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Abstract— This paper presents ConVex optimization-
based Stochastic steady-state Tracking Error Minimization
(CV-STEM), a new state feedback control framework for a
class of Itô stochastic nonlinear systems and Lagrangian
systems. Its innovation lies in computing the control input
by an optimal contraction metric, which greedily minimizes
an upper bound of the steady-state mean squared tracking
error of the system trajectories. Although the problem of
minimizing the bound is non-convex, its equivalent convex
formulation is proposed utilizing state-dependent coeffi-
cient parameterizations of the nonlinear system equation.
It is shown using stochastic incremental contraction anal-
ysis that the CV-STEM provides a sufficient guarantee for
exponential boundedness of the error for all time with
L2-robustness properties. For the sake of its sampling-
based implementation, we present discrete-time stochastic
contraction analysis with respect to a state- and time-
dependent metric along with its explicit connection to
continuous-time cases. We validate the superiority of the
CV-STEM to PID, H∞, and baseline nonlinear controllers for
spacecraft attitude control and synchronization problems.

Index Terms— Stochastic optimal control, Optimization
algorithms, Robust control, Nonlinear systems, LMIs.

I. INTRODUCTION

S
TABLE and optimal feedback control of Itô stochastic

nonlinear systems [1] is an important, yet challenging

problem in designing autonomous robotic explorers operat-

ing with sensor noise and external disturbances. Since the

probability density function of stochastic processes governed

by Itô stochastic differential equations exhibits non-Gaussian

behavior characterized by the Fokker-Plank equation [1],

[2], feedback control schemes developed for deterministic

nonlinear systems could fail to meet control performance

specifications in the presence of stochastic disturbances.

A. Contributions

The main purpose of this paper is to propose ConVex

optimization-based Stochastic steady-state Tracking Error

Minimization (CV-STEM), a new framework to design an op-

timal contraction metric for feedback control of Itô stochastic

nonlinear systems and stochastic Lagrangian systems as in

Fig. 1. Contrary to Lyapunov theory, which gives a sufficient

condition for exponential convergence, the existence of a
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Fig. 1. Illustration of the CV-STEM control: M(x, t) denotes
the optimal contraction metric for the differential Lyapunov function
δx⊤M(x, t)δx; x(t) and xd(t) are controlled and desired system
trajectories; u(t) is the control input computed by M(x, t) (see Sec. III
for details).

contraction metric leads to a necessary and sufficient char-

acterization of exponential incremental stability of nonlinear

system trajectories [3], [4]. We explore this approach further

to obtain an optimal contraction metric for controlling Itô

stochastic nonlinear systems. This paper builds upon our prior

work [5], but provides more rigorous proofs and explanations

on how we convexify the problem of minimizing D in Fig. 1

in a mean squared sense. We also investigate its stochastic

incremental stability properties and the impact of sampling-

based implementation on its control performance both in

detail, thereby introducing several additional theorems and

simulation results. The construction and contributions of our

CV-STEM method are summarized as follows.

1) The CV-STEM design is based on a convex combination

of multiple State-Dependent Coefficient (SDC) forms of a

nonlinear system equation (i.e. f(x, t) written as A(x, t)x [6]–

[8], where A(x, t) is not necessarily unique). The main ad-

vantage of our control synthesis algorithm lies in solving an

optimization problem, the objective of which is to find an

optimal contraction metric that greedily minimizes an upper

bound of the steady-state mean squared tracking error of

Itô stochastic nonlinear system trajectories, constructing an

optimal feedback control gain and Control Lyapunov Function

(CLF) [9]–[11] (see Fig. 1). Although the problem of minimiz-

ing the bound is originally non-convex, we reformulate it as a

convex optimization problem with the State-Dependent Riccati

Inequality (SDRI) constraint expressed as an LMI [12], which

can be solved by various computationally-efficient numerical

methods [12]–[15]. We also propose one way to utilize non-

unique choices of SDC forms for verifying the controllability

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on November 19,2020 at 16:41:38 UTC from IEEE Xplore.  Restrictions apply. 



0018-9286 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2020.3038402, IEEE

Transactions on Automatic Control
2 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX, 2021

of the system. This result is a significant improvement over

the observer design [16], whose optimization-cost function

uses a linear combination of observer parameters without

accounting for the contraction constraint, which we express as

an LMI [12] in this paper. This approach is further extended to

the control of stochastic Lagrangian systems with a nominal

exponentially stabilizing controller, and its superiority to the

prior work [17], [18], PID, and H∞ control [19]–[21] is shown

using results of numerical simulations on spacecraft attitude

control and synchronization.

2) It is proven using stochastic incremental contraction anal-

ysis that any solution trajectory under the CV-STEM feedback

control exponentially converges to the desired trajectory in a

mean squared sense with a non-vanishing error term (which

will be minimized as explained above). It is also shown that the

controller is robust against external deterministic disturbances

which often appear in parametric uncertain systems, and that

the tracking error has a finite L2 gain with respect to the

noise and disturbances acting on the system. We note that the

mean-square bound does not imply the asymptotic almost-sure

bounds although finite time bounds could be obtained [1],

[22], as the CV-STEM-based Lyapunov function is not a

supermartingale due to the non-vanishing steady-state error

term.

3) Discrete-time stochastic incremental contraction analysis

with respect to a state- and time-dependent metric is derived

for studying the effect of sampling-based implementation

of the CV-STEM on its control performance. It is proven

that stochastic incremental stability of discrete-time systems

reduces to that of continuous-time systems if the time interval

is sufficiently small. It is shown in the numerical simulations

that the CV-STEM sampling period ∆t can be relaxed to

∆t ≤ 25 (s) for spacecraft attitude control and ∆t ≤ 350 (s)

for spacecraft tracking and synchronization control without

impairing its performance.

4) Some extensions of the CV-STEM are derived to ex-

plicitly incorporate input constraints and to avoid solving the

convex optimization problem at every time instant.

B. Related Work

CLFs [9]–[11] as well as feedback linearization [11], [23],

[24] are among the most widely used tools for controlling

nonlinear systems perturbed by deterministic disturbances.

Since there is no general analytical scheme for finding a

CLF, several techniques are proposed to find them utilizing

some special structure of the systems in question [25]–[29].

The state-dependent Riccati equation method [6]–[8] can also

be viewed as one of these techniques and is applicable to

systems that are written in SDC linear structure. Building on

these ideas for deterministic systems, a stochastic counterpart

of the Lyapunov methods is proposed in [30] to design

CLF-based state and output feedback control of stochastic

nonlinear systems [31], [32]. For a class of strict-feedback and

output-feedback stochastic nonlinear systems, there exists a

more systematic way of asymptotic stabilization in probability

using a backstepping-based controller [33], [34]. However,

one drawback of these approaches is that they are primarily

directed toward stability with some implicit inverse optimality

guarantees.

Some theoretical methodologies have been developed to

explicitly incorporate optimality into their feedback control

formulation. These include H∞ control [20], [21], [35], which

attempts to minimize the H∞ norm for the sake of optimal

disturbance attenuation. Although it is originally devised for

linear systems [36]–[41], its nonlinear analogues are obtained

in [20], [21] and then expanded to stochastic nonlinear

systems [19] unifying the results on the L2 gain analysis

based on the Hamilton-Jacobi equations and inequalities [11].

Although we could design feedback control schemes optimally

for specific types of systems such as Hamiltonian systems

with stochastic disturbances [42] or linearized and discretized

stochastic nonlinear systems [43], finding the solution to

the stochastic nonlinear state feedback H∞ optimal control

problem is not trivial in general.

The CV-STEM addresses this issue by numerically sampling

an optimal contraction metric and CLF that greedily minimize

an upper bound of the steady-state mean squared tracking

error of Itô stochastic nonlinear system trajectories. We select

this as an objective function, instead of integral objective

functions which often appear in optimal control problems,

as it gives us an exact convex optimization-based control

synthesis algorithm. Also, since the problem has the SDRI

as its constraint, the CV-STEM control is robust against both

deterministic and stochastic disturbances and ensures that the

tracking error is exponentially bounded for all time. We remark

that this approach is not intended to supersede but to be

utilized on top of existing methodologies on constructing de-

sired control inputs using stochastic nonlinear optimal control

techniques [1], [44]–[47], as this is a type of feedback control

scheme. In particular, stochastic model predictive control [48],

[49] with guaranteed stability [50], [51] assumes the existence

of a stochastic CLF, whilst our approach explicitly constructs

an optimal CLF which could be used for the stochastic CLF

with some modifications on the non-vanishing error term in

our formulation.

The tool we use for analyzing incremental stability [4] in

this paper is contraction analysis [3], [52], [53], where its

stochastic version is derived in [16], [22]. Contraction analysis

for discrete-time and hybrid systems is provided in [3], [54],

[55] and its stochastic counterpart is investigated in [56] with

respect to a state-independent metric. In this paper, we describe

discrete-time incremental contraction analysis with respect to

a state- and time-dependent metric. Since the differential (vir-

tual) dynamics of δx used in contraction analysis is a Linear

Time-Varying (LTV) system, global exponential stability can

be studied using a quadratic Lyapunov function of δx, V =
δx⊤M(x, t)δx [3], as opposed to the Lyapunov technique

where V could be any function of x. Therefore, designing V
reduces to finding a positive definite metric M(x, t) [28], [57],

[58], which enables the aforementioned convex optimization-

based control of Itô stochastic nonlinear systems.

C. Paper Organization

The rest of this paper is organized as follows. Section II

introduces stochastic incremental contraction analysis and
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presents its discrete-time version with a state- and time-

dependent metric. In Sec. III, the CV-STEM control for Itô

stochastic nonlinear systems is presented and its stability is

analyzed using contraction analysis. In Sec. IV, this approach

is extended to the control of stochastic Lagrangian systems.

Section V elucidates several extensions of the CV-STEM con-

trol synthesis. The aforementioned two simulation examples

are reported in Sec. VI. Section VII concludes the paper.

