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Abstract. We are interested in the performance of currently available algorithms for the detection of cracks in the
specific context of aerial inspection, which is characterized by image quality degradation. We focus on two widely
used families of algorithms based on minimal cost path analysis and on image percolation, and we highlight their
limitations in this context. Furthermore, we propose an improved strategy based on a-contrariomodeling which is
able to withstand significant motion blur due to the absence of various thresholds which are usually required in
order to cope with varying crack appearances and with varying levels of degradation. The experiments are per-
formed on real image datasets to which we applied complex blur, and the results show that the proposed strategy
is effective, while other methods which perform well on good quality data experience significant difficulties with
degraded images. © 2015 SPIE and IS&T [DOI: 10.1117/1.JEI.24.6.061119]
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1 Introduction

Either for road quality assessment, for the examination of
buildings or for the inspection of critical infrastructure,
an automated framework aimed at the detection of surface
defects (cracks, pitting corrosion, rutting, and so on) may
have a significant positive impact in terms of cutting down
maintenance costs and enhancing security. One major
reason supporting automation is that human supervision is
prohibitively costly for large scale, frequent tasks required
by infrastructure surveillance. Detecting and monitoring the
degradation level in order to decide upon the necessity of
corrective measures are also subjective processes requiring
further deliberation, and a solution operating with minimal
human intervention is vital for scaling up the maintenance
cycle.

Among surface defects, cracks exhibit a high level of
pervasiveness on different mediums which are affected by
various phenomena such as hygrothermal aging and fatigue.
However, their relatively similar appearance makes image
processing an ideal tool for detection, all the more so as
cameras are affordable sensors which are also ideal for non-
destructive examination (NDE).

For these reasons, there is a large body of work aimed at
automating the problem of crack detection.1–5 More recently,
robotic systems and unmanned aerial vehicles (UAVs) have
further increased the quantity of data to be processed for
two main reasons. First of all, the operating cost for road
network inspection is potentially lower than that of using
monitoring vehicles, especially if the navigation process is
greatly automated. Also, UAVs have the ability to approach
scenes which would otherwise be difficult to access or even
unreachable under safe circumstances.

The main challenges in this field are related to navigation
since different levels of positioning precision are required for

the detection of different types of defects. Currently, GPS
and inertial sensors allow for navigating accurately enough
in order to highlight surface deformations of the order of
1 cm, or in order to follow a desired trajectory with an
error bound of 0.5 to 1 m.6,7 In order to detect finer cracks
in asphalt or in concrete, a better localization of the
embedded imaging sensor is necessary, particularly with
respect to the analyzed surface. A closer working distance
using an aerial device presents the main disadvantage of
degrading the image quality as a result of various phenomena
specific to image recording in the presence of imprecise
relative localization and/or significant camera dynamics,
such as motion blur, defocus, or fast illumination variations.
These degradations represent a significant drawback since
they have a direct impact on the salience of cracks, which
are often challenging to detect.

Our work addresses the current gap between robust
pattern recognition algorithms which are suited for complex
detection tasks, and their evaluation in conditions which
are more representative for NDE using automated systems
exhibiting fast, imprecise dynamics. Our main assumption
is that while there are multiple hardware- and software-
based strategies available for coping with high frequency
vibrations, out of focus positioning, and motion blur, a
significant level of degradation will continue to be present.
It is, therefore, important to identify crack detection strate-
gies which are resilient to degradations specific to UAV-
borne image recording.

In order to further emphasize the interest of our investi-
gation, we note in the literature a recent number of works
which focus on validating the functionality of a robotic
examination system.8–12 Very few works (e.g., Ref. 13) con-
sider in their experimental validation the correlation between
acquisition factors and the deterioration in detection perfor-
mance; the experimental evaluation is usually performed
using basic processing tasks on images acquired in favorable
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conditions. In contrasting, a distinct and significant body of
work deals with crack detection as a pattern recognition
problem (see, e.g., the following section, or work14 for a
review), and assumes ideal or at least adequate image quality.

Recently, some approaches denoted as a-contrario strat-
egies have been proposed in order to detect structures in an
image by modeling the absence of structures rather than the
structures themselves (hence the name a-contrario). The
basic idea is to detect what contradicts a naive model repre-
senting the signal in the absence of structures, i.e., represent-
ing noise or background. The advantage is that this naive
model may be very approximate provided that it is false
in the presence of a structure. Then due to the approximate
nature of the naive model, a subsequent advantage of these
approaches is their robustness to the model parameter(s).
Finally, reformulating the problem of detection in terms
of a problem of maximizing the contradiction relative to
a naive model allows us to avoid relying on any threshold
parameter. In this paper, we propose such an approach,
based on a-contrario decisions, in order to detect and to
reconstruct the crack, taking advantage of their robustness.
Since we avoid tuning various method parameters, in order to
grasp defect properties which may be less obvious according
to the extent of image quality loss, we are able to formulate
the detection as a structural search at image level, as opposed
to methods which cluster local detections.

In Sec. 2, we first introduce some classical approaches
originating from the pattern recognition community which
address the problem of crack detection, and we highlight
their limitations. Then we present in Sec. 3 the framework
for our strategy and enumerate the steps of the detection
algorithm we propose. Section 4 presents the results we
obtain in the presence of image degradation compared to
reference methods, and finally, the conclusion is presented
in Sec. 5.

2 Related Work

Crack detection remains a challenging task mainly because
the structure of interest is often scarcely represented in the
image space, while at the same time exhibiting radiometric
properties which are shared with other elements, such as
shadows, holes, and mold. Although some solutions have
been proposed15–17 for identifying “unusual” structures in
a broad sense, the community has settled on a discriminative
definition which considers the crack as “a thin, linear object,
mostly composed of dark pixels.” Proposed algorithms
usually perform crack detection in a two-step process.

Local analysis: In a first stage, a local analysis is per-
formed exhaustively in the image space based on the proper-
ties of local minimum paths, or by employing alternative
techniques running in a local window, such as mathematical
morphology, spectral analysis, covariance estimation, or
saliency evaluation.18–21 The objective of this first step is
to associate to each image location a numerical indicator
of being part of a crack. This first step does not entirely
solve the detection problem by itself since areas of the ana-
lyzed surface may exhibit crack-like properties at a fine scale
while not belonging to an actual crack structure.

Reconnection (also denoted as seed-growing): A second
step is required in order to actually reconstruct the cracks
according to the definition above by imposing a geometric
coherence upon the crack membership map provided by

the first step. As its name recalls, this step is necessary
not only for pruning the false positives generated by the
local analysis but also for identifying crack parts which
are less apparent but which extend other obvious parts by
presenting at the same time an acceptable level of “atypical-
ness” compared to their length.

