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Robust Cooperative Guidance Law for

Simultaneous Arrival
Zhenhong Li, Zhengtao Ding, Senior Member, IEEE

Abstract—In the cooperative simultaneous arrival problem, a
group of interceptors are guided to simultaneously engage a
stationary target. However, some interceptors may not follow
the prescribed guidance law during the engagement, which can
lead to interception failures. This brief investigates a new robust
cooperative simultaneous arrival problem in the presence of
misbehaving interceptors. A robust cooperative guidance law
(RCGL) integrated with a local filtering algorithm is designed.
Without the knowledge of faulty interceptors (no fault diagnosis
procedure is needed), the RCGL achieves a simultaneous arrival
between normal interceptors if the misbehavior of faulty inter-
ceptors can be characterized by a threat model. By characterizing
the contracting behavior of the maximum gap between impact
time estimates of normal interceptors, sufficient conditions are
established to guarantee the convergence of RCGL. Furthermore,
regardless the network connections, the impact times of normal
interceptors are upper bounded by the maximum initial time-to-
go estimate of normal interceptors. Numerical comparison studies
demonstrate the guidance performance of RCGL.

Index Terms—Robust cooperative guidance law; cooperative
control; simultaneous arrival.

I. INTRODUCTION

The simultaneous arrival problem of multiple interceptors

has become more interesting over the past few years (see,

e.g., [1]–[8]). In general, the problem can be solved by two

methods: 1) individual homing, e.g., [1]–[3]; 2) cooperative

homing, e.g., [4]–[8]. Compared to the individual homing,

the cooperative homing requires no predetermination of a

common impact time. The group of interceptors synchronize

the impact time by addressing the consensus problem of time-

to-go estimates of interceptors.

The advancement of defense systems poses new challenges

in homing guidance. It is important to increase the relia-

bility of the cooperative guidance, especially, when some

interceptors are destroyed or disturbed by the defense system

of the target. However, studies on the robust simultaneous

arrival problem in the presence of misbehaving interceptors

are rare. The authors in [6] and [7] proposed two finite-time

cooperative guidance laws (FTCGLs) based on classic graph

theory and discussed the guidance performances of FTCGLs

under communication faults and actuator faults. But the faulty

interceptor must remain controllable and can not be the root

of the communication structure. Since the defense systems

of the target may destroy or disturb the interceptor and self-

faults may happen during the engagement, the controllability

Z. Li and Z. Ding are with School of Electrical and Electronic En-
gineering, University of Manchester, Sackville Street Building, Manch-
ester M13 9PL, UK (emails: zhenhong.li@postgrad.manchester.ac.uk; zheng-
tao.ding@manchester.ac.uk).

of faulty interceptors is hard to preserve. It remains an open

problem to design a robust guidance law such that 1) all

normal interceptors can reach the target without identifying

faulty interceptors; 2) all normal interceptors reach the target

at the same time as much as possible.

In this brief, we consider a new robust cooperative si-

multaneous arrival problem when some interceptors may not

follow the prescribed guidance law during the engagement.

The unknown dynamics caused by faulty interceptors make

the cooperative guidance design for the normal interceptors

difficult. Inspired by the time-to-go approximate model in [4]

and the notion of network robustness [9]–[11], we integrate a

local filtering algorithm with other cooperative guidance law

and present a useful robust cooperative guidance law (RCGL).

If the misbehavior of faulty interceptors can be characterized

by a threat model (each faulty interceptor sends the same value

to all of its out-neighbors at each time-step), the RCGL can re-

duce the variance of impact times between normal interceptors

without identifying faulty interceptors. Regardless the network

connections, the impact times of normal interceptors are upper

bounded by the maximum initial time-to-go estimate of normal

interceptors, which can be seen as a safety condition. By

discarding some extreme time-to-go estimates of in-neighbors

at each time-step, the integrated local filtering algorithm of

RCGL filters undesirable dynamics caused by faulty inter-

ceptors. Sufficient conditions are established to guarantee the

consensus of time-to-go estimates of normal interceptors. The

convergence analysis of RCGL is based on characterizing the

contracting behavior of the maximum gap between impact

time estimates of normal interceptors. Numerical comparison

results demonstrate the effective guidance performance of

RCGL.

The remainder of this brief is organized as follows. Section

II formulates the robust simultaneous arrival problem with a

single target and introduces the preliminaries. The main results

of RCGL are given in Sections III and IV. In Section V,

comparison simulation results of 5 to 1 robust engagement

scenario are presented.

II. PROBLEM STATEMENT

Consider the scenario that a group of N interceptors attack a

stationary target on a two-dimensional plane by assuming that

the lateral and longitudinal planes are decoupled by means of

roll control [12]. The planar engagement geometry is shown

in Fig. 1.

