∈ CI n×m and Π ∈ Hn+m, a
function σ : CI n×m ×Hn+m → Hm is defined by

σ(G, Π) :=

[

G
Im

]∗

Π

[

G
Im

]

.

Given a positive integer q, let Zq be the set of positive
integers up to q, i.e., Zq := { 1, 2, . . . , q }.

II. PROBLEM STATEMENT AND FORMULATION

A. Problem statement
Consider the plant G(λ) described by





λx
z
y



 =





A B1 B2

C1 D11 D12

C2 D21 0









x
w
u



 (1)

with a static gain feedback control u = Ky where λ is the
frequency variable (s for continuous-time and z for discrete-
time cases), and x(t) ∈ IRn, w(t) ∈ IRnw , u(t) ∈ IRnu ,
z(t) ∈ IRnz , and y(t) ∈ IRny . Denote by G(λ) ? K
the closed-loop transfer function from w to z. The control
synthesis problem of our interest is, given Π ∈ Hnw+nz

and
Φ, Ψ ∈ H, find a stabilizing feedback gain K such that

σ((G(λ) ? K)∗, Π) < 0 ∀ λ ∈ Λ̄(ΦT, ΨT). (2)

where

Λ(Φ, Ψ) := { λ ∈ CI | σ(λ, Φ) = 0, σ(λ, Ψ) ≥ 0 } (3)

and Λ̄ := Λ if Λ is bounded and Λ̄ := Λ ∪ {∞} if
unbounded.

For clarity of exposition, we shall restrict our attention
to this single-objective nominal control problem in the main



body of our theoretical developments. However, we will later
discuss extensions to a more general problem where there are
multiple FDI constraints of the above form as well as some
uncertainty in the plant model.

B. Problem formulation via a dual GKYP lemma
Consider a transfer function

G(λ) = C(λI − A)−1B + D, (4)

where A ∈ CI n×n, D ∈ CI nz×nw . The GKYP lemma in [4]
provides a characterization of the FDI: σ(G(λ), Π) < 0 for
all λ ∈ Λ̄(Φ, Ψ). The following result provides a dual version
of the GKYP lemma.

Theorem 1: Let Φ, Ψ ∈ H, Π ∈ Hnw+nz
, and G(λ) in

(4) be given and consider Λ(ΦT, ΨT) defined by (3). Suppose
Λ represents curves on the complex plane and A has no
eigenvalues in Λ. The following statements are equivalent.
(i) σ(G(λ)∗, Π) < 0 holds for all λ ∈ Λ̄(ΦT, ΨT).

(ii) There exist P = P ∗ and Q = Q∗ > 0 such that

N

[

Φ ⊗ P + Ψ ⊗ Q 0
0 Π

]

N∗ < 0, (5)

N :=
[

M I
]

T, M :=

[

A B
C D

]

where T is the permutation matrix such that

[ M1 M2 M3 M4 ]T = [ M1 M3 M2 M4 ] (6)

for arbitrary matrices M1, M2, M3, and M4 with
column dimensions n, nw, n, and nz, respectively.

With the result of Theorem 1, and ignoring the stability
requirement for the moment, a synthesis problem may be
formulated as the search for the parameters Q > 0, P , and K
satisfying (5) with M defined to be the state space matrices
of G(λ) ? K as follows:

M := A + BKC (7)

=

[

A B1

C1 D11

]

+

[

B2

D12

]

K
[

C2 D21

]

.

The resulting condition is not convex due to the product terms
between the parameters P , Q, and K. In the next section,
we shall develop a multiplier method to re-parametrize the
condition so that the problem becomes convex. Throughout
the paper, we will assume that C has full row rank without
loss of generality.

III. SYNTHESIS WITH NULLSPACE FILLING MULTIPLIER

A. Basic idea
By the Finsler’s theorem [5], condition (5) is equivalent to

the existence of a multiplier W such that

T

[

Φ ⊗ P + Ψ ⊗ Q 0
0 Π

]

T ∗ < He

[

−I
M

]

W . (8)

Note that (5) holds if and only if the left hand side (LHS) of
(8) is negative definite on the range space of [ M I ]∗. The

role of the multiplier W is to fill the orthogonal subspace, the
nullspace of [ M I ], so that the LHS with this modification
becomes negative definite as in (8). The synthesis problem
now is to compute Q > 0, P , W and K satisfying condition
(8). This is still a nonconvex problem due to the product term
between K and W .