D. Notation

For a vector x ∈ R
n and a matrix A ∈ R

n×m, we let

‖x‖, δx, ∂µx, ‖A‖, ‖A‖F , Im(A), Ker(A), A+, and κ(A)
denote the Euclidean norm, infinitesimal variation of x, partial

derivative of x with respect to µ, induced 2-norm, Frobenius

norm, image of A, kernel of A, Moore–Penrose inverse, and

condition number, respectively. For a square matrix A, we

use the notation λmin(A) and λmax(A) for the minimum

and maximum eigenvalues of A, Tr(A) for the trace of A,

A ≻ 0, A � 0, A ≺ 0, and A � 0 for the positive definite,

positive semi-definite, negative definite, negative semi-definite

matrices, respectively, and sym(A) = (A + A⊤)/2. For a

vector x ∈ R
n and a positive definite matrix A ∈ R

n×n, we

denote a norm
√
x⊤Ax as ‖x‖A. Also, I ∈ R

n×n represents

the identity matrix, E[·] denotes the expected value operator,

and Eξ[·] denotes the conditional expected value operator

when ξ is given. The Lp norm in the extended space Lpe,

p ∈ [1,∞], is defined as ‖(y)τ‖Lp
=
(∫ τ

0
‖y(t)‖p

)1/p
< ∞

for p ∈ [1,∞) and ‖(y)τ‖L∞
= supt≥0 ‖(y(t))τ‖ < ∞ for

p = ∞, where (y(t))τ is a truncation of y(t), i.e., (y(t))τ = 0
for t > τ and (y(t))τ = y(t) for 0 ≤ t ≤ τ with τ ∈ [0,∞).

II. STOCHASTIC INCREMENTAL STABILITY VIA

CONTRACTION ANALYSIS

We summarize contraction analysis that will be used for

stability analysis in the subsequent sections. This allows us to

utilize approaches for LTV systems theory, yielding a convex

optimization-based framework for optimal Lyapunov function

construction in Sec. III and IV.

We also present new theorems for analyzing stochastic

incremental stability of discrete-time nonlinear systems with

respect to a state- and time-dependent Riemannian metric,

along with its explicit connection to contraction analysis of

continuous-time systems.

A. Continuous-time Dynamical Systems

Consider the following continuous-time nonlinear non-

autonomous system and its virtual dynamics:

ẋ = f(x, t), δẋ =
∂f(x, t)

∂x
δx (1)

where t ∈ R≥0, x : R≥0 → R
n, and f : Rn × R≥0 → R

n.

Incremental stability [4] is defined as stability of system

trajectories with respect to each other by means of differential

(virtual) dynamics. Contraction theory is used to study incre-

mental stability with exponential convergence.

Lemma 1: The system (1) is contracting (i.e. all the solu-

tion trajectories exponentially converge to a single trajectory

globally from any initial condition), if there exists a uni-

formly positive definite metric M(x, t) = Θ(x, t)⊤Θ(x, t),
M(x, t) ≻ 0, ∀x, t, with a smooth coordinate transformation

of the virtual displacement δz = Θ(x, t)δx, such that

Ṁ(x, t) + 2 sym

(

M(x, t)
∂f

∂x

)

� −2γcM(x, t), ∀x, t (2)

where γc > 0. If the system (1) is contracting, then we have

‖δz(t)‖ = ‖Θ(x, t)δx(t)‖ ≤ ‖δz(0)‖e−γct.

Proof: See [3].

Next, consider the nonlinear system (1) with stochastic per-

turbation given by the Itô stochastic differential equation

dx =f(x, t)dt+G(x, t)dW , x(0) = x0 (3)

where G : Rn × R≥0 → R
n×d is a matrix-valued function,

W (t) is a d-dimensional Wiener process, and x0 is a ran-

dom variable independent of W (t) [59]. In this paper, we

assume that ∃L1 > 0 s.t. ‖f(x1, t)− f(x2, t)‖+ ‖G(x1, t)−
G(x2, t)‖F ≤ L1‖x1−x2‖, ∀t ∈ R≥0 and ∀x1, x2 ∈ R

n, and

∃L2 > 0 s.t. ‖f(x1, t)‖2 + ‖G(x1, t)‖2F ≤ L2(1 + ‖x1‖2),
∀t ∈ R≥0 and ∀x1 ∈ R

n, for the sake of existence and

uniqueness of the solution to (3). Now, consider the following

two systems with trajectories ξ1(t) and ξ2(t) driven by two

independent Wiener processes W1(t) and W2(t):

dξ =

[

f(ξ1, t)
f(ξ2, t)

]

dt+

[

G1(ξ1, t) 0
0 G2(ξ2, t)

] [

dW1

dW2

]

(4)

where ξ(t) = [ξ1(t)
⊤, ξ2(t)

⊤]⊤ ∈ R
2n. The following

theorem analyzes stochastic incremental stability of the two

trajectories ξ1(t) and ξ2(t) with respect to each other in

the presence of stochastic noise. The trajectories of (3) are

parameterized as x(0, t) = ξ1 and x(1, t) = ξ2. Also, we

define G(x, t) as G(x(0, t), t) = G1(ξ1, t) and G(x(1, t), t) =
G2(ξ2, t).

Theorem 1: Suppose that there exist bounded positive con-

stants m, m, g1, g2, mx, and mx2 s.t. m ≤ ‖M(x, t)‖ ≤ m,

‖G1(x, t)‖F ≤ g1, ‖G2(x, t)‖F ≤ g2, ‖∂(Mij)/∂x‖ ≤
mx, and

∥

∥∂2(Mij)/∂x
2
∥

∥ ≤ mx2 , ∀x, t. Suppose also that

(2) holds (i.e., the deterministic system (1) is contracting).

Consider the generalized squared length with respect to a

Riemannian metric M(x(µ, t), t) defined by

V (x, ∂µx, t) =

∫ 1

0

∂x

∂µ

⊤

M(x(µ, t), t)
∂x

∂µ
dµ (5)

s.t. V (x, ∂µx, t) ≥ m‖ξ1 − ξ2‖2. Then we have

L V ≤ −2γ1V +mCc (6)

for γ1 = γc − ((g21 + g22)/2m)(εcmx + mx2/2) and Cc =
(m/m + mx/(εcm))(g21 + g22), where L is an infinitesimal

differential generator [16], γc is the contraction rate for the

deterministic system (1), and εc > 0 is an arbitrary constant.

Further, if we have γ1 > 0, (6) implies that the mean squared

distance between the two trajectories of (4), whose initial

conditions given by a probability distribution p(a0, b0) that are

independent of W1(t) and W2(t), is exponentially bounded as

follows:

E
[

‖ξ1(t)− ξ2(t)‖2
]

≤ Cc

2γ1
+

E[V (x(0), ∂µx(0), 0)]e
−2γ1t

m
.

(7)
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Proof: Using the property Tr(AB) ≤ ‖A‖Tr(B) for

A,B � 0, we have Tr(Gi(ξi, t)
⊤M(ξi, t)Gi(ξi, t)) ≤ mg2i .

Therefore, computing L V as in the proof given in Lemma 2

of [16] yields (6). Taking expectation on both sides of (6) along

with Dynkin’s formula [1, pp. 10] completes the derivation of

(7).

Remark 1: The contraction rate γ1 and uncertainty bound

Cc depend on the choice of an arbitrary constant εc. One way

to select εc is to solve dF/dεc = 0 with F (εc) = Cc/(2γ1),
whose solution minimizes the steady-state bound F (εc) with

the constraint γ1 > 0 [16]. Line search algorithms could also

be used to select their optimal values [57], [58]. We will utilize

the fact that Cc is a function of m/m to facilitate the convex

optimization-based control synthesis in Sec. III and IV.

B. Main Result 1: Connection between Continuous and

Discrete Stochastic Incremental Contraction Analysis

We establish a similar result to Lemma 1 for the following

discrete-time nonlinear system and its virtual dynamics:

xk+1 = fk(xk, k), δxk+1 =
∂fk(xk, k)

∂xk
δxk (8)

where xk ∈ R
n and fk : Rn × N → R

n.

Lemma 2: The system (8) is contracting if there ex-

ists a uniformly positive definite metric Mk(xk, k) =
Θk(xk, k)

⊤Θk(xk, k), Mk(xk, k) ≻ 0, ∀xk, k, with a smooth

coordinate transformation of the virtual displacement δzk =
Θk(xk, k)δxk s.t.

∂fk
∂xk

⊤

Mk+1(xk+1, k + 1)
∂fk
∂xk

� (1− γd)Mk(xk, k), ∀xk, k

(9)

where γd ∈ (0, 1). If the system (8) is contracting, then we

have ‖δzk‖ = ‖Θk(xk, k)δxk‖ ≤ ‖δz0‖(1− γd)
k
2 .

Proof: See [3], [55].

We now present a discrete-time version of Theorem 1, which

can be extensively used for proving stability of discrete-time

and hybrid stochastic nonlinear systems, along with known

results for deterministic systems [54], [55]. Consider the

discrete-time nonlinear system (8) with stochastic perturbation

modeled by the stochastic difference equation

xk+1 =fk(xk, k) +Gk(xk, k)wk (10)

where Gk : Rn × N → R
n×d is a matrix-valued function and

wk is a d-dimensional sequence of zero mean uncorrelated

normalized Gaussian random variables. Consider the following

two systems with trajectories ξ1,k and ξ2,k driven by two

independent stochastic perturbation w1,k and w2,k:

ξk+1 =

[

fk(ξ1,k, k)
fk(ξ2,k, k)

]

+

[

G1,k(ξ1,k, k) 0
0 G2,k(ξ2,k, k)

] [

w1,k

w2,k

]

(11)

where ξk = [ξ⊤1,k, ξ
⊤
2,k]

⊤ ∈ R
2n. The following theorem

analyzes stochastic incremental stability for discrete-time non-

linear systems, but we remark that this is different from [56],

[60] in that the stability is studied in a differential sense

and its Riemannian metric is state- and time-dependent. We

parameterize xk and Gk in (10) as xk(µ = 0) = ξ1,k,

xk(µ = 1) = ξ2,k, Gk(xk(µ = 0), k) = G1,k(ξ1,k, k), and

Gk(xk(µ = 1), k) = G2,k(ξ2,k, k).
Theorem 2: Suppose that the system (11) has the following

bounds, mI � Mk(xk, k) � mI, ∀xk, k, ‖G1,k(ξ1,k, k)‖F ≤
g1d, and ‖G2,k(ξ2,k, k)‖F ≤ g2d, ∀ξ1,k, ξ2,k, k, where m, g1d,

and g2d are bounded positive constants. Suppose also that (9)

holds for the discrete-time deterministic system (8) and there

exists γ2 ∈ (0, 1) s.t. γ2 ≤ 1−(m/m)(1−γd), where γd is the

contraction rate of (8). Consider the generalized squared length

with respect to a Riemannian metric Mk(xk(µ), k) defined as

Vk(xk, ∂µxk, k) =

∫ 1

0

∂xk

∂µ

⊤

Mk(xk(µ), k)
∂xk

∂µ
dµ (12)

s.t. Vk(xk, ∂µxk, k) ≥ m‖ξ1,k−ξ2,k‖22. Then the mean squared

distance between the two trajectories of the system (11) is

bounded as follows:

E
[

‖ξ1,k − ξ2,k‖2
]

≤1− γ̃k
d

1− γ̃d
Cd +

γ̃k
d

m
E[V0(x0, ∂µx0, 0)].