In Fig. 1, for the ith interceptor, ri is the rang-to-go;

λi is the LOS angle; γi is the flight-path angle; σi is the
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Fig. 1. Guidance geometry on N to 1 engagement scenario.

heading error; Vi is the interceptor speed, which is assumed

to be constant during the engagement; ai is the acceleration,

which is perpendicular to Vi. The planar interceptor-target

engagement kinematics are given as

ṙi =− Vicos(σi),

λ̇i =−
Visin(σi)

ri
,

γ̇i =
ai
Vi

,

σi =γi − λi, i = 1, · · · , N. (1)

where ai is the control input for ith interceptor.

Suppose each interceptor uses well-known proportional nav-

igation (PN) for homing as

ai = NsViλ̇i,

where Ns denotes the fixed navigation constant (in practice,

Ns is usually chosen as 3 ≤ Ns ≤ 5). When the heading

error σi is small, the time-to-go of the ith interceptor can be

approximated as [4]

t̂go,i =
ri
Vi

(
σ2
i

2Ns − 1
+ 1), i = 1, · · · , N. (2)

Note that σi is small in general cases.

Now consider a robust simultaneous arrival problem with N
interceptors shown in Fig.2. The N interceptors are partitioned

into a set of normal interceptors N = {i ∈ 1, · · · , N :
ith interceptors is normal}, and a set of faulty interceptors

F = {i ∈ 1, · · · , N : ith interceptor is misbehaving},

the number of faulty interceptor is upper bounded by F .

The communications between interceptors happen at times

t0, t1, · · · , tk, · · · , and the communication period is τ , i.e.,

tk − tk−1 = τ .

The communication topology among interceptors is de-

scribed by the directed graph G. The set of interceptors is

defined as V = {1, · · · , N}. The adjacency matrix is defined

as A = [αij ] ∈ R
N×N , where αii = 0 and αij = 1

if the ith interceptor can get the information from the jth

interceptor, otherwise αij = 0. The jth interceptor is called

an in-neighbor of ith interceptor if αij = 1. The in-neighbors

of ithe interceptor are defined as a set Vi = {j ∈ V : αij = 1}.

The jth interceptor is called an out-neighbor of ith interceptor

if αji = 1 (i.e., the jth interceptor can get the information

from the ith interceptor).

Fig. 2. N to 1 robust simultaneous arrival scenario.

We make following assumptions throughout this brief.

Assumption 1: The speed of each interceptor is constant but

may not be the same as that of other interceptors.

Assumption 2: Each faulty interceptor sends the same value

to all of its out-neighbors at each time-step (e.g., for a faulty

interceptor i, all the out-neighbors of i receive the same value

from i at tk).

Remark 1: In practice, Assumption 2 is nonrestrictive and

easy to satisfy. For example, if the communication is realized

through wireless broadcast, the faulty interceptor i naturally

sends the same value to all of its out-neighbors.

The objective of this brief is to design a PN based RCGL

to meet following demands:

1) all normal interceptors can reach the target without the

knowledge of fault interceptors.

2) all normal interceptors reach the target at the same time

as much as possible.

Remark 2: Although the threat model in Assumption 2 is

defined according to the communication behavior, this threat

model covers a wide range of faults in practice; not only the

communication faults, but also actuator faults which cause

undesirable changes in t̂go,i are considered. It is plausible that

some simple misbehaviors can be detected via an appropriate

mechanism. However, for some complicate faults, especially

in the short range guidance, it is hard to detect the faulty in-

terceptors and reorganize the communications between normal

interceptors. Moreover, the cooperative guidance performance

will be degraded by the increasing time of fault diagnosis.

III. RCGL WITH A LOCAL FILTERING ALGORITHM

In this section, a novel cooperative guidance law with a

local filtering algorithm is designed to solve the simultaneous

arrival problem. By virtue of the integrated local filtering

algorithm, the proposed cooperative guidance law is robust

to the misbehaviors of faulty interceptors. With exchanging

the time-to-go estimates t̂go,i at discrete-time, the RCGL is

designed as

ai(t) = Ns

(

1 + ki
∑

j∈Ri(tk)

wij(tk)
(

t̂go,i(tk)

− t̂go,j(tk)
)

)

Viλ̇i, ∀t ∈ [tk, tk+1), (3)
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where i = 1, · · · , N , ki > 0 are constants, Ri(tk) is the set

of retained in-neighbors of ith interceptor at tk, t̂go,j(tk) and

wij(tk) are defined in the local filtering algorithm running at

times {tk}.