Reconnection is a subjective process, and strategies vary
significantly. Some works ignore this step altogether and rely
on fine-tuning the local detection4,22 in order to eliminate
false positives. Reconnection may be performed on a binary
map2 provided by the local analysis, but in this case the
process relies only on geometric considerations. Another
solution is represented by an iterative process1,23 which
updates the probabilities’ values of pixels being part of
a crack. Finally, one may rely on computing minimal paths,
this time in the whole image space, between potential crack
parts; then ad hoc rules or a strategy minimizing a connec-
tion cost24,25 may be used in order to accept or reject the
potential paths.

Both processing steps require a significant amount of
tuning via thresholding in order to account for the specificity
of cracks (size, singularity, and regularity), as well as for
the compromise which is intended in terms of noise versus
coarseness of detection. Unfortunately, in the specific con-
text of UAV data acquisition, the image degradation has
an added negative impact upon the processing steps, and
implicitly upon the final result of the detection. In the follow-
ing paragraphs, we will try to highlight more clearly the
limitations of related works and also the mechanisms that
degrade the performance in the UAV context.

The performance of the local analysis is actually of prime
importance; therefore, this step constitutes the distinctive
trait among different approaches. In the following parts of
this section, we will detail two widely used strategies
employed for local analysis in order to highlight the chal-
lenges raised by image degradation.

2.1 Minimum Path-Based Strategies

Free-form anisotropy (FFA) is a defect detection approach22

which is based on the assumption that if a pixel belongs to a
defect, then a significant minimal path traverses that pixel,
the cost being represented by pixel intensities. Therefore,
for a given pixel location l and for a fixed local window,
we consider a set of four constrained minimal paths travers-
ing the location, i.e., up–down (UD), left–right (LR), upper
left–lower right (ULLR), and upper right–lower left (URLL).
In order to compute these minimal paths efficiently, direc-
tional subpaths originating from the central pixel are
imposed each time by two opposing pairs of three-connec-
tivity oriented neighborhoods. If we assume that a fissure
corresponds to a minimal path which exhibits statistical
properties which are different from those of the other three
“regular” minimal paths, we dispose of a crack detection
strategy which does not require any training data. In the
first two images of Figs. 1(a) and 1(b), we illustrate the four
minimal paths (red for UD, yellow for LR, white for ULLR,
and blue for URLL) in the case of a crack pixel, and that of
a normal area pixel, respectively. The blue square indicates
the size of the analysis window. Note that for the crack pixel,
the yellow path is able to accurately follow the crack, while
two other paths follow it only partially due to the imposed
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connectivity, and a fourth path is constrained to explore only
normal areas.

Let us denote by s1 ¼ ðμ1; σ21Þ and by s2 ¼ ðμ2; σ22Þ the
mean and variance of pixel radiometric values for the min-
imal cost path (among the four of them), and, respectively,
for the three others combined. Avila et al.22 rely on a degree
of coherence h between two sources adopted from the
possibility theory. A low degree of coherence, close to 0,
indicates that the first source is different from the second,
thus in our situation, a low value of h implies that the
pixel may very well be located on a genuine fissure.

A final step is necessary in order to get a binary assign-
ment at pixel level related to the presence of a defect. For the
input image locations li ∈ I, hðliÞ ∈ ½0;1�, thus a threshold-
ing step is required. Avila et al.22 apply a hysteresis threshold
which is performed using a multiclass variant of the Otsu
algorithm.

Adjustments for our problem: In our experiments, we
replaced the degree of coherence, since a distance between
two distributions may be approached straightforwardly by
computing the Bhattacharyya distance DBðs1; s2Þ ∈ ½0;∞Þ,
then the Bhattacharyya coefficient BCðs1; s2Þ ¼ e−DBðs1;s2Þ

that we will employ for the same purposes is h.
Impact of image degradation: FFA is based on the

assumption that the local crack path exhibits different stat-
istical properties. This assumption is used for identifying
cracks via thresholding the value of hðliÞ; the relevance of
this step is directly affected by blurring phenomena which
clump together the values of s1 and s2.

2.2 Image Percolation

For this approach, we mainly consider the following refer-
ence.4 The percolation model is based on the natural
phenomenon of liquid permeation. In this analogy, pixels
within the analysis window are percolated, starting with
the central pixel. Their progressive inclusion in the percola-
tion set around the initial pixel is based on a comparison with
a dynamic threshold; the pixel values must be lower than
the threshold in order to be percolated, but the threshold
value increases progressively during the iterative percolation
process. In this manner, if the pixel does lie on a crack, the
percolation process will build up a path along the crack
toward the border of the local analysis window [Fig. 1(c)]
while in the normal case the percolation will tend to evolve
isotropically [Fig. 1(d)]. A circularity feature computed on
the resulting percolation set indicates whether a potential

crack is present (linear structure) or not (rather circular
structure).

Impact of image degradation: The percolation method
and the computationally efficient optimization are based
on the assumption that a noncrack pixel exhibits an isotropic
diffusion at an early stage of the percolation process.
However, image degradation brings the crack pixel values
closer to the ones of neighboring pixels and promotes
an increased level of isotropic percolation. In turn, the per-
colation analysis will not be able to clearly differentiate
crack pixels from homogeneous ones.

2.3 Limitations and Immediate Perspectives

As we previously stated, these approaches provide a map of
indicators, and the resulting map has to be thresholded and
then postprocessed. Here, we are more interested in estimat-
ing the robustness of this first step of local analysis with
respect to image degradation, or, stated differently, we
note that if this first step fails significantly then the recon-
nection is futile. Recently, some works have been pro-
posed25,26 which implicitly place more weight on the
reconnection step; the strategy is to select a significant set
of potential crack pixels as seeds at a local level, connect
them in a minimal path network at the image level, then
identify the cracks as a subset of the resulting network.
Compared to the previous strategies, this one exhibits
some major advantages. First, it relies jointly on global geo-
metric and photometric constraints in order to identify the
cracks; second, the computation of the minimal paths may
be performed efficiently. However, the nontrivial aspect
which remains to be dealt with is the discontinuity of cracks
in certain areas. In Ref. 25, the cost function associated to
a path from source s to destination d

EQ-TARGET;temp:intralink-;e001;326;214Cðs; dÞ ¼ 1

cardðs → dÞ
X

d

m¼s

IðmÞ; (1)

is nonmonotonic, thus it is up to the user to tune the algo-
rithm in order to favor short, distinctive cracks, or long ones,
which lack potentially specific characteristics locally. As
a result, this behavior is controlled by four thresholds, and
although they are inferred automatically from image and cost
function statistics, the selection process remains subjective
and sensitive to changes in image characteristics. In another
related work,26 a local distance histogram27 is used for seed
detection, then crack elements are formed, linked, and finally

Fig. 1 Behavior of (a, b) free-form anisotropy (FFA) and (c, d) percolation local analysis methods for
crack pixels and normal areas, respectively.
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pruned. Again, the linking and pruning parts make empirical
assumptions about what cracks to connect or to remove
(validation area for potential links and length for pruning
branches). Although these assumptions are adapted for stan-
dard crack appearance, they are based on thresholds and
they miss defects which are nonetheless salient compared to
their background.