(13)

where Cd = (m/m)(g21d + g22d) and γ̃d = 1− γ2 ∈ (0, 1).
Proof: Consider a Lyapunov-like function Vk in (12),

where we use Vk = Vk(xk, ∂µxk, k) and Mk = Mk(xk, k)
for notational simplicity. Using the bounds along with (9) and

(10), we have, for ℓ ∈ N, that

Vℓ+1 ≤ m

∫ 1

0

∥

∥

∥

∥

∂fℓ
∂xℓ

∂xℓ

∂µ
+

∂Gℓ

∂µ
wℓ

∥

∥

∥

∥

2

dµ (14)

≤ m

m
(1− γd)

∫ 1

0

∂xℓ

∂µ

⊤

Mℓ
∂xℓ

∂µ
dµ

+m

∫ 1

0

(

2
∂xℓ

∂µ

⊤ ∂fℓ
∂xℓ

⊤ ∂Gℓ

∂µ
wℓ + w⊤

ℓ

∂Gℓ

∂µ

⊤ ∂Gℓ

∂µ
wℓ

)

dµ

where fℓ = fℓ(xℓ, ℓ) and Gℓ = Gℓ(xℓ, ℓ). Taking the

conditional expected value of (14) when xℓ, ∂µxℓ, and ℓ are

given, we have that (see also: Theorem 2 of [60])

Eζℓ [Vℓ+1] ≤ γmVℓ +mEζℓ

[

∫ 1

0

w⊤
ℓ

∂Gℓ

∂µ

⊤ ∂Gℓ

∂µ
wℓdµ

]

≤ γmVℓ +
∑

i=1,2

mEζℓ

[

Tr
(

wi,ℓw
⊤
i,ℓG

⊤
i,ℓGi,ℓ

)]

≤ γmVℓ +m
∑

i=1,2

Tr
(

G⊤
i,ℓGi,ℓ

)

≤ γ̃dVℓ +mCd. (15)

where γm = m/m(1− γd), and xℓ, ∂µxℓ, and ℓ are denoted

as ζℓ. Here, we used the condition: ∃γ2 ∈ (0, 1) s.t. γm ≤
1 − γ2 = γ̃d. Taking expectation over ζℓ−1 in (15) with the

tower rule Eζℓ−1
[Vℓ+1] = Eζℓ−1

[Eζℓ [Vℓ+1]] gives us that

Eζℓ−1
[Vℓ+1] ≤ γ̃2

dVℓ−1 +mCd +mCdγ̃d (16)

where γ̃d = 1−γ2. Continuing this operation with the relation

mEζ0

[

‖ξ1,ℓ+1 − ξ2,ℓ+1‖2
]

≤ Eζ0 [Vℓ+1] yields

Eζ0

[

‖ξ1,k − ξ2,k‖2
]

− γ̃k
d

m
V0 ≤ Cd

k−1
∑

i=0

γ̃i
d =

1− γ̃k
d

1− γ̃d
Cd
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where k = ℓ+ 1. Taking expectation over ζ0 and rearranging

terms result in (13).

Let us now consider the case where the time interval ∆t =
tk+1 − tk is sufficiently small, i.e., ∆t ≫ (∆t)2. Then the

continuous-time stochastic system (3) can be discretized as

xk+1 = xk +

∫ tk+1

tk

f(x(t), t)dt+G(x(t), t)dW (t)

≃ xk + f(xk, tk)∆t+G(xk, tk)∆Wk (17)

where xk = x(tk), ∆Wk =
√
∆twk, and wk is a d-

dimensional sequence of zero mean uncorrelated normalized

Gaussian random variables. When ∆t ≫ (∆t)2, fk(xk, k)
and Gk(xk, k) in (10) can be approximated as fk(xk, k) =
xk + f(xk, tk)∆t and Gk(xk, k) =

√
∆tG(xk, tk). In this

situation, we have the following theorem that connects stochas-

tic incremental stability of discrete-time systems with that of

continuous-time systems.

Theorem 3: Suppose that (15) in Theorem 2 holds with

γ̃d = 1− γ2 ∈ (0, 1). Then the expected value of Vk+1 up to

first order in ∆t is given as Eζk [Vk+1] = Vk+∆tL Vk, where

L is an infinitesimal differential generator. Furthermore, the

following inequality holds:

L Vk(xk, ∂µxk, tk) ≤ − γ2
∆t

Vk(xk, ∂µxk, tk) +mC̃c (18)

where C̃c is a positive constant given as

C̃c =
Cd

∆t
=

m

m∆t
(g21d + g22d) =

m

m
(g21 + g22) (19)

with g1 and g2 defined in Theorem 1.

Proof: Mk+1 up to first order in ∆t is written as

Mk+1 =
∂Mk

∂tk
∆t+

n
∑

i=1

∂Mk

∂(xk)i
(fc,k∆t+Gc,k∆Wk)i (20)

+
1

2

n
∑

i=1

n
∑

j=1

∂2Mk

∂(xk)i∂(xk)j
(Gc,k∆Wk)i(Gc,k∆Wk)j +Mk

where fc,k and Gc,k are defined as fc,k = f(xk, tk) and

Gc,k = G(xk, tk) for notational simplicity. The subscripts i
and j denote the ith and jth element of the corresponding

vectors. Similarly, ∂xk+1/∂µ up to first order in ∆t can be

computed as

∂xk+1

∂µ
=

∂xk

∂µ
+

∂fc,k
∂xk

∂xk

∂µ
∆t+

∂Gc,k

∂µ
∆Wk. (21)

Substituting (20) and (21) into Eζk [Vk+1] yields

Eζk [Vk+1] = Eζk

[

∫ 1

0

∂xk+1

∂µ

⊤

Mk+1
∂xk+1

∂µ
dµ

]

= Vk + (dVd,k + dVs,k)∆t+O(∆t3/2) (22)

where dVd,k and dVs,k are given by

dVd,k =

∫ 1

0

∂xk

∂µ

⊤
(

∂fc,k
∂xk

⊤

Mk + Ṁk +Mk
∂fc,k
∂xk

)

∂xk

∂µ
dµ

(23)

with Ṁk = ∂Mk/∂tk +
∑n

i=1(∂Mk/∂(xk)i)fc,k and

dVs,k =

∫ 1

0





n
∑

i=1

n
∑

j=1

(Mk)ij

(

∂Gc,k

∂µ

∂Gc,k

∂µ

⊤
)

ij

+2
∂(Mk)i
∂(xk)j

∂xk

∂µ

(

Gc,k
∂Gc,k

∂µ

⊤
)

ij

+
1

2

∂xk

∂µ

⊤ ∂2Mk

∂(xk)i∂(xk)j

∂xk

∂µ
(Gc,kG

⊤
c,k)ij

]

dµ.

(24)

We note that the properties of wk as a d-dimensional sequence

of zero mean uncorrelated normalized Gaussian random vari-

ables are used to derive these relations. Since dVd,k+dVs,k =
L Vk where L is the infinitesimal differential generator,

we have Eζk [Vk+1] = Vk + ∆tL Vk. Thus, the condition

Eζk [Vk+1] ≤ (1− γ2)Vk +mCd given by (15) in Theorem 2

reduces to the following inequality:

L Vk(xk, ∂µxk, tk) ≤ − γ2
∆t

Vk(xk, ∂µxk, tk) +m
Cd

∆t
. (25)

Finally, (25) with the relations C̃c = Cd/∆t and Gk(xk, k) =√
∆tG(xk, tk) results in (18) and (19).

Remark 2: The positive constant C̃c is equal to the positive

constant Cc in Theorem 1 when mx = 0. This is due to the

fact that we used an upper bound of ‖Mk‖ when obtaining

the first line of (14) in Theorem 2.

In practical control applications, we use the same control

input at t = tk for a finite time interval t ∈ [tk, tt+1). Theo-

rems 1 and 3 indicate that if ∆t is sufficiently small, a discrete-

time stochastic controller can be viewed as a continuous-

time counterpart with contraction rate 2γ1 = γ2/∆t. We will

illustrate how to select the sampling period ∆t large enough

without deteriorating the CV-STEM control performance in

Sec. VI. Also, the steady-state mean squared tracking error

for both discrete and continuous cases can be expressed as

a function of the condition number of the metric M(x, t),
which is useful in designing convex optimization-based control

synthesis as shall be seen in Sec. III and IV.

III. MAIN RESULT 2: CV-STEM CONTROL WITH

STABILITY AND OPTIMIZATION

This section presents the CV-STEM control for general

input-affine nonlinear stochastic systems, incremental stabil-

ity of which is analyzed using contraction theory given in

Theorems 1 and 3. Since the differential dynamics of δx used

in contraction analysis can be viewed as an LTV system, we

can use an optimal differential Lyapunov function of the form

δx⊤M(x, t)δx without loss of generality [3], thereby finding

M(x, t) via convex optimization. We note that this is not for

finding an optimal control trajectory and input, which can be

used as a desired trajectory in the present control design.

In Sec. III-E, we present a convex optimization problem

for finding the optimal contraction metric for the CV-STEM

control, which greedily minimizes an upper bound of the

steady-state mean squared tracking error of Itô stochastic

nonlinear system trajectories. It is shown that this problem
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is equivalent to the original non-convex optimization problem

of minimizing the upper bound.

A. Problem Formulation

Consider the following Itô stochastic nonlinear systems with

a control input u, perturbed by a d-dimensional Wiener process

W (t):

dx = f(x, t)dt+B(x, t)udt+Gu(x, t)dW

dxd = f(xd, t)dt+B(xd, t)uddt. (26)

where u : R≥0 → R
m, B : R

n × R≥0 → R
n×m, Gu :

R
n×R≥0 → R

n×d, and xd : R≥0 → R
n and ud : R≥0 → R

m

are the desired state and input, respectively. The dynamical

system of the desired state is deterministic as xd and ud are

assumed to be given.

Remark 3: Since ẋd − f(xd, t) ∈ ImB(xd, t) holds for

a feasible desired trajectory, ud can be obtained as ud =
B(xd, t)

+(ẋd − f(xd, t)) where (·)+ denotes the Moore-

Penrose inverse. This is the unique least-squares solution

(LSS) to B(xd, t)ud = ẋd − f(xd, t) when KerB(xd, t) =
{0} and an LSS with the smallest Euclidean norm when

KerB(xd, t) 6= {0}. The desired input ud can also be found

by solving an optimal control problem [1], [44]–[51], [61] and

a general system with ẋ = f(x, u) can be transformed into an

input-affine form by treating u̇ as another input.