Algorithm 1: Local Filtering for ith interceptor

Input: Fixed navigation constant Ns, upper bound of the

number of faulty interceptors F , range-to-go

ri(tk), interceptor speed Vi, heading error σi(tk).
Output: In-neighbors after filtering Ri(tk), time-to-go

estimates of filtered in-neighbors {t̂go,j(tk),
j ∈ Ri(tk)}, time-varing comminication

weights wij(tk).
1 ith interceptor estimates its time-to-go

t̂go,i(tk) =
ri(tk)
Vi(tk)

(σi(tk)
2

2Ns−1 + 1);

2 ith interceptor receives time-to-go estimates {t̂go,j(tk),
j ∈ Vi} from its in-neighbors and sends t̂go,i(tk) to its

out-neighbors;

3 ith interceptor sorts the gathered estimates {t̂go,j(tk),
j ∈ Vi}, and forms a sorted list;

4 if there are less than F estimates larger (resp. smaller)

than its own estimate t̂go,i(tk), then

5 ith interceptor removes all estimates that are larger

(resp. smaller) than its own estimate;

6 else

7 ith interceptor removes F largest (resp. F smallest)

estimates;

8 end

9 Define Ri(tk) as the set of in-neighbors of ith interceptor

whose time-to-go estimate is retained at time-step tk;

10 The time-varying communication weights are defined as

wij(tk) =







αij
∑

j∈Ri(tk)
αij

, ∀j ∈ Ri(tk),

0, otherwise.

The RCGL has a simple structure which is composed

of a traditional PN feedback loop, a cooperative time-

to-go feedback loop and a novel local filtering algo-

rithm. Note that RCGL is a continuous-time guidance law;

however, the communications between interceptors are in

discrete-time structures. The retained in-neighbors of ith
interceptor are switching due to the local filtering al-

gorithm. The RCGL uses the relative time-to-go errors
∑

j∈Ri(tk)
wij(tk)

(

t̂go,i(tk)− t̂go,j(tk)
)

to adjust the cur-

vature of the interceptors’s trajectories; interceptors with

smaller time-to-go estimates take detours, and intercep-

tors with larger time-to-go estimates take shortcuts. When
∑

j∈Ri(tk)
wij(tk)

(

t̂go,i(tk)− t̂go,j(tk)
)

= 0 at any tk, the

simultaneous arrival is achieved, and RCGL becomes PN with

fixed navigation constant Ns. In Algorithm 1, no additional

procedure (e.g., fault detection) is needed, and the information

used in the algorithm is the same as that of existing PN based

cooperative guidance laws. The data flow structure of ith in-

terceptor in the cooperative guidance is shown in Fig. 3. In the

figure, at each time-step, ith interceptor communicates with its

neighbors, removes some time-to-go estimates of in-neighbors

according to the rules in Algorithm 1 and recalculates the

communication weights wij(·). The controller calculates the

acceleration command by using continuously measurements

and sampled time-to-go estimates. The rigorous convergence

analysis of RCGL is performed in the following section.

IV. CONVERGENCE ANALYSIS OF RCGL

In this section, sufficient conditions are established to guar-

antee the convergence of RCGL. Before introducing the main

results of this section, an important definition is given as

follow

Definition 1 ((r, s)-robust graphs): For two positive integers

r and s, a graph G is said to be (r, s)-robust if for any two

disjoint nonempty subsets S1, S2 ∈ V , at least one of the

following holds:

1) Every interceptor in S1 has at least r in-neighbors

outside S1.

2) Every interceptor in S2 has at least r in-neighbors

outside S2.

3) There are at least s interceptors in S1 ∪S2 that each in-

terceptor has at least r in-neighbors outside its respective

sets.

From lines 4−7 in Algorithm 1, we know that each interceptor

periodically discards some of its in-neighbors. Definition 1

aims to capture the idea that for any two disjoint nonempty

subsets, there are some interceptors within those sets that each

of them has enough in-neighbors outside its respective sets.

This definition plays a key role in our convergence analysis.

Define T̂i(tk) = t̂go,i(tk)+kτ as the impact time estimates

of ith interceptors at time tk. Note that T̂i(t0) = t̂go,i(t0),
and we have t̂go,1(tk) = · · · = t̂go,N (tk) if T̂1(tk) =
· · · = T̂N (tk). Define m(tk) = min{T̂i(tk), ∀i ∈ N} and

M(tk) = max{T̂i(tk), ∀i ∈ N}; m(tk) and M(tk) are the

lower and upper bounds of the impact time estimates of normal

interceptors at tk, respectively.

Theorem 1: Suppose that there are at most F faulty intercep-

tors within a group of N interceptors. Under Assumptions 1,

2 and RCGL, the impact time estimates of normal interceptors

T̂i(tk), ∀i ∈ N are bounded within [m(t0),M(t0)], regardless

of the network connections of interceptors and the misbehav-

iors of faulty interceptors, if max{ki, ∀i ∈ V} < 2Ns−1
Nsπ2τ

.