To make the problem tractable, we shall restrict the class
of multipliers W to be

W(C, R) := { C†WR + (I − C†C)V | W ∈ CI ny×ny ,

det(W ) 6= 0, V ∈ CI (n+nw)×(2n+nw+nz) } (9)

where R ∈ CI ny×(2n+nw+nz) is a matrix to be specified later.
In this case, the product term can be made linear in terms of
the new variable K := KW as follows:

MW = (A+BKC)(C†WR+(I −C†C)V ) = AW +BKR.

Thus, the synthesis equation (8) becomes an LMI in terms of
the parameters Q, P , W , and K. Moreover, the above change
of variable is invertible and the feedback gain can be found
by K = KW−1.

We now turn our attention to the choice of R. We would
like to specify R so that the restriction W ∈ W(C, R) can
be made without introducing conservatism. The following
theorem gives a characterization of such R and summarizes
the synthesis LMI.

Theorem 2: Let R ∈ CI ny×(2n+nw+nz), Φ, Ψ ∈ H, Π ∈
Hnw+nz

, P, Q ∈ Hn, and the system in (1) be given. The
following statements are equivalent.
(i) There exist a feedback gain K and a real scalar µ > 0

such that conditions (5) and

S(TXT ∗ − µR∗R)S∗ < 0 (10)

S :=

[

M I
C 0

]

, X :=

[

Φ ⊗ P + Ψ ⊗ Q 0
0 Π

]

are satisfied where M is defined in (7).
(ii) There exist matrices W ∈ W(C, R), and K such that

T

[

Φ ⊗ P + Ψ ⊗ Q 0
0 Π

]

T ∗ < He

[

−W
AW + BKR

]

.

If (ii) holds, a gain in (i) can be given by K := KW−1.
The nullspace filling multiplier introduced above may be

considered as a generalization of the multipliers developed
by de Oliveira, Bernussou, Geromel, and others, for robust
stability analysis of systems with polytopic uncertainties
[6]–[10]. The main advantage of this type of formulation
is that there is no product term between the system param-
eters (A,B, C) and the “Lyapunov” parameters (P, Q). An
implication is that one can easily obtain vertex-type results
for robust control analysis as well as synthesis. Moreover,
the formulation is also useful for multi-objective control as
we discuss later.

The condition in statement (ii) of Theorem 2 is given
in terms of LMIs and hence can be numerically solved by



semidefinite programming. Here, we note that the nonsin-
gularity constraint on W ∈ W(C, R) can be ignored when
solving the LMIs because a perturbation argument applies
due to the strictness of the LMI.

We see that statement (ii) gives a sufficient condition for
existence of K satisfying (5), regardless of the choice of R.
Moreover, the condition is also necessary if R is chosen to
satisfy (10). It can be verified that a particular choice:

R = C
[

I −M∗
]

,

satisfies (10) for a sufficiently large µ > 0, provided P ,
Q, and K solve (5). This means that an appropriate R
exists whenever the original synthesis problem is feasible.
However, the above choice of R is not practical because
it depends on the unknown controller parameter. The next
section will discuss some heuristic and exact choices of R
that are directly useful for synthesis.

B. Specific choices of R

First, we shall specialize Theorem 2 for some specific
cases of C and give particular choices of R that lead to LMI
synthesis conditions which are nonconservative. Later, we
will discuss some heuristic choices of R leading to sufficient
conditions for synthesis. To this end, let us introduce the
following:

Assumption 1:
(a) Λ represents curves on the complex plane, and Ψ is

active in Λ in the sense that Λ(ΦT, ΨT) 6= Λ(ΦT, 0).
(b) At least nz eigenvalues of Π are negative.
The first part of Item (a) is a natural condition within the
framework of our control specifications expressed in terms
of restricted frequency inequalities. The second part means
that the frequency range Λ is not the entire jω axis nor the
unit circle, but a partial segment (or segments) of it. (See [4]
for details.) Item (b) is a necessary condition for feasibility
of the control synthesis problem and hence can be imposed
without loss of generality.

Corollary 1 (Full Information): Let Φ, Ψ ∈ H, Π ∈
Hnw+nz

, P, Q ∈ Hn, and the system in (1) be given.
Suppose Q > 0 and Assumption 1 hold, and consider the
full information case

C =
[

C2 D21

]

= I.

Then there exists a feedback gain K satisfying (5) if and only
if statement (ii) in Theorem 2 holds, provided R is chosen
as follows. Let N ∈ CI (2n+nw+nz)×(n+nz) be a full column
rank matrix such that N∗XN < 0 for all P and Q > 0.
Then define R to be a full row rank matrix with ny rows
such that RTN = 0. In particular, one such N is given by

N =

[

N1 0
0 N2

]

, N1 =

[

pIn

qIn

]

, N∗
2 ΠN2 < 0

where r := [ p q ]∗ ∈ CI 2 is such that r∗Φr = 0 and
r∗Ψr < 0, and the column dimension of N2 is nz. Existence
of such r and N2 is guaranteed by Assumption 1.