In the proceeding discussion, we assume that f(x, t) = 0
at x = 0 and that f is a continuously differentiable function.

This allows us to use the following lemma.

Lemma 3: Let Ω be the state set that is a bounded open

subset of some Euclidean space s.t. 0 ∈ Ω ⊆ R
n. Under

the assumptions f(0) = 0 and f(x) is a continuously dif-

ferentiable function of x on Ω, there always exists at least

one continuous nonlinear matrix-valued function A(x) on Ω
s.t. f(x) = A(x)x, where A : Ω → R

n×n is found by

mathematical factorization and is non-unique when n > 1.

Proof: See [8].

Using Lemma 3, (26) is expressed as

dx = A(̺, x, t)xdt+B(x, t)udt+Gu(x, t)dW

dxd = A(̺, xd, t)xddt+B(xd, t)uddt (27)

where ̺ = (̺1, · · · , ̺s1) are the coefficients of the convex

combination of SDC parameterizations Ai(x, t), i.e.,

A(̺, x, t) =

s1
∑

i=1

̺iAi(x, t). (28)

Writing the system dynamics (26) in SDC form provides a

design flexibility to mitigate effects of stochastic noise while

verifying that the system is controllable as shall be seen later.

B. Feedback Control Design

We consider the following feedback control scheme (to be

optimized in Sec. III-E):

u = −K(x, t)(x− xd) + ud

= −R(x, t)−1B(x, t)⊤M(x, t)(x− xd) + ud (29)

where R(x, t) ≻ 0 is a weight matrix on the input u
and M(x, t) is a positive definite matrix which satisfies the

following matrix inequality for γ > 0:

Ṁ(x, t) + 2 sym(M(x, t)A(̺, x, t)) + γM2(x, t)

−M(x, t)B(x, t)R(x, t)−1B(x, t)⊤M(x, t) � 0. (30)

Define Acl(̺, y, t), ∆A(̺, y, t), and ∆B(y, t) [7] as

Acl(̺, y, t) = A(̺, y + xd, t)−B(y + xd, t)K(y + xd, t)

∆A(̺, y, t) = A(̺, y + xd, t)−A(̺, xd, t)

∆B(y, t) = B(y + xd, t)−B(xd, t). (31)

Substituting (29) into (27) yields

de = fv(e, t)dt+Gu(e+ xd, t)dW (32)

where e = x− xd and

fv(y, t) = Acl(̺, e, t)y +∆A(̺, y, t)xd +∆B(y, t)ud.
(33)

Lemma 4: Suppose that the deterministic system is per-

turbed as follows:

ẋ = f(x, t) +B(x, t)(u+ d). (34)

If there exists a positive definite solution M(x, t) to the

inequality (30) with R(x, t) = S(x, t)2 ≻ 0 and S(x, t) ≻ 0,

then the system with inputs µ1 = S(x, t)d, µ2 = (
√

2/γ)∆d

and an output y = (
√

γ/2)M(x, t)(x − xd), where ∆d =
∆Axd+∆Bud, is finite-gain L2 stable and its L2 gain is less

than or equal to 1 for each input µ1 and µ2.

Proof: See Appendix I.

C. Incremental Stability Analysis

As we discussed earlier in Sec. II, even when a control input

at t = tk is applied during a finite time interval t ∈ [tk, tt+1),
Theorem 3 along with Theorem 2 guarantees that the discrete-

time controller leads to an analogous result to the continuous-

time case (29) if ∆tk is sufficiently small. Thus, we perform

stability analysis for continuous-time dynamical systems. Let

us define a deterministic virtual system of (27) as follows:

ẏ = fv(y, t) = Acl(̺, e, t)y +∆A(̺, y, t)xd +∆B(y, t)ud.
(35)

where (35) has y = e and y = 0 as its particular solutions.

The virtual dynamics of (35) is expressed as

δẏ = Acl(̺, e, t)δy + φ(̺, y, t)δy (36)

where φ(̺, y, t) = ∂ (∆Axd +∆Bud)/∂y. Using fv(y, t),
the virtual system of (32) with respect y is defined as

dy = fv(y(µ, t), t)dt+G(y(µ, t), t)dW (37)

where µ ∈ [0, 1] is introduced to parameterize the trajectories

y = e and y = 0, i.e., y(µ = 0, t) = e, y(µ = 1, t) = 0,

G(y(0, t), t) = Gu(e + xd, t), and G(y(1, t), t) = 0n×d. It

can be seen that (37) has y = e and y = 0 as its particular

solutions because we have

• (37) reduces to (32) when y = e.
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• fv = ∆A(̺, 0, t)xd + ∆B(0, t)ud = 0 and G = 0n×d

when y = 0.

Now we present the following theorem for exponential bound-

edness of the mean squared tracking error of system trajecto-

ries (27).

Theorem 4: Suppose there exist bounded positive con-

stants m, m, mx, mx2 , and gu s.t. m ≤ ‖M(x, t)‖ ≤
m, ‖∂(mij)/∂x‖ ≤ mx,

∥

∥∂2(mij)/∂x
2
∥

∥ ≤ mx2 , and

‖Gu(x, t)‖F ≤ gu, ∀x, t where m = infx,t λmin(M(x, t)),
m = supx,t λmax(M(x, t)), and mij is the (i, j) component

of M(x, t). Suppose also that there exists α > 0 s.t.

γM2 +MBR−1B⊤M − φ⊤M −Mφ− 2αgI � 2αM
(38)

where 2αg = g2u (mxε+mx2/2) with an arbitrary positive

constant ε, and the arguments ̺, x, and t are dropped for

notational simplicity. If there exists a positive definite solution

M(x, t) to the inequalities (30) and (38), then the mean

squared distance between the trajectories of (27) under the

feedback control (29) is exponentially bounded as follows:

E
[

‖xd − x‖2
]

≤ C

2α
+

E[V (x(0), ∂µy(0), 0)]e
−2αt

m
(39)

where V (x, ∂µy, t) =
∫ 1

0
IV (x, ∂µy, t)dµ with

IV (x, ∂µy, t) =
∂y

∂µ

⊤

M(x, t)
∂y

∂µ
(40)

and C = (m/m)g2u + (mxg
2
u)/(εm).

Proof: For notational simplicity, let IV = IV (x, ∂µy, t),
A = A(̺, x, t), B = B(x, t), R = R(x, t), G = G(y, t), M =
M(x, t), and φ = φ(̺, y, t) = ∂(∆Axd)/∂y+ ∂(∆Bud)/∂y.

By using an infinitesimal differential generator L , we obtain

L V =

∫ 1

0

∂IV
∂t

+

n
∑

i=1

(

∂IV
∂xi

fi +
∂IV

∂(∂µyi)

∂fv
∂y

∂y

∂µ

)

+
1

2

n
∑

i=1

n
∑

j=1

[

∂2IV
∂xi∂xj

(Gu(x, t)Gu(x, t)
⊤)ij

+ 2
∂2IV

∂xi∂(∂µyj)

(

Gu(x, t)
∂G(y, t)

∂µ

⊤
)

ij

(41)

+
∂2IV

∂(∂µyi)(∂µyj)

(

∂G(y, t)

∂µ

∂G(y, t)

∂µ

⊤
)

ij

]

dµ

where fi is the ith component of f(x, t). Since we have

∂IV
∂t

+
n
∑

i=1

∂IV
∂xi

fi =
∂y

∂µ

⊤

Ṁ
∂y

∂µ

n
∑

i=1

∂IV
∂(∂µyi)

∂fv
∂y

∂y

∂µ
=2

∂y

∂µ

⊤

sym(M(Acl(ρ, e, t) + φ))
∂y

∂µ

where (40) defines IV , (41) reduces to

L V =

∫ 1

0

∂y

∂µ

⊤

(Ṁ +A⊤M +MA− 2MBR−1B⊤M

+ φ⊤M +Mφ)
∂y

∂µ
dµ+ V2. (42)

The computation of V2 and its upper bound V 2 =
2αg

∫ 1

0
‖∂y/∂µ‖2 dµ + mC is given in Appendix II. Substi-

tuting (30) into (42) yields

L V ≤
∫ 1

0

∂y

∂µ

⊤

(−γM2 −MBR−1B⊤M (43)

+ φ⊤M +Mφ)
∂y

∂µ
dµ+ V2.

Thus, using (38) and V2 ≤ V 2, we have that

L V ≤− 2

∫ 1

0

∂y

∂µ

⊤

(αM + αgI)
∂y

∂µ
dµ

+ 2αg

∫ 1

0

∥

∥

∥

∥

∂y

∂µ

∥

∥

∥

∥

2

dµ+mC

=− 2αV +mC. (44)

Theorem 1 along with (44) completes the derivation of (39).

Remark 4: The Euclidean norm of the state vector has to be

upper bounded by a constant [7], [62] in order for (38) to have

a positive definite solution and for ‖φ‖ to be bounded [16],

[62]. This assumption is satisfied by many engineering ap-

plications [16] and does not imply any assumption on the

incremental stability of the proposed controller. Also, the result

of Theorem 4 does not imply the asymptotic almost-sure

bounds as V (x, ∂µy, t) is not a supermartingale due to the

non-vanishing term mC in (44). Finite time bounds can be

obtainable using the supermartingale inequality (see [1, pp.

86], [22]).

D. Robustness against Stochastic and Deterministic

Disturbances

We also show that the tracking error has a finite L2 gain with

respect to the noise and disturbances acting on the system, i.e.,

the proposed controller is robust against external deterministic

and stochastic disturbances analogously to Lemma 4. Consider

the following nonlinear system under these disturbances:

dx = f(x, t)dt+B(x, t)udt+ d(x, t)dt+Gu(x, t)dW .
(45)

The virtual system is defined as

dy = fv(y, t)dt+ dy(y, t)dt+G(y, t)dW (46)

where dy(e, t) = d(x, t) and dy(0, t) = 0. Also, fv is defined

in (33) and G is in (37). One important example of these sys-

tems is a parametric uncertain system, where d(x, t) is given as

d(x, t) = ftrue(x, t)−f(x, t) with ftrue being the system with

true parameter values. Thus, the following corollary allows us

to apply adaptive control techniques including [63], [64] on

top of our method. In particular, it is shown in [63] that we

can use contraction metrics to estimate unknown parameters

θ when Gu(x, t) = 0 and d(x, t) = ∆(x, t)θ for a given ∆.