Proof: Since σi are small angles in general cases [4]; thus,

we have sin(σi) = σi and cos(σi) = 1− σ2

i

2 . Substituting (3)

into (1), we have

ṙi =− Vi(1−
σ2
i

2
),

σ̇i =−
Viσi

ri

(

Ns − 1 +Nski
∑

j∈Ri(tk)

wij(tk)

·
(

t̂go,i(tk)− t̂go,j(tk)
)

)

, ∀t ∈ [tk, tk+1) (4)

where i = 1, · · · , N .
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Fig. 3. Data flow structure of ith interceptor under RCGL

We can get the difference equation from the above results

and (2)

t̂go,i(tk+1) =t̂go,i(tk) +

∫ τ

0

˙̂tgo,i(t)

=

∫ τ

0

ṙi
Vi

(1 +
σ2
i

2(2Ns − 1)
) +

riσiσ̇i

Vi(2Ns − 1)
dt

+ t̂go,i(tk)

=−Ki

∑

j∈Ri(tk)

wij(tk)
(

t̂go,i(tk)− t̂go,j(tk)
)

+ t̂go,i(tk)− τ, (5)

where Ki =
Nsσ

2

i
kiτ

2Ns−1 . Since max{ki, ∀i ∈ V} < 2Ns−1
Nsπ2τ

and

σ2
i ≤ π2, we have 0 < Ki < 1, ∀i = 1, · · · , N .

The difference equations of impact time estimates are given

as

T̂i(tk+1) =



1−Ki

∑

j∈Ri(tk)

wij(tk)



 T̂i(tk)

+Ki

∑

j∈Ri(tk)

wij(tk)T̂j(tk). (6)

Note that
∑

j∈Ri(tk)
wij(tk) = 0 if Ri(tk) = ∅. Otherwise

we have that
∑

j∈Ri(tk)
wij(tk) = 1.

For a normal interceptor i ∈ N , consider following situa-

tions.

1) Ri(tk) = ∅.

2) Ri(tk) ⊆ N .

3) Ri(tk) ∩ F 6= ∅, where ∅ denotes the empty set.

For the first situation, all in-neighbors of ith interceptor are

removed. Then the RCGL becomes a PN guidance law and

T̂i(tk+1) = T̂i(tk) ∈ [m(tk),M(tk)].
For the second situation, all the remaining interceptors are

normal. Since 0 < Ki < 1, together with (6), we can get that

Ti(tk+1) is a convex combination of itself and T̂j(tk), ∀j ∈
Ri(tk). Then, T̂i(tk+1) ∈ [m(tk),M(tk)].

For the third situation, there is at least one faulty interceptor

in Ri(tk). For the reason that ith interceptor removes at most

F in-neighbors which have larger (resp. smaller) time-to-

go estimates than ith interceptor, and the number of faulty

interceptor is upper bounded by F , there must be at least

one normal interceptor (can be ith interceptor) in N that has

a larger time-to-go estimate than the time-to-go estimates of

all faulty interceptors in Ri(tk) ∩ F ; furthermore, there must

be at least one normal interceptor (can be ith interceptor) in

N that has a smaller time-to-go estimate than the time-to-go

estimates of all faulty interceptors in Ri(tk)∩F . Then we have

T̂i(tk+1) ∈ [m(tk),M(tk)]. Based on the above analysis, we

can conclude that {M(tk)} and {m(tk)} are monotone and

bounded sequences. Furthermore, T̂i(tk+1) ∈ [m(t0),M(t0)].

Remark 3: Theorem 1 shows that the impact time

estimates of normal interceptors are always within
[

min{t̂go,i(t0), ∀i ∈ N} , max{t̂go,i(t0), ∀i ∈ N}
]

. Note

that t̂go,i = 0 only when ri(t) = 0 (i.e., ith interceptor

reaches the target). Together with Theorem 1, we can obtain

t̂go,i(tk) + kτ ≤ max{t̂go,i(t0), ∀i ∈ N}, which implies that

all normal interceptors will reach the target no later than

max{t̂go,i(t0), ∀i ∈ N}, regardless misbehaviors of faulty

interceptors.

Remark 4: When the communication period τ is sufficiently

small, any positive constant ki can guarantee the boundedness

of T̂i(tk).
Theorem 2: Suppose that there are at most F faulty intercep-

tors within a group of N interceptors and the communication

graph G is (F +1, F +1)-robust. Under Assumptions 1 and 2,

the difference between the upper and lower bounds of the im-

pact time estimates of normal interceptors, i.e., M(tk)−m(tk),
monotonously converges to 0 if max{ki, ∀i ∈ V} < 2Ns−1

Nsπ2τ
.