We emphasize the fact that our detection algorithm is
positioned between algorithms which perform the main
processing step in a local window4,22 iteratively, and global
detection algorithms, which rely on a costly optimization
step in order to enforce constraints on the result at image
level.26,28 Coupled with the NFA process, the dynamic pro-
gramming (DP) strategy allows us to avoid producing local
decision errors (i.e., selecting small salient objects or missing
fine connections between large cracks), while at the same
time maintaining a low computational complexity.

2.4 Main Contributions

The main contribution of our work is that we propose a solid
statistical framework for coping with the analysis of variable
length minimal paths which avoids proposing heuristics for
costs such as the one in Eq. (1). Instead, the a-contrario strat-
egy identifies robustly interesting structures, and thus allows
us to be robust in the presence of an arbitrary degradation of
image quality. We emphasize the following points that allow
our proposed algorithm to exhibit improved robustness to
data acquired with degraded quality:

1. an a-contrario-based algorithm for seed selection at
local level,

2. an a-contrario-based reconnection step which identi-
fies minimal paths by optimizing their “atypicalness”
jointly in terms of length and appearance with respect
to a statistical background model.

The current work builds up on an initial investigation29

where we were interested in the basic applicability of
an a-contrario reconnection, compared to a local (FFA) and
also a complex (marked point process), global approach. In
the present version, we perform quantitative comparisons,
refine our main algorithm, and add preprocessing modules
which allow us to test using several datasets.

A flowchart for visualizing the data flow of our algorithm
is provided in Fig. 2, and the following section provides the
details regarding the different modules. The three main steps
identified in Fig. 2 could be substituted by other processing

with the same input and output. For instance, the preprocess-
ing could be changed depending on the features of the mate-
rials which are being investigated. The seed selection can
either be based only on pixel gray level values (as proposed)
or involve neighborhood tests (e.g., local minima). However,
we found it more consistent to use the same probabilistic
framework all along the study.

3 Proposed Approach

3.1 Data Features

Cracks not only have a different intensity level compared to a
normal surface, they are also typically found as thin lines in
an image. Space scales and Hessian matrix have been first
proposed30,31 to detect ridges, thus second-derivative filters
are widely used32,33 to extract such linear structures. In
order to compute derivatives along different orientations,
several approaches have been proposed such as morphologi-
cal path operators34 or the steerable filters. These latter, first
proposed by Freeman and Adelson,35 are a class of filters in
which a filter of arbitrary orientation is obtained as a linear
combination of a set of basis filters. Due to the linearity of
the convolution, the result of the filter at angle θ can be
computed as a linear combination of basis filters. In their
work, Jeong et al.36 used a steerable filter to evaluate the
relevance of the orientation of a segment representing a
subpart of the face wrinkles. The basis filter set they used
is provided by the second derivatives of the two-dimensional
(2-D) centered Gaussian function. Denoting fg, the one-
dimensional (1-D) centered Gaussian function fgðtÞ ¼
1∕

ffiffiffiffiffi

2π
p

σ expð−t2∕2σ2Þ, for any pixel s ¼ ðx; yÞ where
x and y are the column and row axes, respectively,
assuming independence between x and y, fGðsÞ ¼ fgðxÞ ×
fgðyÞ and

EQ-TARGET;temp:intralink-;e002;326;379G2ðsÞ ∝
h

∂2fGðsÞ
∂x2

∂2fGðsÞ
∂x∂y

∂2fGðsÞ
∂y2

i

⊺
; (2)

EQ-TARGET;temp:intralink-;e003;326;342 ∝
h

�

x2

σ4
− 1

σ2

�

fGðsÞ x×y

σ4
fGðsÞ

�

y2

σ4
− 1

σ2

�

fGðsÞ
i

⊺
: (3)

This formulation is more general than that in Ref. 35
Appendix H, since σ appears as a scale parameter. In addi-
tion, normalization coefficients are not considered for the
reasons which will be stated below. Thus, the interpolating
function of orientation is, according to Ref. 35 Appendix H,
kðθÞ¼ ½cos2θ −sin2θ sin2θ �⊺. In practice, once the three
images, noted G2;1 � I, G2;2 � I, and G2;3 � I, corresponding

Fig. 2 A comprehensive flowchart of the different processing steps. The preprocessing part is introduced
in Sec. 3.1, and Algorithms 1 and 2 are detailed in Sec. 3.5. Algorithm 3, also presented in Sec. 3.5,
corresponds to the entire flowchart.
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to the filtering of an original image I by each of the three
components of G2 are computed, the result of the second-
derivative filter associated with any orientation θ can
be obtained equivalently by filtering the image by filter
G2;θðsÞ ¼ kðθÞ⊺G2ðsÞ or as the linear combination of pre-
vious images weighted by kðθÞ components: G2;θ � I ∝
ðG2;1 � IÞcos2 θ − ðG2;2 � IÞ sin 2 θ þ ðG2;3 � IÞsin2 θ.

Figure 3 shows the result of the application of the steer-
able filter to a crack image [Fig. 3(a)] with θ ∈ f0; π∕2;
π∕4;3π∕4g. We see that the crack edges appear or not
depending their direction with respect to the orientation θ.

Finally, since searching for thin, linear structures in the
images boils down to searching structures with a high gra-
dient norm in only one direction, we compute the maximum
(over the investigated orientations) of the ratio between the
filter response in one direction θ and filter response in the
perpendicular direction and we define

EQ-TARGET;temp:intralink-;e004;63;438rIðsÞ ¼ −maxθ
jG2;θ � IðsÞj
jG2;θþπ

2
� IðsÞj : (4)

In Eq. (4), we take the opposite (or any involution reversing
the ordering) of ratio maximum since further processing
involves a minimization. In addition, in our case, θ values
are subsampled so that θ ∈ f0; π∕4; π∕2;3π∕4g.