Corollary 1: The controller (29) with the constraints (30)

and (38) is robust against external disturbances in (45) and

satisfies the following L2 norm bound on the tracking error e:

E[‖(e)τ‖2L2
] ≤

E[‖e(0)‖2M(0)] +
m
ε1
E[‖(d)τ‖2L2

] + Cmτ

2α1
(47)

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on November 19,2020 at 16:41:38 UTC from IEEE Xplore.  Restrictions apply. 



0018-9286 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2020.3038402, IEEE

Transactions on Automatic Control
8 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX, 2021

where Cm = mC and α1 = αm− ε1m/2 with some positive

constant ε1 that guarantees α1 > 0.

Proof: Using the controller (29) with (30) and (38),

L V ≤ −2αV +mC + 2m

∫ 1

0

∥

∥

∥

∥

∂y

∂µ

∥

∥

∥

∥

∥

∥

∥

∥

∂dy
∂µ

∥

∥

∥

∥

dµ (48)

≤ − (2αm− ε1m)

∫ 1

0

∥

∥

∥

∥

∂y

∂µ

∥

∥

∥

∥

2

dµ+ Cm +
m

ε1
‖d(x, t)‖2

where the inequality 2a′b′ ≤ ε−1
1 a′2 + ε1b

′2 for scalars a′, b′

and ε1 > 0 is used with a′ = ‖∂dy/∂µ‖ and b′ = ‖∂y/∂µ‖.

Since ε1 is arbitrary, let us select ε1 s.t. α1 = αm−ε1m/2 >
0. Applying Dynkin’s formula [1, pp. 10] to (48), we have

E[V (x, ∂µy, t)]− E[V (x(0), ∂µy(0), 0)] (49)

≤E

[
∫ t

0

(

−2α1‖x(τ)−xd(τ)‖2+mC+
m

ε1
‖d(x(τ), τ)‖2

)

dτ

]

Using E[V (x, ∂µy, t)] > 0 and V (x(0), ∂µy(0), 0) = ‖x(0)−
xd(0)‖2M(0) yields the desired inequality (47).

Remark 5: Corollary 1 implies that the CV-STEM control

law yields finite-gain L2 stability and input-to-state stability

(ISS) in a mean squared sense (see Lemma 4 in [65]).

However, unlike the deterministic case, where dV p/dt =
pV p−1dV/dt can be used to prove the finite-gain Lp stability

for p ∈ [1,∞), we have L V 6= pV p−1L V . Directly

computing L V p using (41) gives us the stability property

of the proposed controller for general p but it is left as future

work due to space limitations.

E. ConVex optimization-based Stochastic steady-state

Tracking Error Minimization (CV-STEM) Control

We formulate a convex optimization problem to find the

optimal contraction metric M(x, t), which greedily minimizes

an upper bound of the steady-state mean squared distance

in (39) of Theorem 4. This choice of M(x, t) makes the

stabilizing feedback control scheme (29) optimal in some

sense.

Assumption 1: From now on, we assume the following.

• α and ε are selected by a user. In particular, ε can be

chosen in a way that it minimizes the steady-state bound

as explained in Remark 1.

• αg , which is defined below (38), is fixed; i.e., mx, mx2 ,

and gu are given.

• The upper bound of (39) as t → ∞ is minimized instead

of (39) itself.

• The objective value is minimized greedily at each step.

1) Objective Function: As a result of Theorem 4, we have

lim
t→∞

E
[

‖xd − x‖2
]

≤ C

2α
=

g2u
2α

(

m

m
+ c1

1

m

)

(50)

where c1 = mx/ε. Since m = infx,t λmin(M(x, t)) and

m = supx,t λmax(M(x, t)) depend on the future values of

M(x, t), the problem of directly minimizing (50) becomes an

infinite horizon problem. Instead of solving it, we greedily

minimize the current steady-state upper bound (50) to find

an optimal M(x, t) at the current time step as stated in

Assumption 1. Namely, we drop inf and sup in the objective

function (50). The following lemma is critical in deriving the

CV-STEM control framework.

Lemma 5: The greedy objective function, i.e., the value

inside the bracket of (50) without inf and sup, is upper

bounded as follows:

λmax(M)

λmin(M)
+

c1
λmin(M)

≤ κ(W ) + c1κ(W )2λmin(W ) (51)

where W (x, t) = M(x, t)−1 and κ(·) is the condition number.

Proof: Rewriting the left-hand side of (51) using κ gives

λmax(M)

λmin(M)
+

c1
λmin(M)

≤ κ(M) + c1
κ(M)2

λmax(M)
(52)

where 1 ≤ κ(M) ≤ κ(M)2, ∀M by definition of κ is

used to upper-bound the term c1κ(M)/λmax(M). Substituting

κ(M) = κ(W ) and λmax(M) = 1/λmin(W ) into (52)

completes the proof.

Remark 6: We saw that the steady-state tracking error as

a result of discrete-time stochastic contraction analysis in

Theorem 2 is also a function of the condition number of the

metric Mk(xk, tk). This fact with the result of Theorem 3

justifies the continuous-time control design to minimize the

objective function written by the condition number of the

metric M(x, t), although the optimization-based controller has

to be implemented in a discrete way in practical applications.

2) Convex Constraints: Let us introduce additional variables

χ and ν defined as

I � W̃ � χI (53)

where W̃ = νW and ν > 0.

Lemma 6: Suppose that the coefficients of the SDC param-

eterizations ̺ are fixed. Given a positive constant ν, the SDRI

constraint (30) is equivalent to the following convex constraint:

− ˙̃W +AW̃ + W̃A⊤ + γ̃I − νBR−1B⊤ � 0 (54)

where γ̃ = νγ. Similarly, the constraint (38) is equivalent to

the following LMI constraint:
[

γ̃I + νBR−1B⊤ − W̃φ⊤ − φW̃ − 2αW̃ W̃

W̃ ν
2αg

I

]

� 0.

(55)

Proof: Since ν > 0 and W (x, t) ≻ 0, multiplying

(30) and (38) by ν and then by W (x, t) from both sides

preserves matrix definiteness. Also, the resultant inequalities

are equivalent to the original ones [12, pp. 114]. For the SDRI

constraint (30), these operations yield the desired inequality

(54). For the constraint (38), these operations give us that

γ̃I + νBR−1B⊤ − W̃φ⊤ − φW̃ − 2αg

ν
W̃ 2 � 2αW̃ . (56)

Applying Schur’s complement lemma [12, pp. 7] to (56)

results in the desired LMI constraint (55).

3) Convex Optimization Formulation: We are now ready to

state our main result on convex optimization-based sampling

of optimal contraction metrics.

Theorem 5: Suppose α, gu, and c1 in (50) are given. Then

the non-convex optimization problem of greedily minimizing
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a steady-state upper bound of E[‖x− xd‖2] in Theorem 4 is

defined as follows:

J ∗
nl = min

γ>0,W≻0,M≻0
κ(W ) + c1κ(W )2λmin(W ) (57)

s.t. (30), (38), and M(x, t) = W (x, t)−1.

Further, the following convex optimization problem

J ∗
cv = min

γ̃>0,ν>0,τ∈R

χ∈R,W̃≻0

τ (58)

s.t. (53), (54), (55), and

[

τ − χ χ
χ ν

c1

]

� 0.

is equivalent to the non-convex counterpart (57), i.e., J ∗
nl =

J ∗
cv .

Proof: The first part (57) follows from Lemma 5, which

derives an upper bound of the steady-state mean squared dis-

tance (39) under the conditions (30) and (38). For the second

part, consider the following two optimization problems:

J ∗
n2c = min

γ̃>0,ν>0

χ∈R,W̃≻0

χ+ c1
χ2

ν
s.t. (53), (54), and (55) (59)

and

Ĵ ∗
n2c = min

γ̃>0,ν>0

χ∈R,W̃≻0

χ+ c1
χ2

ν
(60)

s.t. (54), (55), λmin(W̃ ) = 1, and λmax(W̃ ) = χ.

The rest of the proof is outlined as follows: we first prove

J ∗
nl = J ∗

n2c by showing a) J ∗
nl = Ĵ ∗

n2c ≥ J ∗
n2c and b) J ∗

nl ≤
J ∗
n2c, and then prove c) J ∗

n2c = J ∗
cv to obtain the desired

relation J ∗
nl = J ∗

cv .

a) J ∗
nl = Ĵ ∗

n2c ≥ J ∗
n2c: Let us denote the feasible set of (59)

as Sn2c and that of (60) as Ŝn2c. Due to the constraint (53),

which can be rewritten as λmin(W̃ ) ≥ 1 and λmax(W̃ ) ≤ χ,

we have Ŝn2c ⊆ Sn2c. This indicates that Ĵ ∗
n2c ≥ J ∗

n2c as

(59) and (60) use the same objective function. Also, using

ν = 1/λmin(W ) and χ = λmax(W̃ ) = κ(W ), ∀ν, χ ∈ Ŝn2c

by definition, Ĵ ∗
n2c can be expressed as

Ĵ ∗
n2c = min

γ̃>0,ν>0,W̃≻0
κ(W ) + c1κ(W )2λmin(W ) (61)

s.t. (54) and (55).

Since (54) and (55) are equivalent to (30) and (38), re-

spectively, as proved in Lemma 6, (57) and (61) imply that

J ∗
nl = Ĵ ∗

n2c. Thus, we have J ∗
nl = Ĵ ∗

n2c ≥ J ∗
n2c as desired.

b) J ∗
nl ≤ J ∗

n2c: For W̃ ∈ Sn2c, we have

κ(W ) + c1κ(W )2λmin(W ) =
λmax(W̃ )

λmin(W̃ )
+ c1

(λmax(W̃ ))2

νλmin(W̃ )

≤ λmax(W̃ ) + c1
(λmax(W̃ ))2

ν
≤ χ+ c1

χ2

ν
. (62)

where κ(W ) = κ(W̃ ) and λmin(W ) = λmin(W̃ )/ν are used

for the first equality, and (53) expressed as λmin(W̃ ) ≥ 1 and

λmax(W̃ ) ≤ χ is used for the second and third inequalities,

respectively. Since (62) holds for any decision variable in Sn2c,

we have J ∗
nl ≤ J ∗

n2c by (57) and (59).

c) J ∗
n2c = J ∗

cv: The epigraph form [13, pp. 134] of (59) is

given as

J ∗
n2c = min

γ̃>0,ν>0,τ∈R

χ∈R,W̃≻0

τ (63)

s.t. (53), (54), (55), and τ ≥ χ+ c1
χ2

ν

Applying Schur’s complement lemma [12, pp. 7] to the last

constraint of (63) results in J ∗
n2c = J ∗

cv .

Remark 7: Although (58) is convex, it is infinite dimen-

sional due to
˙̃W . We could address this issue by computing

˙̃W along the trajectory or by approximating the contraction

metric as a linear combination of given basis functions [28].