Proof: The proof is stated in Appendix.

Corollary 1: Under assumptions in Theorem 2, V̄ (tk) =
M(tk)−m(tk) exponentially converges to 0 as k → ∞.

Proof: The proof follows similarly as in Theorem 2.

Remark 5: limk→∞ M(tk) − limk→∞ m(tk) = 0 implies

that limk→∞ t̂go,i, ∀i ∈ N will reach an agreement and the

simultaneous arrival will be achieved. Since the guidance time

is finite in implementations, the difference M(tk)−m(tk) will

be nonzero. Nevertheless, M(tk) − m(tk) is monotonously

decreasing during the engagement and can be tuned by the

parameters ki and τ . Normally, under same faulty conditions

and initial conditions, if τ is chosen to be sufficiently small, a

system with larger gains Nski will have a smaller M(t)−m(t)
at the time instant t.

Remark 6: Under Assumption 2, the faulty interceptors are

allowed to send any value as a time-to-go estimate to their out-

neighbors. If a fault happens during the engagement, we do not

assume the faulty interceptors know the time-to-go estimates

of other interceptors.

Remark 7: In implementations, F is estimated according

to the communication network reliability, the failure rate of

interceptors and the robustness of RCGL that we want to
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Fig. 4. Communication topology G1.

achieve. Note that we can get the maximum feasible value of

F if the communication network has been set up. Furthermore,

there is a tradeoff between the communication load and the

robustness of RGCL. In general, the RGCL with larger F will

have a higher communication cost. In this brief, we assume

F is available. Specific steps for constructing a (r, s)-robust

graph are given in [10].

Remark 8: In light of the existing cooperative guidance

laws, there are only a few results cover the simultaneous

arrival under fault conditions ( [6], [7]). These results all

based on the assumptions that faulty interceptors can still

reach the target (i.e., the faulty interceptor is still controllable)

and all the interceptors send correct time-to-go estimates to

their out-neighbors. However, when faulty interceptors can not

reach the target (e.g., actuator fault happens, ai = 0 at all

times) or faulty interceptors keep sending incorrect time-to-

go estimates to their out-neighbors, the existing cooperative

guidance laws can not guarantee the simultaneous arrival for

normal interceptors. In fact, in the worst case, the normal

interceptors which influenced by faulty interceptors can not

even reach the target. Different from these existing guidance

laws, by virtue of the embedded local filtering algorithm, the

RCGL filters the undesirable effects of faulty interceptors and

achieves the simultaneous arrival between normal interceptors.

V. NUMERICAL SIMULATION

In this section, simulation studies are carried out to inves-

tigate the characteristics of RCGL. Consider an engagement

scenario that 5 interceptors attack a single stationary target

with initial conditions shown in Table I. The communication

topology G1 between interceptors is shown in Fig. 4. The com-

munication topology G1 is (2, 2)-robust according to Definition

1. During the engagement, Interceptor 3 is destroyed by the

defense system of the target at 3 s.

A. Guidance Performance Analysis for RCGL

The parameters of robust guidance law are chosen as

τ = 0.05 s, Ns = 3 and k1 = · · · = k5 = 3.5. The simulation

results performed with RCGL are shown in Fig. 5. As it is

shown, when Interceptor 3 is intercepted at 3 s, a3 becomes

0 m/s2 and the updating of t̂go,3 stops. From Figs. 5(b) and

5(c), we can see that time-to-go estimates of normal intercep-

tors still reach an agreement after Interceptor 3 is intercepted;

the RCGL achieves simultaneous arrivals by reshaping the

trajectories of interceptors. In Fig. 5(d), we can see that there

are some oscillations in the acceleration commands between

3 s and 6 s, which are caused by the local filtering actions

of RCGL. The range of acceleration commands of normal

interceptors are −92.3 m/s2 ≤ ai ≤ 54.3 m/s2. In Fig.

6, we can observe that, before time-varying navigation gains

achieve consensus, the normal interceptors with larger time-

to-go estimates have larger time-varying navigation gains and

the normal interceptors with smaller time-to-go estimates have

smaller time-varying navigation gains. Then the time-varying

navigation gains Ns

(

1 + ki
∑

j∈Ri(tk)
wij(tk)

(

t̂go,i(tk) −

t̂go,j(tk)
)

)

converge to a constant after 15 s, and the RCGL

becomes PN with a navigation gain Ns = 3. The impact times

Ti and initial time-to-go estimates t̂go,i(t0) are listed in the

Table II. The impact times of normal interceptors are about

33.4 s and the dispersion of impact times is about 0.09 s.

The RCGL reduces the impact time dispersion and achieves

a simultaneous arrival. Note that the impact times Ti of nor-

mal interceptors are located within
[

min{t̂go,i(t0), ∀i ∈ N} ,

max{t̂go,i(t0), ∀i ∈ N}
]

, which can be seen as a safety

condition.

