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Robust Control to Parametric 
Uncertainties in Smart Structures 
Using Linear Matrix Inequalities 
The study of algorithms for active vibrations control in flexible structures became an area
of enormous interest, mainly due to the countless demands of an optimal performance of 
mechanical systems as aircraft and aerospace structures. Smart structures, formed by a
structure base, coupled with piezoelectric actuators and sensor are capable to guarantee
the conditions demanded through the application of several types of controllers. This 
article shows some steps that should be followed in the design of a smart structure. It is 
discussed: the optimal placement of actuators, the model reduction and the controller
design through techniques involving linear matrix inequalities (LMI). It is considered as 
constraints in LMI: the decay rate, voltage input limitation in the actuators and bounded 
output peak (output energy). Two controllers robust to parametric variation are designed:
the first one considers the actuator in non-optimal location and the second one the 
actuator is put in an optimal placement. The performance are compared and discussed. 
The simulations to illustrate the methodology are made with a cantilever beam with 
bonded piezoelectric actuators.
Keywords: Robust control, LMI, optimal placement of piezoelectric

Introduction

Nowadays it is needed an optimal performance in structural
systems in order to obtain lighter and stronger structures, static and
dynamic stability and reduction of vibrations caused by external
sources (Anthony, 2000). It is possible to use modern techniques of 
active control associated with intelligent materials to execute these
demands. These materials are composed by piezoelectric ceramic
(PZT - Lead Zirconate Titanate), commonly used as distributed 
actuators, and piezoelectric plastic films (PVDF - PolyVinyliDeno
Floride), highly indicated for distributed sensors (Clark et al., 1998).

The design process of such system encompasses three main
phases: structural design; optimal placement of sensor/actuator
(PVDF and PZT); and controller design. Consequently, for optimal
design purposes, the structure, the sensor/actuator placement and the
controller have to be considered simultaneously, (Gonçalves et al., 
2002). This article addresses the last two phases. The purpose is 
aimed to develop an integrated controller design procedure for
uncertainties parametric rejection, where the PZTs are bonded in 
optimal locations.1

The location of sensor/actuator is an extremely important step
and affects the signals for the controller. Several authors studied the
problem of optimal placement of PZT in the active structural control
using different methodologies. The techniques more mentioned in
the literature use genetic algorithms (GA) in a procedure of discrete
optimization (placement of PZT) and continuous optimization
(controller). This technique can find good results, but not
necessarily the optimal solution, (Silva and Lopes Jr., 2002). It
happens because the objective function involves the controller
design, then for each location candidate the controller must be
synthesized and evaluated its performance. This technique has many
citations in literature, as example, Simpson and Hansen (1996) that 
used a simple model of an interior aircraft to determine the optimal
location of PZT. Furuya and Haftka (1993) found the optimal 
placement of 8 actuators in a structure with 1507 candidate
positions.

Geromel (1989) presented a procedure of convex analysis and
global optimization for actuator location using LMI. Oliveira and
Geromel (2000) proposed a linear output feedback controller design
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with joint selection of sensor and actuator. The approach of the 
present article uses a different methodology, which was proposed by
Panossian et al. (1998) in a practical application and described in 
details in Gawronski (1998). This proposal involves the computation 
of the H  norm systems as the objective function, and it is not
necessary the controller design to evaluate the performance of the
candidate location.

Many strategies have been used for control design. For example: 
Lopes Jr. et al. (2003) presented the control of a beam using pole
allocation and classical techniques optimization. Liu and Zhang
(2000) showed the control of vibrations in a space truss structure
using independent modal space control (IMSC). There are many
classical strategies that can be used when the mathematical model is
available, for instance pole allocation and optimal control (LQR).
However, if the model has uncertainties these methods are not
indicated. There are many robust techniques well known in 
structural control literature, as for instance, Moreira et al. (2001)
designed a reduced order H  controller for an intelligent structure 
satellite applications considering dynamic uncertainties
requirements.

The objective of this work is to use a recent technique, LMI, to
design a robust control considering parametric uncertainties. 
However, the methodology has forward application for any kind of
uncertainties. LMI contributes to overcome many difficulties in
control design. In the last decade, LMI has been used to solve many
problems that until then was unfeasible through others
methodologies, (Boyd et al. 1994).