Image rI may be rather noisy. In addition, in the case of
crack detection, the knowledge that crack pixels are dark can
be used as a strong prior. Then for crack estimation, we con-
sider the image YI that is a linear combination between
image I and rI image after dynamic normalization: denoting
maxr ¼ maxsfrIðsÞg

EQ-TARGET;temp:intralink-;e005;63;281YIðsÞ ¼ IðsÞ − α ×

�

255

maxr
rIðsÞ

�

: (5)

Finally, in order to be robust to shadow, I is not the origi-
nal image of the output of a preprocessing step to remove
large scale nonstationary effects. In this work, this prepro-
cessing step is simply a background subtraction where the
background is the result of the Gaussian filtering of an origi-
nal image with parameter σ ¼ 5 performed after a morpho-
logical opening37 of the image (that allows for the removal of
the cracks as thin dark structures and, therefore, for a better
estimation of the background). Let Ĩ denote the I image after
this background subtraction step. Figure 4 shows the back-
ground subtraction result Ĩ ¼ I − fGðσÞ � ϕðIÞ, where ϕð:Þ
denotes the morphological opening operator, the rĨ image,
and the obtained Y Ĩ image. We see that the cracks appear
as connected sets of dark value pixels.

3.2 Probabilistic Measure

In this section, we denote the data image in a generic way by
X. In our application, X will refer to Y Ĩ as defined by Eq. (5),
but the proposed algorithms may be applied to other entry
data. We only assume that X has only positive values: ∀s,
XðsÞ ≥ 0.

In order to evaluate the likelihood that a subset of pixels
(either connected or not as we will see further) corresponds
to a crack, we need a measurement. In this study, we focus on
the number of false alarms (NFA)38 that quantify the number
of cases where a detection may occur only “by chance.” In
order to model the noise rather than modeling the researched
structures (as stated in Sec. 1), we assume a “naive” model
representing the noise (here, the term “naive” emphasizes
the fact that this noise model is simple). Based on this naive
model, we can compute the probability of any observation
including observation of structured data. For instance,
Desolneux et al.38 evaluate the probability that random uni-
form distribution of 2-D points leads to an alignment “by
chance.” However, since any observation with a non-null

Fig. 4 Derivation of the image Y
Ĩ
in (c), used for crack detection as a linear combination of background

subtraction in (a) with Ĩ ¼ I − fGðσÞ � ϕðIÞ [I being shown in Fig. 3(a)], and ratio image r
Ĩ
[Eq. (5)] shown in

(b), here with α ¼ 0.5.

Fig. 3 Responses G2;θ � I of the steerable filter to (a) for four directions of θ: f0; π
2
; π
4
; 3π
4
g in (b) to (e),

respectively.

Journal of Electronic Imaging 061119-5 Nov∕Dec 2015 • Vol. 24(6)

Aldea and Le Hégarat-Mascle: Robust crack detection for unmanned aerial vehicles inspection. . .



probability may occur when increasing the number of ran-
dom draws, the significance of an observation should be
evaluated taking into account the number of draws or pos-
sibilities of occurrence. Thus works39–41 defined the NFA
as the expectation of the number of occurrences of a struc-
tured observation under the assumed naive model and pro-
posed to compute it as the product between the probability
value (under the naive model) and a normalization term
equivalent to the number of tests.

In this study, we intend to detect crack structures. The
naive model is defined to be contradicted in the presence
of a crack. It represents an image without any crack but
that is not necessarily a realistic representation of the back-
ground (which depends on background material, e.g., asphalt
for roads and concrete for walls). Indeed, the naive model
should be simple and involve as few parameters as possible,
otherwise its interest relative to the definition of the structure
model will be low. Following42,43 works, we use a Gaussian
model. In order to handle only one parameter and since the
naive model does not have to be realistic, we simply take
a mean equal to 0 and variance equal to image X second
moment:

Definition 1 (naive model H0). The image X is a random
field of jXj independently centered Gaussian variables
N ð0; σ2Þ with jXj the cardinality of X and σ2 ¼ E½X2ðsÞ�.

Relative to the H0 model, the presence of a crack will be
characterized by the presence, in the image, of a subset D of
pixels presenting surprisingly 0-close values (dark pixels).
If this subset presents a low cardinality, according to H0,
the “surprise” is also low, but when the cardinality of D
increases, the probability of its observation decreases

under H0 hypothesis (even faster than σ2 is large). Then
an actual crack characterized by the presence of a significant
number of dark pixels will be detected as highly improbable.
To compute this probability, we consider the sum of the
square values (SSV) of X on a subdomain D (included in

the set of pixels): υD ¼
P

s∈D½XðsÞ�2. The probability of
observing υD by chance is denoted PH0

ðυDÞ and the NFA

associated with the observation of a subdomain D having
υD SSV is defined by

EQ-TARGET;temp:intralink-;e006;63;298NFAðDÞ ¼ ηðDÞPH0
ðυD; σÞ; (6)

where ηðDÞ is the “number of tests” that is chosen equal to

jDj
�

jXj
jDj

�

as in Ref. 43 [
	

a

b




denoting the binomial coef-

ficient]. It satisfies the constraint41

EQ-TARGET;temp:intralink-;e007;63;219

X

D⊆D

1

ηðDÞ ≤ 1: (7)

Then NFA defined by Eq. (8) depends on parameters
ðυD; jDj; σ; jXjÞ: D is the researched subdomain, υD directly
derives from D and the image X, jXj, and σ only depends on
the image X (respectively, the number of pixels of X and the
second-order moment)

EQ-TARGET;temp:intralink-;e008;63;117NFAðυD; jDj; σ; jXjÞ ¼ ηðDÞ 1

Γ

	

jDj
2




Z

υD∕2σ2

0

e−tt
jDj
2
−1dt;

(8)

where Γ is the Gamma function so that NFA values can be

computed using the incomplete Gamma function Pða; xÞ ¼
1∕ΓðaÞ∫ x

0e
−tta−1dt with a ¼ jDj∕2 and x ¼ υD∕2σ2.

3.3 Number of False Alarms Minimization

Equation (8) provides a criterion to evaluate the significance
of a subset of pixels, denoted as D, in terms of possible
cracks. Then among all subdomains D, we search the
“best candidate” to be a crack or a set of cracks that is,
according to the previous probabilistic measure, the one
that minimizes NFAðυD; jDj; σ; jXjÞ. In this study, the NFA
criterion minimization is performed twice considering
different subsets on subdomains D:

• In the first case, we aim at detecting some seeds of the
crack(s) without considering any spatial constraint so
thatDmay be any subset of pixels. Let us denote D̂s as
the result of this first minimization.

• In the second case, we aim at reconstructing the crack
(s) from the seed(s) taking into account the assumption
of connectivity of the crack, so that D corresponds to
connected subsets of pixels derived from seeds. Let us
denote D̂cc as the result of this second minimization.

The minimization of Eq. (8) should be performed consid-
ering any D belonging to the set SD of the considered sub-
domains, which is generally intractable. For instance, in the
first minimization D̂s is chosen among 2jXj subdomains.
However, fortunately, we do not have to consider all these
subdomains in the minimization process since, given the car-
dinality of D, the NFA minimum value is achieved by the
subdomain with the lowest SSV υD. Hence, the minimization
is performed in two steps:

1. For each cardinality jDj, find the minimal υD values. In
the absence of constraints on SD, a υD minimum value
is achieved by the jDjminimal values of X. The output
of this first step is thus a function υX∶N → R.