B. Comparison with other cooperative guidance law which

has a fault diagnosis procedure

For the sake of guidance performance comparisons, a coop-

erative guidance law without local filtering algorithm is chosen

as

ai(t) = Ns

(

1 + ki
∑

j∈Vi

w̄ij

(

t̂go,i(tk) − t̂go,j(tk)
)

)

Viλ̇i,

(7)

where,

w̄ij(tk) =







αij
∑

j∈Vi
αij

, ∀j ∈ Vi,

0, otherwise.

Each interceptor is integrated with a fault diagnosis procedure

which can detect the faulty interceptor and reorganize the

communication between normal interceptors.

All parameters are chosen to be the same as that of Section

V-A. Suppose that the fault diagnosis procedure needs 8 s

to detect the fault and reorganize communications between

normal interceptors (i.e., the fault diagnosis procedure ac-

complishes at 11 s). The simulation results in Fig. 7 show

that guidance law (7) can achieve the simultaneous arrival by

adding a fault diagnosis procedure. However, the trajectories

of t̂go,i and ai are strong influenced by the misbehaviors of

Interceptor 3 during 3 s to 11 s. In Fig. 7(b), the time-to-go

estimate of Interceptor 3 becomes a leader, and all time-to-go

estimates of normal interceptors try to follow the yellow line

(during 3 s to 11 s). As depicted in Figs. 7(c) and 7(d), the

accumulated errors in the time-to-go estimates of normal inter-

ceptors cause high acceleration commands ai and hence distort

engagement trajectories. The range of acceleration commands

of normal interceptors are −92.3 m/s2 ≤ ai ≤ 69.87 m/s2.

The control costs
∫ Ti

t0
|ai| dt of two guidance laws are shown

in Fig. 8. The guidance law (7) use more control efforts than

RCGL, since the normal interceptors take detours before fault

diagnosis procedure accomplishes. The impact times Ti and

initial time-to-go estimates t̂go,i(t0) are listed in the Table

III. Note that the impact times of interceptors are about 38.4
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TABLE I
ENGAGEMENT SCENARIO FOR 5 INTERCEPTORS

Parameters Interceptor 1 Interceptor 2 Interceptor 3 Interceptor 4 Interceptor 5

Initial range-to-go(km) 7 7.5 7 10 8

Initial position(km) (−6.06,−3.5) (−7.05,−2.57) (−7, 0) (−9.4,−3.42) (−7.88, 1.39)

Initial heading error(deg) −20 10 −15 15 15

Velocity(m/s) 240 225 220 325 240

Target position (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
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Fig. 5. Simulation results of RCGL. (a) Range-to-go ri, ∀i = 1, · · · , 5; (b) Time-to-go estimates t̂go,i, ∀i = 1, · · · , 5; (c) Trajectories of interceptors; (d)
Acceleration commands ai, ∀i = 1, · · · , 5.
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Fig. 6. Time-varying navigation gains Ns

(

1 + ki
∑

j∈Ri(tk)
wij(tk)

(

t̂go,i(tk)− t̂go,j(tk)
)

)

, ∀i = 1, · · · , 5.

s, which is larger than max{t̂go,i(t0), ∀i ∈ N}. In fact, the

impact time of the normal interceptor under guidance law (7)

is related to the time of fault diagnosis; if the time of fault

diagnosis is longer, the impact time will be delayed. If the fault

diagnosis fails, the guidance law (7) can not even guarantee

TABLE II
IMPACT TIME OF NORMAL INTERCEPTORS UNDER RCGL

Interceptor 1 Interceptor 2 Interceptor 4 Interceptor 5

Initial time-to-go(s) 29.49 33.43 30.96 33.54

Impact time(s) 33.42 33.35 33.44 33.38

Impact time dispersion(s) 0.09

normal interceptors reaching the target.

The above simulation results demonstrate that RCGL has

better performances when faults happen during the engage-

ment. The simultaneous arrival can be achieved without any

additional fault diagnosis procedure, which enhances the reli-

ability of the cooperative guidance.

VI. CONCLUSIONS

This brief considers a new robust cooperative simultaneous

arrival problem. A distributed cooperative guidance law RCGL

is proposed based on discrete-time communications. By virtue

of a novel local filtering algorithm, the RCGL can achieve a

simultaneous arrival between normal interceptors without the
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Fig. 7. Simulation results of cooperative guidance law (7) with a fault diagnosis procedure. (a) Range-to-go ri, ∀i = 1, · · · , 5; (b) Time-to-go estimates
t̂go,i, ∀i = 1, · · · , 5; (c) Acceleration commands ai, ∀i = 1, · · · , 5; (d) Trajectories of interceptors.
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Fig. 8. Control cost of two guidance laws. (a) RCGL; (b) Cooperative guidance law (7) with fault detection procedure.