The major advantage of LMI design is to enable specifications
such as stability degree requirements, decay rate, input limitation in
the actuators and output peak bounder. It is also possible to assume
that the model parameters involve uncertainties. The LMI is a very
useful tool for problems with constraints, where the parameters vary
in a range of values. Once formulated in terms of LMI a problem 
can be solved efficiently by convex optimization algorithms,
(Gahinet et al., 1995).

The main proposal of this article is to present a clear
methodology for active vibration control with robust requirements.
It is considered as constraint design: decay rate; quadratic stability;
limited input and output; and robustness to parametric uncertainties.
We considered linear system with polytopic uncertainty in a 
procedure that was first proposed by Geromel et al. (1991). In the 
following, a brief review of structural state-space model is presented
and the strategy for actuator placement is shown. A LMI controller
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is discussed for vibration attenuation of some natural modes. 
Finally, a numerical application using a cantilever beam with 
bonded PZT is presented for illustration purpose. 

Nomenclature

A = dynamic matrix 
b = width of the beam
B = input matrix 
C = output matrix 
d = dielectric constant
e = reduction error
E = Young’s modulus
G = transfer function
I = identity matrix
k = number of exogenous inputs 
K = state-feedback gain
M= generated moment by pair of PZT
n = number of modes
N = number of states
p = number of uncertainties parameters 
P = positive definited matrix
q = modal displacement
q = modal velocity 
r = number of outputs
R = number of candidate sensor locations
s = number of control inputs 
S = number of candidate actuator locations 
t = thickness of the beam 
T = placement matrix
u = vector of controlled inputs 
v = number of vertexes
V = voltage applied by pair of PZT 
w = vector of disturbance inputs
x = state-space vector 
y = vector of measured outputs 
Greek Symbols

 = modal damping
= natural frequency

 = H  placement index
 = bounded output energy
 = maximum value of amplitude on PZT
 = decay rate
 = optimization variable relative to compute H  norm
 = convex space

Subscripts

m = relative to ith mode
r = relative to retained state (modes of nominal model)
t = relative to truncated states (modes of residual model)
b = relative to structure (beam)
p = relative to PZT
1 = relative to the disturbance input
2 = relative to the controlled input

Structural State-Space Models

A linear differential inclusion (LDI) system, in modal state-
space form, considering the matrices with appropriate dimensions
and assumed to be known is given by:

xCy
tAuwxtAx 21  (1) 

where  is a polytope that is described by a list of vertexes in a 
convex space. 

The modal state-space realization is characterized by the block-
diagonal dynamic matrix and the related input and output matrices,
(Gawronski, 1998):
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where i=1,2,…,n, Ami, B1mi, B2mi and Cmi are 2x2, 2xk, 2xs and rx2 
blocks, respectively. These blocks can be obtained in several
different forms and also it is possible to convert in another
realization through a linear transformation. One possible form to
block Ami(t) can be written by:

iii

iii
miA  (3) 

It is assumed that the natural frequencies vary equally in both,
positive and negative, sides, so the natural frequencies
corresponding to model obtained by finite element method (FEM) 
can be taken as nominal parameters. In this paper we considered
state feedback and parametric variations only in the low frequency
modes (modes of the retained model), described by polytopic LDI
(PLDI):

vr,r,1r AACotA  (4) 

where v is the number of vertexes of the polytopic system. The 
number of vertexes is given by 2p, where p is the number of 
uncertainty parameters. The operator Co means that the matrix Ar,1;
…; Ar,v define a convex space.

The state vector x of the modal coordinates system consists of n
independent components, xi, that represent a state of each mode. The
xi (ith state component), related to eq. (3), is defined (Gawronski, 
1998):
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The use of models obtained by FEM demands high number of
degrees of freedom (dof). So, the order of the representation is
generally very large, causing numeric difficulties. Besides that, the
complexity of the controller is model depend, above all, of the order
of the plant in study. Therefore, the synthesis of a low order plant is
fundamental for a controller success. 
A reduced-order model is obtained by truncating the states. Let x
and the state (A, B1, B2, C) be partitioned considering the canonical 
modal decomposition. From the Jordan canonical form can be
obtained:
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where Ar(t) is given by eq. (4). Nothing about performance 
specifications for high frequency modes was included in the design.
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The main problem is to find the order and the retained states that
best reproduces the response of the complete system. The choice
depends mainly on the definition of the reduction index used. In
general, systems norms are used to evaluate the reduction error,
(Gawronski, 1998).