2. Find the minimal NFA value varying jDj: NFAmin ¼
minn∈f1: : : jXjg NFA½υXðnÞ; n; σ; jXj�.

In order to illustrate NFA minimization, let us anticipate
the results. Figure 5 shows the NFA curves and crack detec-
tion images in the case of the example shown in Fig. 3(a).
The υX function is plotted in Fig. 5(a) which also shows the
NFA function NFA∶n ↦ NFA½υXðnÞ; n; σ; jXj� versus n
(representing jDj). We see that the transformation from υD
values to NFAvalues allows for the emergence of a minimum
clearly indicating the cardinality of D̂s (6750 in the presented
case). Knowing jD̂sj, D̂s of the pixels belonging to the seeds
of the crack(s) itself is derived as the subset of jD̂sj image
lowest values. The latter are shown in Fig. 5(b), where we
point out in red the first selected seed s0 (visible in the
upper-right part of the image). It was empirically chosen as
the darkest pixel of the largest connected component of the
image of the seeds.

Then from pixel s0, some connected paths are “prese-
lected” (using DP as explained further) and along these
paths, the SSV are computed. Figure 5(c) shows the “SSV”
curves representing, for each D cardinality, the lowest SSV
and NFA values. The “SSV” curves correspond to the lower
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envelope curves of the SSVand NFA functions computed on
each path. Finally, the three colors correspond to estimated
subparts of the cracks. Specifically, starting from s0 seed [cf.
Fig. 5(b)], the subset of connected pixels achieving the mini-
mum NFA value has its cardinality equal to 850, as achieved
with a path bifurcating from the upper crack to the lower one.
However, until about 550, the path achieving the minimal
NFA value was the one following the upper crack. Once this
most significant path of the cracks is identified, other ram-
ifications or branches are tested, e.g., the green one and the
blue one in Figs. 5(c) and 5(d). As previously, the detection
of the minimum NFA value allows us to consider only the
subpart of each path corresponding to the cracks.

3.4 Path Selection

Let us now explain the mechanism of path preselection. We
call a “path” a set of connected pixels of width 1 pixel. The
basic idea is to define a crack in terms of a path. Indeed, even
if a crack may be wider, its shape is mainly determined by
its skeleton since the actual width of the crack could be
estimated using postprocessing (e.g., adding some connected
pixels basically selected from their gray level relative to the
crack skeleton pixel values).

As explained in the previous section, NFA criterion is
used to select the path that is the most likely to represent
the crack or a subpart of the crack(s). Now, to keep the algo-
rithm tractable, we do not compute NFA criterion on every
subset of connected pixels, but on a subset of paths that is
derived using DP. DP is a well-known technique44–46 that

allows us to find among the paths starting from a given
graph node (pixel seed in our case) and ending at a given
node (that may be any reachable pixel of the image in our
case) the path with the minimal cost (SSV here). Note
that such a path selection is heuristic since, theoretically,
even if υD1

≥ υD2
, if jD1j ≥ jD2j, NFAðD1Þ could be lower

that NFAðD2Þ. However, in practice, we do not observe such
a situation and in order to guarantee the tractability of the
crack detection, we compute the paths of interest using DP.
Then for any pair of different paths arriving at a given pixel,
only the path exhibiting the lowest υD value is kept. In the
following, these paths are denoted as “minimal” and their set
is noted Sp or SpðsÞ when the seed s is specified.

Then NFA criterion is used first to decide the optimal
path, noted p̂, within Sp and, second, to shorten p̂ if neces-
sary by relaxing its first and last pixels. For any possible path
length (i.e., between 1 and the maximal path length in Sp),
the minimal NFA value is achieved by the minimal z2D value,
hence the representation of the lower envelope in Fig. 5(c).
The optimal path D̂ is those minimizing NFAversus the path
length. Its last pixel is the pixel whose index along the path
equals jD̂j minimizing NFA versus the path length. Finally,
its first pixel is obtained by following the same path, but in
reverse from the previously estimated last pixel. Once more
this represents a simplified algorithm (heuristic) relative to
the one that would test the significance of any subpart of D̂,
relaxing simultaneously the first and last pixels. However,
this simplification is necessary to keep the algorithm trac-
table and the results prove it is efficient. Figure 6 shows

Fig. 5 Number of false alarms (NFA) curves and NFA minimization result in terms of subsets of pixels:
(a, b) crack seed selection and (c, d) crack reconstruction from seed in red in Fig. 5(b) (seed located in the
upper right branch).
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it in the case of the bottom left subpart of the image presented
in Fig. 3(a). The considered seed (before the first arrow at the
left of the image) is a defect in the (concrete) wall that does
not actually belong to a crack, but due to its very low gray
level values, may be confused with one when not considering
the connectivity constraints. The identified path D̂ starts
from this seed and then rejoins the actual path that it follows
until its end. Finally note that in order to ensure the actual
crack is a subset of the paths estimated by DP, all the com-
puted paths in Sp have a given length that is chosen to be
very large. However, this implies the necessity to estimate
the pixels of D̂ ending and beginning at the actual crack.

3.5 Algorithms

Algorithm 1 presents the estimation of the seeds. As stated
previously, it is based on the ordering of the (square) values
of image X that allow for the derivation of the minimal SSV

υD values (function υX). Then only jXj NFA values have to
be computed, among which the minimum is searched.

Algorithm 2 presents the reconstruction of a crack (or a
subpart of the set of cracks) from a given seed. Specifically,
it considers the set of path Sp derived by DP. SSV are

computed along some subparts of these paths so that we
introduce the following notations. For any path p ∈ Sp,

jpj denotes its cardinality, i.e., number of pixels, and
∀i ∈ f0: : : jpj − 1g p½i� denotes the i’th pixel from its origin.
Given the image X, we compute the value of a path denoted
vðpÞ, as the SSV of its pixels p½i� in X: vðpÞ ¼
P

s∈p½XðsÞ�2 ¼
P

i∈f0: : : jpj−1g½Xðp½i�Þ�2. In Algorithm 2,

we also consider the value of a connected subpart of a path
that is derived by summing the square values of the pixels of
this subpart: denoting vðp½i: : : j�Þ as the value of path p
between its i’th pixel and its j’th pixel: vðp½i: : : j�Þ ¼
P