Corollary 1 gives an exact solution to the full information
synthesis problem with an FDI in a bounded frequency range.
If the FDI specification is given for the entire frequency range
(i.e., the second condition in Assumption 1(a) is violated),
Corollary 1 can be modified as follows. First note that the
parameter Q can be set to zero without loss of generality,
and the parameter P may be required to be positive definite
to enforce a stability constraint. We can then specify an
appropriate R by choosing r so that r∗Φr is negative and
modifying N accordingly.

Corollary 2 (State Feedback): Let Φ, Ψ ∈ H, Π ∈
Hnw+nz

, P, Q ∈ Hn, and the system in (1) be given.
Suppose Q > 0 and Assumption 1 hold, and consider the
state feedback case

[

C2 D21

]

=
[

In 0
]

. (11)

Suppose further that:

Φ11 = 0, Ψ11 < 0, σ(D∗
11, Π) < 0. (12)

Then there exists a feedback gain K satisfying (5) if and only
if statement (ii) in Theorem 2 holds, provided we choose

R :=
[

0n 0 In 0
]

where R is partitioned so that the numbers of columns are
n, nw, n, and nz from left to right.

The conditions in (12) are satisfied when the control
specifications are given in terms of a continuous-time (Φ11 =
0), bounded frequency (Ψ11 < 0) inequality condition that
holds at infinite frequency (σ(D∗, Π) < 0). The last condition
is met if, for instance, D11 = 0 and the origin is included
in the feasible domain defined by the set of G such that
σ(G∗, Π) < 0.

Next, we will consider the state feedback case and present
some potentially conservative but reasonable choices for R.
Consider the case of continuous-time, small gain condition
in the low frequency range. In this case, R can be chosen as

R =
[

0 0 In (D11B
†
1)

∗
]

. (13)

For the continuous-time, small gain condition in the high
frequency range, we have

R =
[

In 0 0 0
]

. (14)

We claim that these choices are reasonable because the the
upper left n × n and lower right nz × nz block matrices
of N (RS∗)(ST )X(ST )∗N (RS∗) are both negative definite,
which are necessary conditions for existence of µ satisfying
(10). Although these are not sufficient in general, this ap-
proach allows us to choose R that is independent of P and Q.
We will later illustrate applicability of the heuristic choices
of R presented here through numerical design examples.



IV. EXTENSIONS

A. Multi-objective, robust control
We consider the following problem: Find K such that

σ((Gk(λ) ? K)∗, Πk) < 0 ∀ λ ∈ Λ̄(ΦT
k, ΨT

k) (15)

holds for all k ∈ Zq where each Gk(λ) is a given plant, and
(Φk, Ψk, Πk) defines a frequency domain specification to be
achieved for the closed-loop system Gk(λ) ? K. The plant
Gk(λ) may represent a vertex of a set of uncertain systems
for robust control, or a plant with a selected disturbance-
performance (i.e., w-z) channel for multi-objective control.
The following result can be obtained from Theorem 2 in a
straightforward manner, and hence its proof is omitted.

Corollary 3: Let Rk ∈ CI ny×(2n+nw+nz), Φk, Ψk ∈ H,
Πk ∈ Hnw+nz

, and systems Gk(λ) as in (1) be given where
k ∈ Zq . There exists a static feedback gain K such that
the frequency domain specifications (15) are satisfied for all
k ∈ Zq if there exist scalars αk > 0 and matrices Pk = P ∗

k ,
Qk = Q∗

k > 0, Wk ∈ W(Ck, Rk), and K such that all Wk

have a common W and

Tk

[

Φk ⊗ Pk + Ψk ⊗ Qk 0
0 αkΠk

]

T ∗
k

< He

[

−Wk

AkWk + BkKRk

]

(16)

holds for all k ∈ Zq , where Tk and (Ak,Bk, Ck) are defined
as in (6) and (7) using the input/state/output dimensions and
the state space matrices of Gk(λ). In this case, one such
gain is given by K := KW−1.