Different methods of model reduction through LMI were 
proposed, for the cases of local and global optimization, using as
index the performance systems norms, for instance Assunção et al. 
(2002) uses H  norm. 

In this work the H  norm is used as reduction index. The norm 
of the ith natural mode (Ami, B2mi, Cmi) can be calculated in different
forms. However, this article uses LMI to the computation of the H
norm. Assunção and Teixeira (2001) demonstrate in full detail as to 
compute this norm. The H  norm system can be found from the
following optimization problem: 
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 (7) 

This norm also corresponds to the peak gain of frequency response
function. The H  norm system is the same the largest norm of the
modes. The H  reduction error is defined as: 

rG-Ge (8)

where G is the transfer function of the nominal system and Gr is the
transfer function of the nominal model.

Placement of Actuators and Sensors using H  Norm

The actuator should be placed at a location to excite the desired
modes in a most effective way. The optimal placement problem
consists of to determine the location of a small set of actuators and
sensors such that the H  norm of the system is the closest possible
of the norm case using large set of actuator and sensor. 

The H  placement index, ik, evaluates the kth actuator (sensor)
at the ith mode. It is defined in relation to all the modes and all the
admissible actuators as:

n,1,iS,1,kGkiki (9)

It is convenient to represent the placement index as a placement
matrix:
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where the kth column consists of indexes of the kth actuator for
every mode, and the ith row is a set of the indexes of the ith mode 
for all actuators.

The actuators with small indices can be removed as the least
significant. The largest value indices are optimal placement actuator.
Similarly, it is possible to determine the optimal placement of the
sensors, (Gawronski, 1998).

State-Feedback Analysis via LMI

The problem to be investigated is the state-feedback control,
with the following linear control law: 

rKxu (11)

where K must be found. It is considered to be known all retained
states, xr. Therefore it is not necessary to use a dynamic observer. It
is assumed that the reduced model is representative, so, it is not
necessary to include any requirements to treat with dynamic
uncertainties. The goal of the present paper is to work with only
parametric uncertainties described by polytopics.

The system described by eq. (6) can be rewritten in closed-loop: 

tAwxKtAx r1rr2rrr  (12) 

The system of eq. (12) is quadratically stable if and only if the
following LMI is feasible:

0BYYBQAQA

0Q

r
T

rir,ir, 22

 (13a,b) 

where the symbols >0 and <0 means positive and negative
definited, respectively, Ar,i is ith vertex polytopic system, i=1,2,..., v,
v is the number of vertexes and Y=KQ, (Boyd et al., 1994). 

Assuming that it is desired to bound the output peak energy and
that Q satisfies inequalities (13). Defining the ellipsoid, (Folcher and 
Ghaoui, 1994):
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T
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The ellipsoid is said to be invariant if:

tx0t0x rr  (15) 

where xr(0), the initial state, is given.
The maximum output energy given a certain initial state is: 

tA    wherexCyxtAxdtyymax rrrrrr

0

 (16) 

Supposing there exists a Lyapunov function V(xr)=xr
TQ-1xr such

that,

yyxV0Q T
r  (17a,b) 

then the condition given by the inequalities (17) is equivalent on
LMI to: 
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It is possible to conclude from inequalities (18) that for a given
feedback gain K, the output energy of system does not exceed
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xr(0)TQ-1xr(0). Then in this case, the output energy is bounded above
xr(0)TQ-1xr(0), where Q satisfies the LMI:
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where i=1,2,.., v. Regarding Y as a variable, it can find a state-
feedback gain that guarantees output energy less than  by solving
the LMI problem:
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When the initial condition is known, it is also possible to find an
upper bound on the norm of the control input, eq. (11). Given Q>0
and Y which satisfy the quadratic stabilization condition, inequalities
(13), and be limited in the ellipsoid from condition given by eq. 
(14), the upper bound of the control input can be written as: 
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Therefore, the constraints u  is enforced at all times t >0

if the LMIs below hold: 
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where  is the maximum value of amplitude on actuators.
In the same way, it can be possible to impose a decay rate on the

closed-loop:
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Besides, the under largest decay rate can be found solving the
generalized eigenvalue problem (GEVP), (Boyd et al. 1993). In 
summary, the controller design is the result of the following convex
optimization problem, considering  and  known: 

(24)

This problem can be solved using interior-point methods, 
(Gahinet et al., 1995). For each initial condition, the input u and the
output y assure:
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The optimal feedback gain is given by:

1YQK (26)

where Y and Q are solutions from problem given by inequalities
(24).