These techniques will be briefly discussed in Sec. V.

The coefficients of the SDC parameterizations ̺ can also be

treated as a decision variable as can be seen in the following

proposition.

Proposition 1: Introducing new variables W̺̃i
≻ 0 and

˜̺i = ν̺i where W̺̃i
= ̺iW̃ , the bilinear matrix inequalities

(54) and (55) in terms of W̃ and ̺ with ν > 0 can be relaxed

as follows:

− ˙̃W +

s1
∑

i=1

AiW̺̃i
+

s1
∑

i=1

W̺̃i
A⊤

i + γ̃I − νBR−1B⊤ � 0

(64)

and
[

γ̃I + νBR−1B⊤ − Φ− 2αW̃ W̃

W̃ ν
2αg

I

]

� 0. (65)

where Φ is given by

Φ =

s1
∑

i=1

W̺̃i

∂(∆Aixd)

∂q

⊤

+

s1
∑

i=1

∂(∆Aixd)

∂q
W̺̃i

+ W̃
∂(∆Bud)

∂q

⊤

+
∂(∆Bud)

∂q
W̃

with ∆A(̺, x, t) =
∑s1

i=1 ̺i∆Ai(x, t) =
∑s1

i=1 ̺i(Ai(x, t) −
Ai(xd, t)). We also need some additional relaxed constraints

to ensure controllability and W̺̃i
= ̺iW̃ , i.e.,

W̃ , W̺̃i
≻ 0,

s1
∑

i=1

W̺̃i
= W̃ , sym

[

νI W̃

˜̺iI W̺̃i

]

� 0, (66)

s1
∑

i=1

˜̺i = ν, ˜̺i ∈ [0, ν], cck(˜̺, x) ≤ 0, ∀i, ∀k = 1, · · · , nc

where cck(˜̺, x) ≤ 0, ∀k = 1, · · · , nc denotes convex

constraints to maintain the controllability of the pair (A,B).
Proof: The first two inequalities (64) and (65) follow

from the desired equality W̺̃i
= ̺iW̃ and A(̺, x, t) =

∑s1
i=1 ̺iAi(x, t). See [16] for the derivation of (66).

4) Summary of CV-STEM Control Design: The CV-STEM

control of a class of Itô stochastic nonlinear systems is de-

signed as (29), where the optimal contraction metric M(x) =
νW̃ (x)−1 is selected by the convex optimization problem (58)

in Theorem 5. The coefficients of SDC parameterizations ̺
can also be used to preserve controllability by considering the

relaxed problem with the constraints (64), (65), and (66) in
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Proposition 1, where the decision variables are γ̃ > 0, ν ∈ R,

τ ∈ R, χ ∈ R, W̃ ≻ 0, W̺̃i
≻ 0, and ˜̺i.

The CV-STEM control design provides a convex

optimization-based methodology for computing the

contraction metric that greedily minimizes an upper

bound of the steady-state mean squared tracking error (39)

in Theorem 4. As proved in Corollary 1, it is also robust

against external disturbances and has the L2 norm bound

on the tracking error. In practice, (58) of Theorem 5 can

be implemented using computationally-efficient numerical

techniques such as the polynomial-time interior point

method for convex programming [12]–[15] and the SDRI

solvers [66]–[70]. Although the control parameters are

supposed to be updated by (58) at each time instant due to the

state-and time-dependent constraints, its sampling period can

be relaxed to larger values to allow online implementation

of the CV-STEM as shall be seen in Sec. VI. Further,

the controllability constraint can be incorporated into this

framework [16] as in Proposition 1, utilizing non-unique

choices of SDC parametrizations.

IV. MAIN RESULT 3: CV-STEM CONTROL DESIGN FOR

LAGRANGIAN SYSTEMS

We consider stochastic Lagrangian systems equipped with

an exponentially-stabilizing tracking controller [24]. We pro-

pose a robust optimization-based controller that can handle

stochastic disturbances and guarantee exponential bounded-

ness of the mean squared tracking error of system trajectories.

A. Problem Formulation and Feedback Control Design

Let us consider the following Lagrangian system with a

stochastic disturbance:

H(q)dq̇ + (C(q, q̇)q̇ + G(q))dt = B(q, q̇)udt+ Γ(x, t)dW
(67)

where q : R≥0 → R
n, u : R≥0 → R

m, H : Rn → R
n×n,

C : Rn×R
n → R

n×n, G : Rn → R
n, B : Rn×R

n → R
n×m,

and Γ : Rn × R≥0 → R
n×d with the same assumptions on

the existence and uniqueness of the solution stated in Sec. II.

We note that the matrix C(q, q̇) is selected to make Ḣ − 2C
skew-symmetric, so we have a useful property s.t. z⊤(Ḣ −
2C)z = 0, ∀z ∈ R

n. A feedback controller u for this system

is designed as a combination of an exponentially stabilizing

nominal controller un and a stochastic controller us:

u = un + us (68)

un = B(q, q̇)+(H(q)q̈r + C(q, q̇)q̇r + G(q)−K(t)(q̇ − q̇r))

us = −Ks(x)s = −R(x)−1B(x)⊤M(x)s

where q̇r = q̇d − Λ(q − qd), s = q̇ − q̇r, x = [q⊤, q̇⊤]⊤, and

A(x) = −H(q)−1(C(q, q̇) +K(t))

B(x) = H(q)−1B(q, q̇)
Ṁ +MA+A⊤M −MBR−1B⊤M + γM2 � 0. (69)

with M ≻ 0 and γ > 0. R(x) ≻ 0 is a weight matrix on the

input us. When BB+ = I , applying (68) to (67) yields the

following closed loop system:

H(q)ds+ (C(q, q̇) +K(t))sdt

= −B(q, q̇)Ks(x)sdt+ Γ(x, t)dW . (70)

Remark 8: In the proceeding stability proof in Theorem 6,

the metric M in (69) is a contraction metric to handle

stochasticity in the Lagrangian system, while the inertia matrix

H is for guaranteeing deterministic contraction.

Lemma 7: Suppose that the deterministic system is per-

turbed as follows:

H(q)ṡ+ (C(q, q̇) +K(t))s = B(q, q̇)(us + d). (71)

If there exists a positive definite solution M(x) to (69) with

R(x) = S(x)2 ≻ 0 and S(x) ≻ 0, then the system with an

input µ = S(x)d and an output y =
√
γM(x)s is finite-gain

L2 stable and its L2 gain is less than or equal to 1.

Proof: Following the same proof as in Appendix I with

the Lyapunov function VM = s⊤Ms, we have V̇M ≤ −‖y‖2+
‖µ‖2 due to (69). This relation along with the comparison

lemma [11, pp. 211] gives us the desired result.

Remark 9: Since the system with the output y =
√
γM(x)s

and input µ = S(x)d is clearly zero-state observable [20], it

is exponentially stable when d = 0.

B. Incremental Stability Analysis

Let us define a virtual system of (67) as follows:

H(q)dy + (C(q, q̇) +K(t))y(µ, t)dt

= −B(q, q̇)Ks(x)y(µ, t)dt+ Γy(y(µ, t), t)dW (72)

where µ ∈ [0, 1] is introduced to parameterize the trajectories

y = s and y = 0, i.e., y(µ = 0, t) = s, y(µ = 1, t) = 0,

Γy(y(0, t), t) = Γ(x, t), and Γy(y(1, t), t) = 0n×d. Note that

(72) has y = s and y = 0 as particular solutions as a result

of this parameterization. The following theorem analyzes a

stochastic contraction property of the Lagrangian system (67)

under the feedback control (68) similarly to Theorem 4.

Theorem 6: Suppose there exist ℓx, ℓx2 , and gB s.t.

‖H(q)−1Γ(x, t)‖F ≤ gB , ‖∂((H(q) + σM(x))ij)/∂x‖ ≤ ℓx,

and
∥

∥∂2((H(q) + σM(x))ij)/∂x
2
∥

∥ ≤ ℓx2 , ∀x, where ℓx, ℓx2 ,

and gB are bounded. Suppose also that there exist αℓ > 0 and

σ > 0 s.t.

B(q, q̇)R(x)−1B(x)⊤M(x) +M(x)B(x)R(x)−1B(q, q̇)⊤

+ σ(γM(x)2 +M(x)B(x)R(x)−1B(x)⊤M(x))− 2αγI

� 2αℓ(H(q) + σM(x)) (73)

where 2αγ = g2B
(

ℓxεℓ + ℓx2/2
)

with an arbitrary positive

constant εℓ. If there exists a positive definite solution M(x, t)
to the inequalities (69) and (73), then the mean-squared

distance of the composite state s is bounded as follows:

E[‖s‖2] ≤ E[V (x(0), ∂µy(0), 0)]e
−2αt + Cℓ

2α

inft≥0 λmin(H(q) + σM(x))
(74)
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where V (x, ∂µy) is given by

V (x, ∂µy) =

∫ 1

0

∂y

∂µ

⊤

(H(q) + σM(x))
∂y

∂µ
dµ (75)

with Cℓ = g2B supt≥0(λmax(H(q)+σM(x)))+ℓxg
2
B/εℓ, α =

αℓ + k/ supt λmax(H(q) + σM(x)), and kI ≺ K(t), ∀t.
Proof: Following the same proof given in Theorem 4,

the condition (69) gives us that

L V ≤ −σ

∫ 1

0

∂y

∂µ

⊤

(γM2 +MBR−1B⊤M)
∂y

∂µ
dµ (76)

− 2

∫ 1

0

∂y

∂µ

⊤

(K + BKs)
∂y

∂µ
dµ+ 2αγ

∫ 1

0

∥

∥

∥

∥

∂y

∂µ

∥

∥

∥

∥

2

dµ+ Cℓ

where the skew-symmetric property of Ḣ−2C is used to obtain

the above inequality. Using (73), we have

L V ≤− 2αℓV − 2

∫ 1

0

∂y

∂µ

⊤

K ∂y

∂µ
dµ+ Cℓ

≤− 2αV + Cℓ. (77)

Thus, applying Theorem 1 yields the desired result (74).

C. Robustness against Stochastic and Deterministic

Disturbances

Analogously to Lemma 7, consider the following La-

grangian system with deterministic and stochastic distur-

bances:

H(q)dq̇ + (C(q, q̇)q̇ + G(q))dt
= B(q, q̇)qdt+ d(x, t)dt+ Γ(q, q̇)dW . (78)

Again, an important example of these systems is a parametric

uncertain system.