TABLE III
IMPACT TIME OF NORMAL INTERCEPTORS UNDER GUIDANCE LAW (7)

WITH A FAULT DIAGNOSIS PROCEDURE

Interceptor 1 Interceptor 2 Interceptor 4 Interceptor 5

Initial time-to-go(s) 29.49 33.43 30.96 33.54

Impact time(s) 38.54 38.41 38.42 38.42

Impact time dispersion(s) 0.13

knowledge of faulty interceptors (or any fault diagnosis pro-

cedure). Furthermore, the impact times of normal interceptors

are upper bounded by the maximum initial time-to-go estimate

of normal interceptors, regardless the network connections.

Compared to the existing cooperative guidance laws, RCGL

is fully distributed and requires no additional information;

thus it reduces the communication burden in practice im-

plementations. The comparison of simulation results shows

that the RCGL can enhance the reliability of the cooperative

guidance. Future research may include extensions to the case

with manoeuvrable targets.

APPENDIX

PROOF OF THEOREM 2

Theorem 1 shows that {M(tk)} is nonincreasing and

{m(tk)} is nondecreasing, respectively. Since every

bounded monotone sequence of real numbers has a

limit, limk→∞ M(tk) and limk→∞ m(tk) exist. Define

limk→∞ M(tk) = AM and limk→∞ m(tk) = Am, we will

show AM = Am by seeking a contradiction.

Suppose that AM 6= Am, we can define ǫ0 = AM−Am

2 .

For any ǫi ∈ R, we define TM (tk, ǫi) = {i ∈ V : T̂i(tk) >
AM − ǫi} and Tm(tk, ǫi) = {i ∈ V : T̂i(tk) < Am+ ǫi}. Note

that TM (tk, ǫi) contains normal and faulty interceptors that
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have T̂i(tk) larger than AM − ǫi, Tm(tk, ǫi) contains normal

and faulty interceptors that have T̂i(tk) smaller than Am + ǫi.

Define a positive constant ǫ < min{ǫ0,
αN

1−αN ǫ0}, where

α ∈ (0, 1) is a constant to be defined latter. Define tkǫ
as the

time-step such that M(tkǫ
) < AM + ǫ and m(tkǫ

) > Am − ǫ,
∀tk > tkǫ

; the existence of tkǫ
is guaranteed by the conver-

gence of {M(tk)} and {m(tk)}. It is obvious that TM (tkǫ
, ǫ0)

and Tm(tkǫ
, ǫ0) are nonempty and TM (tkǫ

, ǫ0)∩Tm(tkǫ
, ǫ0) =

∅. Note that communication graph G is (F +1, F +1) robust,

and the number of faulty interceptors is upper bounded by F ;

if there are normal interceptors in TM (tkǫ
, ǫ0) and Tm(tkǫ

, ǫ0)
(i.e., N∩TM (tkǫ

, ǫ0) 6= ∅ and N∩Tm(tkǫ
, ǫ0) 6= ∅), there is at

least one of these normal interceptors that has at least F+1 in-

neighbors outside of its set. Note that N∩TM (tkǫ
, ǫ0) 6= ∅ and

N ∩Tm(tkǫ
, ǫ0) 6= ∅ are true. Otherwise, we have t̂go,i(tkǫ

) ≥
AM+Am

2 , ∀i ∈ N or t̂go,i(tkǫ
) ≤ AM+Am

2 , ∀i ∈ N , which

contradicts the fact that {M(tk)} and {m(tk)} monotonously

converge to AM and Am respectively. Without loss of gener-

ality, suppose that the normal interceptor i ∈ TM (tkǫ
, ǫ0)∩N

has at least F + 1 in-neighbors outside of TM (tkǫ
, ǫ0). Then,

we have T̂j(tkǫ) ≤ AM − ǫ0, ∀j ∈ Vi ∩ ∁VTM (tkǫ
, ǫ0), where

∁VTM (tkǫ
, ǫ0) denotes the relative complement of TM (tkǫ

, ǫ0)
with respect to V . Since normal interceptor i removes at

most F in-neighbors which are in ∁VTM (tkǫ
, ǫ0), at least one

interceptor belongs to Vi ∩ ∁VTM (tkǫ
, ǫ0) will be retained in

Ri(tkǫ
). Assume that none of σi, ∀i ∈ N reaches zero before

normal interceptors reach the target (i.e, there exists a positive

constant Km, such that Ki > Km). Together with (6), we

have that the impact time estimate of the normal interceptor i
at time tkǫ+1 has the following property