Numerical Application 

To verify the proposed methodology, an aluminum cantilever
beam, as shown on fig. 1, was considered. The system is discretized
by FEM 10 elements (2 dof by node), then the total number of
structural dof used was 22. For the cantilever condition the system
have N=40 states. The properties of the beam are given in table 1.

The number of electrical dof changes as a function of the 
number of PZT considered (2 dof by PZT), (Lopes Jr. et. al., 2000).
The PZT size is equal to the discrete finite element size. The
properties of PZT, based on material designation PSI-5A-S4 (Piezo
Systems, Inc.), are given in table 2.

71 2 3

1 2 3

4 5 6

4 5 6 7

8 9 10

8 9 10

Figure 1. Finite element model for a cantilever beam.

Table 1. Beam properties and dimensions.

Length Width Thickness
Dimensions (m)

0.5 0.03 0.005
Density (kg.m-3) 2710
Young’s Modulus (GPa) 70

Table 2. PZT properties and dimensions.

Length Width Thickness
Dimensions (m)

0.05 0.02 0.0015
Young’s Modulus (GPa) 63
Dielectric Constant, d31, (m.V-1) -190e-12

In order to test the proposed optimization method, the optimal
location of actuator, a pair of PZT bonded on the beam surface is 
considered. The objective in this test was to control the first two
vibration modes. It was considered to be possible to bond the PZT in 
all elements. It was, also, considered finding an optimal location to a 
displacement sensor to state-feedback. The sensor position 
candidates consider all nodes on vertical direction.

FF

Figure 2. PZT actuators in-phase.

If two PZT elements are fixed on both sides of the beam and the 
voltage applied on this elements are in-phase, a longitudinal motion
is obtained. If the voltages applied on PZT elements are out-of-
phase, then it generates moments at the end of the PZT elements,
causing lateral motions, as showed at figs. 2 and 3. 

M M

Figure 3. PZT actuators out-of-phase.

The PZTs actuators used in this article are driven out-phase,
which means that they generate a pair of moments as shown in fig.
3. The relationship between the generated moments and applied 
voltage is given by, (Brennan et al. 1994): 
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Using eq. (27) and the properties showed on tables 1 and 2, the
relationship between the applied voltage and the generated moment
is 1836.4/N.m. This means that for a voltage of 110 V, a moment of 
the order of 0.06 N.m will be generated.

The placement indices computed from eq. (9) of each candidate
sensor/actuator for the first two modes are shown in fig. 4. The
largest value index is for the PZT actuator bonded in element 1 and
sensor on node the free end of the beam (node 10). In our case, for
accelerometer, the placement of the sensor in the free end of the
beam is not a practical location.
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Figure 4. Placement indices for control the two first modes versus PZT
location and sensor node location.

For the design is considered a disturbance input as showed in
fig. 5. In this figure it is also shown the PZT bonded in element 1
and the sensor in a suboptimal configuration.

PZT sensor

disturbance
input

Figure 5. Schematic smart structure showing the PZT in a suboptimal
location, sensor and disturbance input.

The magnitude plots for transfer function of the complete
system and reduced-order model are shown in fig. 6. The transfer
functions H1 and H2 are relative with the stace-space realization
(A,B1,C) and (A,B2,C), respectively. A fourth order model is 
determined by truncating the system model following the described
methodology. The H  reduction error is about 0.5%. This value was
found through H  norm problem, given by optimization problem

described in inequality (7). First, it is computed the H  norm for the 
complete model (this value corresponds to the peak gain). In the
following the H  norm relative to the reduced model is found. If the
reduction error, given by eq. (8), is lower that an specified value, it 
means that the reduced model is representative of the complete
system.

A mathematical model provides a map from inputs to responses. 
The quality of a model depends on how closely its response matches 
those one of the plant. Since no single fixed model can respond
exactly like the true plant, we need, at the very last, a set of maps.
The term uncertainty refers to the differences or error between 
models and reality, and whatever it is used to express error, it is 
called a representation of uncertainty, (Gonçalves et al., 2002).