Corollary 2: Let H0 = H(0)+σM(0). The controller (68)

with the constraints (69) and (73) is robust against the external

disturbances and satisfies the following L2 norm bound on the

tracking error:

E[‖(s)τ‖2L2
] ≤

E[‖s(0)‖2H0
] + ℓ

̟ε2
E[‖(d)τ‖2L2

] + Cℓτ

2α2
(79)

where ℓI � H(q) + σM(x) � ℓI , ̟I � H(q), ∀x, and

α2 = αℓ− ε2ℓ/(2̟) with ε2 > 0 that guarantees α2 > 0.

Proof: Following the same proof as in Corollary 1, we

have LV ≤ −2α2

∫ 1

0
‖∂y/∂µ‖2dµ+ ℓ/(̟ε2)‖d(x, t)‖2+Cℓ,

where y is the virtual state and V is given in (75). The rest

follows from Dynkin’s formula [1, pp. 10].

D. Convex Optimization Formulation

As a result of Theorem 6, we have

lim
t→∞

E[‖s‖2] ≤
g2B supt≥0(λmax(H+ σM)) +

ℓxg
2
B

εℓ

2α inft λmin(H+ σM)
. (80)

We propose one way to formulate a convex optimization prob-

lem to find the optimal contraction metric which minimizes an

upper bound of the right-hand side of (80) under the following

conditions.

Assumption 2: In addition to the conditions given in As-

sumption 1, we assume that σ = 1, which is possible as we

can optimally select the value of γ.

1) Objective Function: Under Assumption 2, we have the

following lemma on the greedy objective function as in

Lemma 5 of Sec. III-E.

Lemma 8: The greedy objective function, i.e., (80) without

sup, inf , and with gB and α given, is bounded as follows:

λmax(H+M) + ℓx
εℓ

λmin(H+M)
≤ κ(W ) + c2κ(W )2λmin(W ) (81)

where W (x) = M(x)−1 and c2 = λmax(H) + ℓx/εℓ.
Proof: Using the relations λmax(H+M) ≤ λmax(H)+

λmax(M) and λmin(H + M) ≥ λmin(H) + λmin(M) ≥
λmin(M) [71, pp. 242], we have

λmax(H+M) + ℓx
εℓ

λmin(H+M)
≤ λmax(M)

λmin(M)
+

c2
λmin(M)

(82)

Applying Lemma 5 to (82) completes the proof.

2) Equivalent Convex Optimization Problem: Let us intro-

duce ν > 0, χ, τ ∈ R, and W̃ = νW ≻ 0 constrained as

I � W̃ � χI,

[

τ − χ χ
χ ν

c2

]

� 0. (83)

Analogously to Theorem 5, we have the following results.

Theorem 7: Suppose α, gB , and c2 are given. Then the non-

convex optimization problem of greedily minimizing an upper

bound of (80) due to Theorem 6 is defined as follows:

J ∗
nlℓ = min

γ>0,W≻0,M≻0
κ(W ) + c2κ(W )2λmin(W ) (84)

s.t. (69), (73), and M(x, t) = W (x, t)−1.

Further, the following convex optimization problem

J ∗
cvℓ = min

γ̃>0,ν>0,τ∈R

χ∈R,W̃≻0

τ (85)

s.t.
˙̃W +AW̃ + W̃A⊤ − νBR−1B⊤ + γ̃I � 0 (86)

[

H̃ℓ W̃

W̃ ν
2 (αℓH+ αγI)

−1

]

� 0 and (83) (87)

where γ̃ = νγ and H̃ℓ = 2 sym(W̃BR−1B⊤) + γ̃I +
νBR−1B⊤ − 2αℓW̃ , is equivalent to (84), i.e., J ∗

nlℓ = J ∗
cvℓ.

Proof: The first part follows from Lemma 8. The

constraints (69) and (73) are equivalent to (86) and the first

constraint of (87), respectively, as shown in Lemma 6. The

rest follows from the same proof as in Theorem 5.

In summary, the CV-STEM control of stochastic Lagrangian

systems is designed as (68), where the optimal contraction

metric M(x) = νW̃ (x)−1 is selected by the convex optimiza-

tion problem (85) in Theorem 7.

V. MAIN RESULT 4: CV-STEM WITH INPUT

CONSTRAINTS AND OTHER EXTENSIONS

Several extensions of algorithms to compute the optimal

contraction metric for the feedback control of Itô stochastic

nonlinear systems are discussed in this section.

A. Input Constraints

We propose two ways to incorporate input constraints into

the convex optimization problem (58) of Theorem 5 and (85)

of Theorem 7 without losing their convexity.
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1) Input Constraints through the Feedback Gain: Let us

consider the case when the input constraint can be relaxed to

‖u(t)‖ ≤ umax, where u(t) is defined in (29) and umax > 0
is given.

Proposition 2: A sufficient condition for the input con-

straint ‖u(t)‖ ≤ umax, ∀t ≥ 0 with a given umax(≥ ‖ud(t)‖)
is expressed as follows:

ν‖R−1B⊤‖‖e(t)‖ ≤ (umax − ‖ud(t)‖)λmin(W̃ ), ∀t, x
(88)

where e(t) = x(t)−xd(t) and the arguments (x, t) are dropped

for notational simplicity. Further, this is a convex constraint

in terms of the decision variables of (58) in Theorem 5.

Proof: Using the relations M = νW̃−1 and ‖W̃−1‖ ≤
1/λmin(W̃ ) due to (53), we have

‖u‖ =‖ −K(x− xd) + ud‖ = ‖νR−1B⊤W̃−1e‖+ ‖ud‖

≤ν‖R−1B⊤‖‖e‖
λmin(W̃ )

+ ‖ud‖. (89)

Thus, a sufficient condition for ‖u(t)‖ ≤ umax, ∀t ≥ 0
reduces to (88). Also, this is convex in terms of ν and W̃ as

umax − ‖ud‖ ≥ 0 by assumption and λmin(W̃ ) is a concave

function [13, pp. 118].

Proposition 2 allows us to implement ‖u(t)‖ ≤ umax, ∀t ≥ 0
in (58) and (85) without losing their convexity.

2) Input Constraints through CLFs: Let us take (85) as an

example. Although us is given by us = −Kss in (68), this

form of us is not optimal in any sense. Instead, we find us

which minimizes its Euclidean norm, assuming M(x, t) and

γ are obtained by solving (85). The following proposition

allows us to optimally incorporate input constraints without

dramatically changing the CV-STEM stability and optimality

properties.

Proposition 3: Consider the following convex optimization

problem to minimize ‖us‖ with an input constraint us ∈ Us,

where Us is a given convex set:

u∗
s = arg min

us∈Us

δ∈R

u⊤
s us + δ2 (90)

s.t. s⊤(2αℓ(H+M) + Ṁ +MA+A⊤M + 2αγI)s

+ 2s⊤(B +MB)us ≤ δ (91)

where M is given by (85) and the dependence on x =
[q⊤, q̇⊤]⊤ is omitted for notational simplicity. Then we have

E[‖s‖2] ≤ V (x(0), s(0))e−2αt + Cℓ+δ
2α

inft≥0 λmin(H(q) +M(x))
. (92)

where V (x, s) = s⊤(H(q) +M(x))s (σ = 1 is used in (75)).

Also, we can use δ = 0 when Us = R
m.

Proof: As in the proof of Theorem 6 with σ = 1, we

have

L V ≤− 2s⊤Ks+ s⊤(Ṁ +MA+A⊤M + 2αγI)s

+ 2s⊤(B +MB)us + Cℓ. (93)

This inequality with the condition (91) gives L V ≤ 2αV +
Cℓ + δ, which yields (80) by Theorem 1. The last part of this

proposition follows from the fact that us = −Kss is a feasible

solution of (90) when Us = R
m and δ = 0 for M given by

solving (85).

Remark 10: The decision variable δ is introduced to avoid

infeasibility due to the input constraint us ∈ Us. Also, for

Us = R
m, (90) reduces to a quadratic program and has a

computationally-efficient analytical solution [13].

B. Finite-Dimensional Formulation of (58) and (85)

In order to solve (58) and (85), we need
˙̃W , mx, mx2 ,

and φ at each time instant. Assuming that an initial value

of W̃ is given,
˙̃W can be computed by backward differ-

ence approximation,
˙̃W (tk) ≃ (W̃ (x(tk))− W̃ (x(tk−1)))/dt,

where W̃ (x(tk)) is a decision variable of the current convex

optimization problem and W̃ (x(tk−1)) is a given constant as

a result of the convex optimization at the previous time step

tk−1. We can perform similar operations for computing mx,

mx2 , and φ at each time instant.

For practical applications, it is also possible to neglect them

or assign approximate values to each variable [16], although

the resultant parameters could be sub-optimal in these cases.

C. Computationally-Efficient CV-STEM Algorithms

Since solving (58) or (85) at every time step can be com-

putational intractable for some systems, we propose several

ways to update the contraction metric less frequently.

1) Relaxed CV-STEM Algorithm: This method updates the

control parameters only when one of the constraints in (58)

or (85) is violated, or when the objective value at the current

iteration is larger than that at the previous iteration. Since

this will not change the stability proof, the controller still

guarantees exponential boundedness of the mean squared

tracking error of system trajectories. This approach will be

demonstrated in Sec. VI along with the discussion on how to

select the sampling period ∆t of the CV-STEM control.

2) Approximate CV-STEM Algorithm: We could approximate

the sampled CV-STEM solutions offline assuming the form

of a contraction metric in a given hypothesis function space.

One candidate is the polynomial basis function space, which

leads to the sum-of-squares programming-based search algo-

rithm [27]–[29]. However, its application is limited by the facts

that it is developed for systems with a polynomial vector field

and that the problem size grows exponentially with the number

of variables and basis functions [72]. We also have several

machine-learning based techniques for numerically modeling

the CV-STEM sampled optimal contraction metrics [57], [58].

D. Coefficients of SDC Parameterizations

There are two variations of (58) with the relaxed constraints

(64), (65), and (66) in Proposition 1, when selecting ̺ of

SDC matrices. We can either set them to some given values a

priori to preserve the controllability, or pre-compute a constant

solution M offline using constant parameterizations of A [16].
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VI. NUMERICAL SIMULATION

The performance of the CV-STEM is evaluated in the fol-

lowing two problems, where convex optimization problems are

solved using cvx toolbox in Matlab [73], [74]. Since running

an optimization algorithm at every time step is unrealistic

in practice, the relaxed CV-STEM in Sec. V is used in this

section along with the discussion on the sampling period

∆t introduced in Theorem 3. The computation of dW̃/dt is

performed by backward difference approximation. A Matlab

implementation of the CV-STEM algorithm is available at

https://github.com/astrohiro/cvstem.