T̂i(tkǫ+1) ≤ (1−
Km

N
)M(tkǫ+1) +

Km

N
(AM − ǫ0)

≤ AM − αǫ0 + (1− α)ǫ ≤ AM − ǫ1, (8)

where ǫ1 = αǫ0 − (1 − α)ǫ and α = Km

N
. Since 0 < Km <

Ki < 1, we have α ∈ (0, 1) and ǫ1 < ǫ0. To get (8), we

have used the fact that wij(·) ≥
1
N

. Note that for any normal

interceptor j /∈ TM (tkǫ
, ǫ0), we still have T̂j(tkǫ+1) ≤ AM −

ǫ1; since such a interceptor j will use its own impact time

estimate T̂j(tkǫ
) at tkǫ+1. Similarly, if a normal interceptor

p ∈ Tm(tkǫ
, ǫ0) has at least F + 1 in-neighbors outside of

Tm(tkǫ
, ǫ0), we can obtain

T̂p(tkǫ+1) ≥ Am + αǫ0 − (1− α)ǫ ≥ Am + ǫ1.

Furthermore, for any normal interceptor q /∈ Tm(tkǫ
, ǫ0), we

still have T̂q(tkǫ+1) ≥ Am + ǫ1.

Based on the above analysis, we know that at least one of

following statement is true if both N ∩ TM (tkǫ
, ǫ0) 6= ∅ and

N ∩ Tm(tkǫ
, ǫ0) 6= ∅:

1) At least there is one normal interceptor i ∈ TM (tkǫ
, ǫ0)

whose T̂i(tkǫ
) decreases to AM − ǫ1 (or below)

at tkǫ+1. Then, we have ‖TM (tkǫ+1, ǫ1) ∩N‖ <
‖TM (tkǫ

, ǫ0) ∩N‖, where ‖·‖ denotes the cardinality

of a set.

2) At least there is one normal interceptor j ∈ Tm(tkǫ
, ǫ0)

whose T̂j(tkǫ
) increases to Am + ǫ1 (or above)

at tkǫ+1. Then, we have ‖Tm(tkǫ+1, ǫ1) ∩N‖ <
‖Tm(tkǫ

, ǫ0) ∩N‖.

Since ǫ1 < ǫ0, we have TM (tkǫ+1, ǫ1) ∩ Tm(tkǫ+1, ǫ1) = ∅.

Define ǫj recursively as ǫj = αǫj−1 − (1− α)ǫ, ∀j ≥ 1, one

can obtain ǫj < ǫj−1 and TM (tkǫ+j , ǫj)∩Tm(tkǫ+j , ǫj) = ∅. If

there are still normal nodes in TM (tkǫ+j , ǫj) ∪ Tm(tkǫ+j , ǫj),
we can repeat the above analysis at tkǫ+j+1, then we have

either ‖TM (tkǫ+j+1, ǫj+1) ∩N‖ < ‖TM (tkǫ+j , ǫj) ∩N‖, or

‖Tm(tkǫ+j+1, ǫj+1) ∩N‖ < ‖Tm(tkǫ+j , ǫj) ∩N‖, or both.

Subsequently, there exists a time-step tkǫ+k̄ such that N ∩
TM (tkǫ+k̄, ǫk̄) = ∅ or N ∩ TM (tkǫ+k̄, ǫk̄) = ∅. Since

‖N ∩ TM (tkǫ
, ǫ0)‖ + ‖N ∩ Tm(tkǫ

, ǫ0)‖ ≤ N , we obtain

K̄ < N . For the case N ∩ TM (tkǫ+k̄, ǫk̄) = ∅, we can

obtain that the impact time estimates of all normal intercep-

tors satisfy T̂i(tkǫ+k̄) ≤ AM − ǫk̄, ∀i ∈ N ; for the case

N ∩Tm(tkǫ+k̄, ǫk̄) = ∅, we can obtain that the impact time es-

timates of all normal interceptors satisfy T̂i(tkǫ+k̄) ≥ Am+ǫk̄,

∀i ∈ N .

In the following analysis, we will show that ǫk̄ > 0, which

contradicts the fact that {M(tk)} monotonically converges

to AM (in the first case) or that {m(tk)} monotonically

converges to Am (in the second case). Note that

ǫk̄ =αǫk̄−1 − (1− α)ǫ

=α2ǫk̄−2 − α(1− α)ǫ− (1− α)ǫ

=αk̄ǫ0 − (1− αk̄)ǫ ≥ αN ǫ0 − (1− αN )ǫ.

Since ǫ < αN

1−αN ǫ0, we have ǫk̄ > 0, which provides the

contradiction. Thus, we can conclude that AM = Am, the

impact time estimates T̂i, ∀i ∈ N converge to a same value.
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