Corollary 3 gives a sufficient condition for the existence
of static feedback gain that achieves the multiple FDI speci-
fications in (15). The condition is given in terms of LMIs
and can be solved numerically. The associated degree of
conservatism is dependent upon the choices of Rk. In the
full information or state feedback case, some reasonable
choices have been proposed in the previous section. It should
be noted that this formulation does not assume common
“Lyapunov matrices” (P, Q) as in the quadratic stability
literature [11] or in the more recent multi-objective control
[12], [13], but rather, (P, Q) can be interpreted as “parameter-
dependent” as discussed in [6], [7], [14]. Thus we expect
reduced conservatism when compared with these existing
techniques for multi-objective robust control. It should be
emphasized, however, that the main contribution of this paper
is not the conservatism reduction but the synthesis method
to meet FDI specifications in (semi)finite frequency ranges,
which have not been addressed in the literature.

The above formulation naturally captures the multi-
objective control in the sense that the control gain K is
designed so that each specification defined by (Φk, Ψk, Πk)
is met for the corresponding plant Gk(λ). However, the
formulation is not suitable for robust control synthesis in its
present form. To elaborate on this point, let I be a subset of

indices Zq corresponding to a robust performance specifica-
tion (Φo, Ψo, Πo) to be satisfied by a family of plants defined
by the convex hull of the state space matrices of Gk(λ) with
k ∈ I. In this case, we have (Φk, Ψk, Πk) = (Φo, Ψo, Πo),
Tk = To, and Rk = Ro for all k ∈ I. We shall assume
that the family of plants share a common measured output
signal, i.e., Ck = Co for all k ∈ I. The sufficient condition
in Corollary 3 guarantees the performance (Φo, Ψo, Πo) for
each vertex plant Gk(λ), but not for every plants in the
convex hull. This deficiency can be overcome, with some
additional conservatism, by using a common Wo = Wk for
all k ∈ I (see the example in Section V for a relaxed version
of this idea). In this case, every coefficients of Ak and Bk

for k ∈ I become independent of k, allowing for an arbitrary
convex combination of (16) to be taken to conclude the robust
performance.

B. Regional pole constraints
The design specifications in (15) encompass frequency

domain shaping of closed-loop transfer functions. However,
the closed-loop stability has not been captured, and hence one
may wish to include a stability constraint, or more generally,
regional pole constraints, as an additional design specifica-
tion. The following lemma readily follows from [15], [16]
and gives a basic result for an eigenvalue characterization.

Lemma 1: Let A ∈ CI n×n and Φ ∈ H be given. Suppose
det(Φ) < 0. Then the following are equivalent.
(i) Each eigenvalue λ of A satisfies σ(λ, ΦT) < 0.

(ii) There exists P = P ∗ > 0 such that σ(A∗, Φ ⊗ P ) < 0.
(iii) There exist W and P = P ∗ > 0 such that

Φ ⊗ P < He

[

−I
A

]

W
[

−qI pI
]

where r := [ p q ]∗ ∈ CI 2 is an arbitrary fixed vector
satisfying r∗Φr < 0.

The set of eigenvalues characterized in (i) captures,
through certain choices of Φ, the half plane and the inside or
outside of a circle on the complex plane. See [4] for details.

The condition in (iii) can be used to give additional
constraints in the design equations discussed in the previous
sections. In particular, we replace A with the closed-loop
matrix A + B2K in the state feedback case, and introduce
the change of variable K := KW . As a result, we add the
following constraint to the design:

Φ ⊗ P < He

[

−W
AW + B2K

]

[

−qI pI
]

Clearly, multiple inequalities of the same form can be added
to enforce (robust) regional pole constraints expressed as the
intersection of half planes and circles. In this case, as in
Corollary 3, different Φ, A, B2, and P may be used for each
inequality but W and K have to be common for all inequality
constraints.



V. DESIGN EXAMPLE

We consider the classical ACC benchmark problem of cart-
spring system. The plant is described by

ẋ = Ax + B1w + B2u, z = Cx,

A :=







0 0 1 0
0 0 0 1

−k k 0 0
k −k 0 0






, B1 :=







0
0
0
1






, B2 :=







0
0
1
0







C :=
[

0 1 0 0
]

where k = 1 is the spring constant and the unit mass is
assumed for each cart. Our objective is to design a stabilizing
state feedback controller u = Kx such that

|Tzw(jω)| < γ, ∀ |ω| ≤ $`

|Tuw(jω)| < ρ, ∀ |ω| ≥ $h

hold, where Tzw and Tuw are the closed-loop transfer
functions from w to z and u, respectively, γ and ρ are
the performance bounds, and $` and $h are the cut-off
frequencies in the low/high ranges. From Lemma 1 and
Theorem 2, the synthesis conditions are given by

[

0 Ps

Ps 0

]

< He

[

−W
AW + BK

]

[

I I
]

(17)