A. Spacecraft Attitude Control

We first consider the spacecraft attitude dynamics given

in [17], [75] with stochastic disturbances.
1) Simulation Setup: The spacecraft state (modified Ro-

drigues parameters) is initialized as q(0) = [0.9,−0.9, 0.7]⊤,

q̇(0) = [0.6, 0.7,−0.5]⊤, and Gu(x, t) in (26) is given

as Gu(x, t) = 0.2 × [0, 0, 0, 1, 1, 1]⊤. We initialize W̃ by

solving the CV-STEM without the dW̃/dt term. The desired

trajectories are defined as q1d = 0.3 sin(2π(0.1)t), q2d =
0.2 sin(2π(0.2)t + π/6), and q3d = 0 and the CV-STEM is

applied with α = 10−3 and R = I . The input constraint in

Proposition 2 is used with umax = 700. The same simulation

is performed for PID, H∞ [20], and a nonlinear controller with

an exponential stability guarantee [17], where the PID gains

are selected as KP = 1300I , KI = 300I and KD = 1300I .

We use Kr = 100I and Λ = I for the controller in [17]. The

sampling period ∆t = 0.1 is used for the CV-STEM and H∞

control.
2) Simulation Results: Figure 2 shows tracking errors of

each state for the CV-STEM, the controller in [17], PID,

and H∞ control, smoothed by the 150-point moving average

filter. Figure 3 shows the normalized steady-state tracking

error limt→50 ‖x(t) − xd(t)‖2 and control effort
∫ 50

0
u(t)dt

of each controller averaged over 60 simulations, where x =
[q⊤, q̇⊤]⊤. It also includes those of the CV-STEM control with

different sampling periods ∆t to see the impact of discrete-

time implementation of the proposed algorithm. It should be

noted limt→∞ ‖x(t)−xd(t)‖2 is what we attempt to minimize.

It is computed by the average over the values of last 150

steps at each simulation to account for the stochasticity in the

system. Table I summarizes the steady-state tracking error and

control effort for each controller depicted as horizontal lines

in Fig. 3.

It is shown that the proposed CV-STEM achieves a smaller

steady-state tracking error than the controller in [17], PID,

and H∞ control with a smaller amount of control effort

as shown in Figs. 2–3 and Table I. Also, the error of the

CV-STEM with its sampling period ∆t ≤ 35 (s) remains

smaller than the other three even with smaller control effort

for ∆t ≤ 25 (s) as shown in Fig. 3. This fact implies that

the CV-STEM control framework could be used in real-time

with an onboard computer that solves the optimization within

the period ∆t ≤ 25, 35 (s) whilst maintaining its superior

performance. For example, solving the convex optimization

takes less than 1.0s with a Macbook Pro laptop (2.2 GHz

Intel Core i7, 16 GB 1600 MHz DDR3 RAM).

Fig. 2. Tracking errors of Modified Rodrigues parameters

Fig. 3. Steady-state tracking errors and control effort for spacecraft
attitude control: Values in the figure are computed by the average over
60 simulations and normalized by one at the CV-STEM performances.
The steady-state error is computed by the average over the values of
last 150 steps at each simulation to account for the stochasticity in the
system.

B. Multi-Agent System

Next, we consider tracking and synchronization control

of multiple formation flying spacecraft (5 agents) orbiting

the earth. The detailed equation of motion and definition of

symbols used in this simulation can be found in [65].

1) Simulation Setup: The desired trajectory of the leader

agent is given as xd(t) = 2.0 sin (ωt+ φe0), yd(t) =
2.0 cos (ωt+ φe0), and zd(t) = 0. See [65] for how to

construct synchronized desired orbits of the follower agents.

We use Γ(x, t) = [1, · · · , 1]⊤ ∈ R
np×1 for the diffusion term

defined in (67), where n = 3 (3 dimensional space) and p = 5
(5 agents). The tracking gain K1 and the synchronization

gain K2 in [18] are selected as K1 = 5I and K2 = 2I
with α = 10−3 and R = I for the CV-STEM control. The

TABLE I

CONTROL PERFORMANCES FOR SPACECRAFT ATTITUDE CONTROL

COMPUTED AS EXPLAINED IN FIG. 3

CV-STEM Controller [17] PID H∞

Steady-state error 1 3.3395 2.8849 1.7384
Control effort 1 1.3403 1.1319 1.1755
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Fig. 4. Controlled and desired spacecraft trajectories in the LVLH frame

TABLE II

CONTROL PERFORMANCES FOR SPACECRAFT TRACKING AND

SYNCHRONIZATION CONTROL COMPUTED AS EXPLAINED IN FIG. 3

CV-STEM Controller [18] PID H∞

Steady-state error 1 11.176 34.997 49.903
Control effort 1 0.7946 1.2701 1.0496

spacecraft positions are initialized as uniformly distributed

random variables over a cube with side length 0.4 (−0.2 ≤
xj , yj , zj ≤ 0.2), velocities are as [ẋj , ẏj , żj ]

⊤ = [0, 0, 0]⊤,

and W̃ is as W̃ (0) = I , for all agents j. The gain for the

composite states in [18] is selected as Λj = I, ∀j. Similar

to the first simulation, the input constraint in Proposition 2 is

used with umax = 1.0. For comparison, the nominal nonlinear

controller in [18], PID, and H∞ control are also applied to

this problem with KP = 7I , KI = 0I , and KD = 11I . The

sampling period ∆t = 0.5 is used for the CV-STEM and H∞.

2) Simulation Results: Figure 4 shows a comparison be-

tween the controlled and desired trajectories in the LVLH

frame for the CV-STEM, the controller in [18], [65], PID, and

H∞. Figure 5 shows the normalized steady-state tracking error

and control effort of each controller and the CV-STEM with

different sampling periods ∆t, averaged over 60 simulations.

Again, the steady-state errors are computed by the average

over the values of last 150 steps at each simulation. Table II

summarizes the control performances depicted as horizontal

lines in Fig. 5.

Figures 4 and 5 indicate that the CV-STEM control performs

better than the controller in [18], [65], PID, and H∞ control in

terms of the steady-state tracking error. Due to the formulation

u = un + us, its control effort is 1.25 times larger than that

of the nonlinear controller [18], [65] in this case as shown

in Table II. Furthermore, the error of the CV-STEM stays

smaller than the others for the sampling period ∆t ≤ 450 (s)

with control effort smaller than those of PID and H∞ control.

In particular, it is less than 1.7 times as large as that of the

nominal CV-STEM with ∆t = 0.5 (s) for ∆t ≤ 350 (s). This

is a promising outcome for the real-time implementation of the

CV-STEM control, as the aforementioned Macbook Pro laptop

(2.2 GHz Intel Core i7, 16 GB 1600 MHz DDR3 RAM) solves

the optimization within 1.5s.

Fig. 5. Steady-state tracking error and control effort for spacecraft
tracking and synchronization control: Values in this figure are computed
as explained in Fig. 3.

VII. CONCLUSION

In this paper, we present CV-STEM, a new numerical

framework to construct an optimal contraction metric for

feedback control of Itô stochastic nonlinear systems and

stochastic Lagrangian systems, expressed in SDC extended

linear structure. It computes the metric by solving a convex

optimization problem, which is proven to be equivalent to

its non-convex counterpart of greedily minimizing an upper

bound of the steady-state mean squared tracking error of the

system trajectories. It is shown by stochastic incremental con-

traction analysis that the mean squared error is exponentially

bounded for all time and for any initial condition, and that

the CV-STEM control is robust against stochastic and deter-

ministic disturbances. We also propose discrete-time stochastic

contraction analysis with a state- and time-dependent metric to

validate the sampling-based implementation of the algorithm.

In numerical simulations, the CV-STEM control outperforms

PID, H∞, and nonlinear controllers developed for spacecraft

attitude control and synchronization problems in terms of the

steady-state tracking error, with the large enough sampling

period which enables its real-time implementation.

APPENDIX I

PROOF OF LEMMA 4

Proof: Let us omit the arguments x and t for notational

simplicity. Differentiating VM = e⊤Me with e = x−xd under

the condition (30) yields

V̇M ≤ e⊤(−γM2 −MBR−1B⊤M)e+ 2e⊤M(∆d +Bd)

where ∆d = ∆Axd+∆Bud. Adding and subtracting ‖µ1‖ =
‖Sd‖2 where R = S2 and completing the square, we have

V̇M ≤− ‖y‖2 + ‖µ1‖2 − ‖µ1 − S−1B⊤Me‖2 + 2e⊤M∆d.

where y = (
√

γ/2)M(x, t)e. Using µ2 = (
√

2/γ)∆d,

V̇M ≤− ‖y‖2 + ‖µ1‖2 −
1

2
γ

∥

∥

∥

∥

Me− 2∆d

γ

∥

∥

∥

∥

2

+
2

γ
‖∆d‖2

≤− ‖y‖2 + ‖µ1‖2 + ‖µ2‖2. (94)
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By the comparison lemma [11, pp. 211], this reduces to

‖yτ‖L2
≤ ‖(µ1)τ‖L2

+ ‖(µ2)τ‖L2
+
√

VM (x(0)) (95)

which completes the proof.

APPENDIX II

COMPUTATION OF V2 AND V 2 IN THEOREM 4

Using (41), V2 in Theorem 4 can be computed as follows:

V2 =

∫ 1

0

∑

i,j

1

2

∂y

∂µ

⊤

Mxixj

∂y

∂µ
(GuG

⊤
u )ij (96)

+ 2(Mi)xj

∂y

∂µ

(

Gu
∂G

∂µ

⊤
)

ij

+mij

(

∂G

∂µ

∂G

∂µ

⊤
)

ij

dµ

where Mi is the ith row of M and the subscripts xi denote

partial derivatives. Following the proof of Lemma 2 in [16],

V2 ≤ mg2u +

∫ 1

0

2mxg
2
u

∥

∥

∥

∥

∂y

∂µ

∥

∥

∥

∥

+
1

2
mx2g2u

∥

∥

∥

∥

∂y

∂µ

∥

∥

∥

∥

2

dµ

≤ 2αg

∫ 1

0

∥

∥

∥

∥

∂y

∂µ

∥

∥

∥

∥

2

dµ+mC = V 2 (97)

where 2αg = g2u (mxε+mx2/2) and C = (m/m)g2u +
(mxg

2
u)/(εm). The first inequality in (97) is due to Tr(AB) ≤

‖A‖Tr(B) for A,B � 0, and the second inequality follows

from the relation 2a′b′ ≤ ε−1a′2 + εb′2 for any scalars a′, b′,
and ε > 0. Thus, V2 is upper bounded by V 2 as desired.
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