k∈fi: : : jg½Xðp½k�Þ�2.
As explained previously, Algorithm 2 is heuristic. It

involves three main steps: first, find the “optimal” path,
noted as p̂, among Sp not considering NFA values but
SSV from the origin pixel (given seed). The second step
focuses on p̂ and, assuming the beginning pixel is the con-
sidered seed, finds the ending pixel, denoted p½jend�, based
on NFA criterion; third, given p̂ and p½jend�, find the begin-
ning pixel, denoted p½jbegin�, based on the NFA criterion.
Additional notations are pindex to store the index of p̂ in
Sp and C that contains the pixels already detected as belong-
ing to the crack. Indeed, the three steps are repeated Nbranch

times in order to retrieve the different branches of a crack if
there are several branches, or simply if the considered seed is
not at an extremity of the crack. In order to actually consider
different branches of the crack, at the end of each iteration,
all the paths that are close to the already reconstructed part of
the crack (stored in C) are removed from the set of the paths
to consider Sp. In addition, υ0 and N parameters are updated.
They represent the SSV and the cardinality of the already
reconstructed parts of the crack, respectively. They are
required to take a decision globally on the crack: since
the previously detected part of the crack is stored in C,
only a path that allows the further decrease of the NFA
measure is considered as a supplementary part of the actual
crack(s). Then υ0 and N are both inputs and outputs of
Algorithm 2, allowing its call several times during the whole
crack set reconstruction (e.g., considering different seeds,
see Algorithm 3).

Figures 5(c) and 5(d) show the first three iterations of the
“repeat” loop in Algorithm 2: at the end of the first iteration,
the minimal NFA value is around −543 and C ¼ 850 [red
pixels in Fig. 5(d)]; at the end of second iteration, NFAmin ≈
−901 and C ¼ 1326 [green pixels in Fig. 5(d)]; at the end of
the third iteration, NFAmin ≈ −1005 and C ¼ 1467 [blue pix-
els in Fig. 5(d)]; supplementary iterations do not allow us to
further decrease NFAmin so that C does not change.

Algorithm 3 presents the proposed approach. First, we
compute the ratio image rĨ , and then we get the data
image Y Ĩ used for crack detection. The set of seeds is
obtained by Algorithm 1. Then for each considered seed s
in an iterative way, the set of paths SpðsÞ is derived by
DP as the set of “minimal” paths (cf. Sec. 3.4). Knowing
SpðsÞ, Algorithm 2 is then called to derive the (sub)part of
the crack reachable from s. Finally, this value is added to
the crack and, before reiteration, the set of the seeds is

Fig. 6 Illustration of the need to estimate the first (green square) and
the last (red circle) pixels of a selected path (in yellow) when the seed
does not belong to the crack and the assumed maximal length of the
path exceeds the actual size of the crack [Fig. 3(a)].

Algorithm 1 Estimation of the set of the seeds.

Data: (Positive) gray level image X ; parameter σ0;

Result: Set of the seeds D̂s ;

Allocate a vector υ½� of dimension jX j;

Initialize υ½� elements with the square values of X ;

Order υ½� by increasing values (∀ ði ; jÞ; i < j ⇒ υ½i � ≤ υ½j �);

Initialize the scalars NFAmin to þ∞ and N to 0;

for i ¼ 1 to jX j do

υ½i �←υ½i � þ υ½i − 1�;

Compute NFAi using Eq. (8) and parameters ðυ½i �; iþ1;σ0; jX jÞ;

if NFAi < NFAmin then

NFAmin←NFAi ;

N←i þ 1;

end

end

D̂s is the set of the N pixels with the lowest values in X .
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updated, removing any seed already put in the current crack
estimation. In this study, the morphological operators used in
algorithms are the classical ones,37 but one could replace
them by their more efficient implementation.47

Figure 7 shows the iterations of Algorithm 3: the prepro-
cessed image used for crack detection and estimation,
namely image Y Ĩ , the binary image of the pixels likely to
belong to the crack (in the absence of any connectivity
constraint) among which the seeds are selected, and three
successive iterations of the “while” loop in Algorithm 3.

Algorithm 2 Crack reconstruction from one seed.

Data: Gray level image X , set of paths Sp starting from s;
initial values υ0 and N [SSV and cardinality of crack(s)
already detected], parameters: σ0, Nbranch;

Result: Binary image B of the crack passing through seed s, updated
value υ0;

M←maxp∈Sp
jpj;

Allocate vectors υ½� and pindex½� with dimension equal to M ;

Initialize υ½i � elements and scalar NFAmin to þ∞;

Initialize indices jbegin and jend to −1; Initialize C (set of pixels) to ∅;

repeat

for p ∈ Sp do

for i ∈ f1: : : jpjg do

if vðp½0: : : i �Þ < υ½i � then

υ½i �←vðp½0: : : i �Þ;

pindex½i �←p;

end

end

end

for i ∈ f1: : : ng do

NFA←NFAðυ0 þ υ½i �; N þ i þ 1; σ0; jX jÞ defined by Eq. (8);

if NFA < NFAmin then

NFAmin←NFA;

p̂←pindex½i �;

jend←i ;

end

end

for i ∈ f1: : : ng do

NFA←NFAðυ0 þ vðp̂½i : : : jend�Þ; N þ jend þ 1 − i ; σ0; jX jÞ
defined by Eq. (8);

if NFA < NFAmin then

NFAmin←NFA;

jbegin←i ;

end

end

Add the pixels of path p̂ between indices jbegin and jend to C;

υ0←υ0 þ vðp̂½jbegin: : : jend�Þ; N←N þ jend − jbegin þ 1;

Remove from Sp the paths “too close” to C;

until Nbranch times;

Derive B where the pixels of C have value 1 and other pixels have
value 0.

Algorithm 3 Main crack detection algorithm.

Data: Gray level image I; parameter(s): σ, steerable filter parameters;

Result: Binary image of the crack(s);

Perform background substraction on I: Ĩ ¼ I − fGðσÞ � ϕðIÞ;

Compute the image r~I according to Eqs. (2) and (4);

Compute the image Y~I according to Eq. (5);

Compute the binary image I
D̂s

of seeds from the set of the seeds D̂s

estimated by Algorithm 1 with inputs Y~I and E½Y 2
~I �;

Perform I
D̂s

dilation;

Compute the set of connected components Scc of I
D̂s
;

Initialize the set of crack pixels C to ∅ and the SSV υ0 to 0;

while Scc do

Choose the next seed s (e.g., darkest pixel of largest remaining
connected component in Scc exhibiting an isoperimetric ratio
greater than a threshold value);

Compute the set SpðsÞ of minimal paths on Y
Ĩ
image using DP

from seed s;

From Algorithm 2 with inputs Y~I ,SpðsÞ, υ0, jCj, E½Y 2
~I �, andNbranch,

compute the binary image Bs of the crack passing through s and
the new value of υ0;

Update C by adding the pixels with value 1 in Bs ;

Update Scc by removing elements or subpart(s) of elements in
the geodesic reconstruction of I

D̂s
from Bs ;

end
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We note that after the first iteration, the bottom crack is
retrieved; after the second iteration, most of the top crack
is retrieved, but a branch is missing. Indeed, the position
of the used seed [in green in Fig. 7(b)] is such that, after
reconstructing the main part of the top crack, the missing
branch appears less significant. However, the third iteration
that starts from a seed located on this missing branch, finally
allows the complete reconstruction of the top crack.