Even with accurate models, the simple inclusion of sensors and
actuators on the host structure cause change on the dynamic
properties of the system. The computation of these uncertainties can
be difficult in practical situations, or it has a high computational
cost. To solve this problem the model with parametric uncertainties
can be quantified by range of parameter values. The parameter
uncertainty ranges can be described as parameter box. The controller
that satisfies all systems described inside this convex space is said
robust to parametric variations. It is enough to solve the 
optimization problem from eq. (24) for all vertex system
simultaneously.
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Figure 6. Complete and reduced model magnitude plots for transfer
function.

It was considered, in this example, that the system can have a
possible variation of 10% in the first and second natural
frequencies, so we have 2 uncertainty parameters:

2222211111 11901190 maxminmaxmin

and 4 vertexes of a polytopic system (2p, where p=2).
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The uncertainties are shown at figure 7. The vertexes of the
parameter box are combination of the minimum and maximum
values of the parameters of the system. It is supposed that the
system can assume any combination of values inside the box.
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Figure 7. Parameter box showing the uncertainty combinations.

Figure 8 shows the magnitude plots transfer function for all four
open-loop system.
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Figure 8. Magnitude plots for all four open-loop system.

To test the proposed methodology, firstly we considered a
design based on PZT actuator in a particular case non-optimal place 
position (in this example, in the element 8). The LMI controller was
designed considering all vertex system simultaneously. In this case,
it was obtained a robust controller that mathematically guarantees
the performance specifications in all convex space. The controller is 
the result of the solution of LMI problem from inequalities (24),
whith = 1, =2, and xr(0)= [-0.05 0 -0.05 0]T. Next we redesigned
the control law with the PZT actuator in the optimal placement
(element 1), and considering the same parameters ,  and xr(0).

During the control, the maximum voltage on PZT was considered as 
100 V. 

Figure 9 compares the magnitude plots of the controlled and
uncontrolled system in the nominal condition for PZT located in
element 8 and in the optimal placement. The nominal condition is 
shown on figure 7.
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Figure 9. Magnitude plots for open-loop and controlled system in the
nominal condition comparing the PZT placement.

Figure 10 shows the displacement in the time domain for the 
closed-loop system, considering initial condition xr(0) for the two
cases considering system in nominal condition.
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Figure 10. Time response to initial condition in closed-loop, comparing
the PZT placement.
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Figure 11. Magnitude plots for open-loop and controlled system
considering the condition of vertex 1 and vertex 2, respectively.

Figures 11 and 12 show the magnitude plots of the controlled 
and uncontrolled system considering the four extreme conditions 
(vertexes of the polytopic systems).
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Figure 12. Magnitude plots for open-loop and controlled system
considering the condition of vertex 3 and vertex 4, respectively.

Comparing the figs. 9 until 12 it is possible to observe (in this 
case) that the effort of the controller with PZT bonded in the 8th

element is larger than in the optimal placement. Besides, the 
attenuation of the interested modes is bigger when the PZT is in an
optimal placement. As a result of the active damping the peaks at
the resonance of the controlled modes are reduced.

Conclusions

The main theoretical contribution of this research work was to 
propose and to motivate the use of LMI in the structural control
community.

First was showed a brief review of structural state-space model
in modal coordinates and a reduction model. After this, a strategy
for placement of actuators and sensors using H  norm was 
presented. This technique of optimal location could be implemented 
using others norms, for instance, H2 norm. In the following a LMI
controller was proposed for amplitude attenuation of some modes.
To illustrate this procedure was considered the control of a 
cantilever beam modeled by FEM. In this particular example the
state-space model had 40 states. After the reduction procedure it was

obtained a model with 4 states that well represented the complete
dynamic system. Moreover, we designed a LMI controller robust to 
parametric variations and compared the amplitude attenuation for 
PZT in optimal and non-optimal location. 

The authors are encouraged by the results obtained and it seems
that the methodology developed can be extended to other practical
systems, for example, smart plates and space truss structures. An 
experimental investigation is being implemented in the Vibration
Laboratory of UNESP/Ilha Solteira to check the results obtained in 
the numerical simulations.
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