−Q` 0 P` 0
0 α 0 0
P` 0 $2

`Q` 0
0 0 0 −αγ2






< He







−I 0 0
0 −1 0
A B1 B2

C 0 0











WR`

V`

KR`



 (18)







Qh 0 Ph 0
0 β 0 0
P` 0 −$2

hQh 0
0 0 0 −βρ2






< He







−I 0 0
0 −1 0
A B1 B2

0 0 1











WRh

Vh

KRh



 (19)

where W , K, Ps = P ∗
s > 0, P` = P ∗

` , Q` = Q∗
` > 0, V`,

Ph = P ∗
h , Qh = Q∗

h > 0, Vh, and α, β > 0 are the (real)
variables and R` and Rh are given by R in (13) and (14),
respectively. If these equations admit a solution, a feasible
state feedback gain is given by K = KW−1.

We fixed the values $`, $h, and γ as

$` = 2, $h = 3, γ = 2,

and then minimized ρ. The optimal value of ρ and the
corresponding feedback gain K are found to be

ρmin = 0.52,
K =

[

−1.4414 0.0802 −1.7213 −0.8622
]

.

The resulting closed-loop transfer functions are shown in
Fig 1 where the shaded regions indicate the bounds on the
gain of the transfer functions. We see that the upper bounds
are relatively tight, showing that the associated conservatism
is not significant.

For the sake of illustration, we have changed the frequency
interval of the constraint |Tzw| < γ from $` = 2 to $` =

1. By this change, the natural frequency of the cart-spring
system (

√
2 [rad/s]) is now outside of the frequency range.

All the other parameters are fixed as before and the feasibility
problem is solved. The resulting design is shown in Fig. 2.
We see that the large peak in |Tzw| is now allowed and the
time response is lightly damped. If we minimize ρ, then it
can get as low as 0.27 at the expense of a larger peak value
‖Tzw‖∞ = 6.8.
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Fig. 1. Transfer functions (Nominal design)
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Fig. 2. Transfer functions (Nominal bad design)

The result shown in Fig. 1 is compared with a mixed
H2/H∞ multi-objective design [12]. In particular, the con-
ditions

‖Tzw‖∞ < γ, ‖Tuw‖2 < ρ

can be conservatively reduced to the search for matrices X =
XT and K satisfying





He(AX + B2K) XC∗ B1

CX −γI 0
B∗

1 0 −γI



 < 0,

He(AX + B2K) + B1B
∗

1 < 0,

[

ρ2 K
K∗ X

]

> 0.

Once these LMIs are solved for X and K, a state feedback
gain is found by K = KX−1.



We have fixed the value of γ to be the same as that in
our design, i.e., γ = 2, and then minimized ρ. This problem
is meant to find the minimum energy control that achieves
the same regulation performance as before. As a result, we
obtained ρmin = 2.00 and

K =
[

−2.8835 0.3727 −2.4005 −2.7767
]

.

The corresponding closed-loop frequency response is shown
in Fig. 3. We remark two things. First, the bound on the
H∞ norm of the transfer function Tzw is not very tight and
the gap between the H∞ norm bound and the actual norm
shows the degree of conservatism for this design. Second,
the transfer function Tuw does not roll off as much as in the
previous design so that the peak value of |u(t)| is three times
larger, showing a limitation of the H2 norm as a measure for
the “control effort.”

Next we consider the case where the spring constant k is
uncertain but is known to lie in the interval [1, 2]. In this case,
we will have the synthesis equations (17)-(19) for k = 1,
and in addition, copies of these equations for k = 2 where
the variables W and K are common but the others are not
(e.g., we have two different Ph’s for k = 1 and k = 2).
Minimizing γ subject to these 6 LMIs and computing the
gain by K = KW−1, we have

$` = 2, $h = 4, ρ = 0.5, γ = 2.66,

K =
[

−2.6736 0.8938 −2.2190 −1.1612
]

.

The resulting closed-loop response shown in Fig. 4, where
the two solid curves show responses for cases k = 1 and 2,
and similarly for the dashed curves. We see that conservatism
is still moderate even for this robust design, suggesting a
potential for practical applications.

VI. CONCLUSION

We have developed methods for synthesizing static feed-
back controllers to achieve, for a family of plants, multiple
FDI specifications in (semi)finite frequency ranges. Sufficient
conditions for existence of feasible controllers are given in
terms of LMIs, and some special cases, where the conditions
become also necessary, are discussed. Utility of our result for
the general state feedback design is demonstrated through
numerical examples.
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Fig. 3. Transfer functions (H2/H∞ design)
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