The parameters of the proposed approach are as follows:

• Parameters involved in the preprocessing step (deriva-
tion of Ĩ and Y Ĩ), namely radius of the structuring
element disk used for the morphological opening, stan-
dard deviation of the Gaussian filter for background
estimation, standard deviation of the steerable filter
[Eq. (2)], number of tested directions for ratio maximi-
zation [Eq. (4)], and weighting coefficient α in Eq. (5).
The first three parameters are linked to the image res-
olution relative to the crack width. In our case, we
set them to default values 2.0, 5.0, and 1.6, respectively,
without tuning them to optimize our results. (We feel
that these parameters are not sensitive.) In the same
way, the number of tested directions is set to default
value 4 (directions are, thus �π∕8) that is sufficiently
precise for the considered scale of the steerable filter.
Finally, parameter α weighs the importance of the sec-
ond-order derivative term relative to the basic image
term. In our study, we set it to 0.5 as a compromise.

• Parameters involved in the crack detection from the
image at the output of the preprocessing step, namely
the number Nbranch of branches tested in the crack
reconstruction from one seed (Algorithm 2), the struc-
turing element used for dilation of the seed image, and
the isoperimetric ratio threshold used in the seed selec-
tion (Algorithm 3). Note that in Algorithms 1 and 2, all
parameters but Nbranch are automatically estimated.
Between values 3 and 6, Nbranch exhibits very limited
sensitivity due to the possibility of considering several
seeds. By default, the structuring element being used
is the same as in the preprocessing step. Eventually,
the threshold of the isoperimetric ratio aims to increase
the probability of selecting a seed belonging to the
actual crack(s) in order to save computation time.
It is based on the same hypothesis used throughout the
paper that cracks are longitudinal structures and basic
tests show that a value around 4 provides good results.

However, we emphasize that none of these parameters
(Nbranch, structuring element, and isoperimetric ratio
threshold) are very sensitive according to our tests.

4 Experimental Results

4.1 Experimental Data

For our experiments, we considered a crack dataset proposed
by Fujita and Hamamoto1 that allows for quantitative perfor-
mance analysis due to ground truth data. Specific objects
such as shadows, mold, and holes are systematically present
beside cracks, and this allows us to highlight the reliability of
the geometric assumptions that we implicitly consider in our
approach. In order to degrade the image quality, we have
blurred the images from the dataset using an algorithm for
generating sudden motion blur48 which allows us to incorpo-
rate highly realistic camera shake and uniform motion blur,
and to control the amount of degradation applied. Various
intensities of complex blur are introduced by varying the
simulated exposure time T, which takes values from T ¼ 0
(no blur added) to T ¼ 1 s (see Ref. 48 for further details).

4.2 Qualitative Validation

Figure 8 shows the results obtained in the case of the original
data (no blurring applied). For better examination, a subpart
of the images is shown using a color composition as follows:
the input image is in the blue channel, the crack estimation
(binary result) is in the red channel, and the ground truth
reference (binary result) is in the green channel. Thus, yellow
pixels correspond to true positives (TP), pink pixels corre-
spond to false positives (FP), and light green pixels corre-
spond to false negatives (FN).

In this study, we compare our algorithm with methods
using fundamentally different approaches: percolation,
local anisotropy, and finally, FoSAwhich is based on a min-
imal path search at image level. For the two first methods,
we provide both qualitative and quantitative results in
Figs. 10 and 11, whereas for FoSA, we use the same data
as Li et al.26 (Fig. 12), which allows for a qualitative com-
parison with the results they report.

In Fig. 8, the results of three methods for crack estimation
are presented in the three different columns. Regarding the
proposed approach (second column), first of all we note the
high number of TP, showing the efficiency of the proposed
approach. However, two kinds of errors are present, depend-
ing on the considered image:

Fig. 7 Example of intermediate results provided by Algorithm 3: (a) gray level image Y
Ĩ
, (b) I

D̂s
dilation

with the different seeds (highlighted in color) selected iteratively, (c) subparts of the crack reconstructed
iteratively: first iteration: red subpart obtained from red seed s1 (bottom left), second iteration: cyan sub-
part obtained from green seed s2 (top left), third iteration: both cyan and blue subparts obtained from blue
seed s3 (top right).
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• The width of the crack may be not correct since with the
proposed approach the estimated crack is always one-
pixel width (or 3-pixels width for better visualization)
independent of the actual crack width. In addition, slight
differences may be observed between the achieved result
and ground truth in terms of the location of the crack.

• Thin cracks are not always detected: e.g., the images in
the first column and second and sixth lines present

some thin cracks which are missed, whereas in the
case of the image on the fifth line, the thin crack is

completely recovered.

Concerning the performance of the FFA and percolation
methods, we note that both methods output good results

provided we tune the most important parameters for the

specific type of images used (in this case d ¼ 11 for

Fig. 8 Examples of the results obtained on the original images: the original images (first column), the
proposed approach using NFA criterion (second column), the approach using FFA measure22 (third
column), and the percolation approach4 (fourth column). Red squares highlight some areas which
were magnified for a detailed visualization (the color code is specified in the text).
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FFA, and N ¼ 21,M ¼ 41, w ¼ 1 for the percolation). One
significant difference at this point is that FFA more often
misses the finer structures (see, e.g., the second, fifth, or
sixth rows).

Figure 9 is similar to Fig. 8 except that the input images
are the blurred images with the highest considered intensity
T ¼ 1 s. Concerning the proposed approach using NFA

criterion (second column), main comments relative to the
results are:

• Errors in the crack location are more important due to
the decrease of image quality entailed by the blur effect.

• The number of undetected thin parts of cracks has
increased due to the low-pass filter effect associated

Fig. 9 Examples of the results obtained on the blurred images: the proposed approach using NFA
criterion (first column), the approach using FFA measure22 (second column), and the percolation
approach4 (third column). Red squares highlight some areas which were magnified for a detailed
visualization (the color code is specified in the text).
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with the blur effect; some fine details are indeed indis-
tinguishable for a human at this point as a result of
the blurring.

• One artifact appears in one case inducing FP.

However, we note that the main cracks are still detected
correctly by our proposed method, while the number of
substructures still being detected by FFA and percolation
plummets.

4.3 Quantitative Validation

In order to quantify the performance of the proposed
approach, we compute the classic indices “Precision” and
“Recall.” They are defined based on the numbers FP, TP,
and FN

EQ-TARGET;temp:intralink-;e009;63;583Precision ¼ TP

TPþ FP
; (9)

EQ-TARGET;temp:intralink-;e010;63;542Recall ¼ TP

TPþ FN
: (10)

The precision aims at measuring the probability of good
decisions among the estimated detections (positives), whereas
the recall aims at measuring the probability of detection
among the actual objects for detection (either detected or
missed). In our case, the positives are the pixels belonging
to the reconstructed cracks and they are true or false depend-
ing on the pixel label in the ground truth (cf. Sec. 4.1).

In order to distinguish between errors (FP or FN) due to
a slight mislocation of the crack (cf. Fig. 8) and a nondetec-
tion of some parts of the cracks (or much more rarely, some

detection of defects other than cracks), we compute Precision
and Recall at different scales. Specifically, TP and FP num-
bers are computed comparing a crack detection result with
incremental dilations37 of the GT image (so that positives
are counted as FP only if, according to GT, there is no
crack pixel within a radius equal to the scale parameter) and
the FN number is computed comparing the GT image with
incremental dilations of the result image (so that FN occurs
only when GT crack pixels have no detection around them
within a radius equal to the scale parameter).

Figure 10 shows the performance indicators versus scale
for the proposed approach and for the other two methods
previously depicted, either considering the original data or
considering the blurred data. The plotted curves correspond
to the Precision versus the Recall with the points on the
curves obtained by varying the scale. Since the performance
indices increase with the scale, the curve extremity point
with lower coordinates was obtained at scale 0, whereas
the other extremity point, showing the highest coordinates,
was obtained for scale 9. We clearly note that the location
error is less than 3 pixels, whatever the considered method,
in the case of the original data since the Precision and Recall
indicators increase noticeably when the scale increases
between 0 (no dilation of the cracks before image compari-
son) and 2. The fact that the Recall does not reach about
100% even at large scales shows that there remain some
parts of some very thin cracks that are not detected (cf.
Fig. 8). However, significant cracks are all detected. In
addition, using a criterion that minimizes the NFA, the num-
ber of FPs is very low so that Precision reaches 100%.
In the case of the blurred images, using the proposed method,
the Precision also exceeds 97%, but for larger scales because

Fig. 10 Validation of the proposed approach (NFA) and comparison with alternatives (“percolation” and
“FFA”) in terms of the Precision and Recall versus the scale of the analysis. The simulated exposure time
T (in s) varies among the illustrations above, (a) case of original images (T ¼ 0), (b) blur with T ¼ 0.0625,
(c) blur with T ¼ 0.25, (d) blur with T ¼ 0.5, and (e) blur with T ¼ 1.
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of the intrinsic spatial imprecision introduced by the blur
effect. In addition, the thin cracks are not detected at all
now so that the Recall curve values are lower than before.
In particular, for the largest blur (T ¼ 1), the achieved
value for large scales is around 73% instead of close to
88%. This means that about 15% of mostly the thinnest
cracks are now missed. Looking at the performance obtained
using the alternative methods, we note that their robustness
to the blur effect is much lower: if for the lowest value of
blur, they still reach an equivalent performance to the pro-
posed method for large scales, in the case of more significant
blur, the achieved values of Recall lower than about 50%
clearly indicate that important parts of the cracks are missed.
In addition, in some cases, the achieved values of Precision
are also bounded (to about 70%), indicating a high rate of
erroneous detections (other than cracks).

Alternatively, Fig. 11 comparatively shows the perfor-
mances of the three methods we consider depending on
the level of simulated exposure time, which relates directly
to the image quality degradation. The evolution of the results
for each method clearly shows clearly that while FFA and
percolation are highly sensitive to blur with varying levels
of performance loss, the proposed method exhibits robust-
ness and a graceful degradation of performance. We also
note that if the performance indices globally decrease with
the level of blur, they are not strictly a monotonic function of
the blur level. This shows us that the interpretation of blur
may be complex: on the one hand, blur degrades the crack
contrast and on the other hand, it acts as a low-pass filter
for the image noise and small defaults other than crack.
According to Fig. 11, it also seems that blur acts as a thresh-
old effect since very similar performances are achieved for

Fig. 11 Validation of the proposed approach and comparison with alternatives in terms of the Precision
and Recall versus the scale of the analysis, and for varying levels of blur: (a) performance of the proposed
method (NFA), (b) performance of “FFA,” and (c) performance of “percolation.”

Fig. 12 Examples of the results obtained on the crack dataset3with the original images shown on the first
line, the composite image shown on the second line, the proposed approach results shown on the third
line, and the ground truth images shown on the fourth line.
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the first two curves (T ¼ 0 s and T ¼ 0.0625 s) on one
hand, and for the three others (T ¼ 0.25 s, T ¼ 0.5 s, and
T ¼ 1.0 s) on the other hand.

4.4 Limits of the Proposed Approach

In order to further test our approach, we consider the dataset
proposed in Ref. 3 that features road images with a signifi-
cant, nonuniform texture. Indeed, second-order derivative
filters may respond to such textures and thus penalize the
detection of the crack itself. Figure 12 shows some results
obtained on the images presented in Ref. 3 selected for com-
parison, plus an image much more complex (fourth column)
exhibiting numerous cracks with variable orientations. The
second, third, and fourth images are affected by shadow,
but we see that it does not impact the crack detection. We
also note that, when there are some errors, they are mainly
FN (rather than FP) which is once more consistent with the
fact that the used criterion is the minimization of the NFA.

Along the rows, the images are more or less ordered by
decreasing performance: the crack is perfectly detected on
the first image despite its very low contrast, a small subpart
of the crack is missing on the second and third images
despite the presence of a shadow, on the fourth image
some crack subparts are missing and there are some FPs,
and finally on the last image, only about half of the cracks
are detected. These last two results allow for a deeper analy-
sis. First, the textons on the image, mainly located on the
bottom part on the image, probably due to the geometry
of the acquisition, determine a response of the steerable filter
similar to the crack response, and thus can generate some
FPs when they are sufficiently close and dense. Second,
when there are many cracks, our method will only focus
on the most significant ones since adding some less signifi-
cant cracks will not decrease the NFAvalue. This last point is
an intrinsic limit of the proposed approach and was also the
reason for some thin cracks not being detected in Fig. 8.
However, when not “masked” by more obvious cracks, thin
cracks can be detected as pointed out by the first example of
this figure.

5 Conclusion

In this paper, we first introduced the topic of NDE in the
context of aerial inspection. We briefly reviewed two widely
used detection strategies, namely FFA and image percola-
tion, and then argued that currently available algorithms
did not include specific mechanisms that would allow
them to cope with image quality degradation. Furthermore,
we proposed a solution based on a-contrario modeling,
which alleviates the need to define multiple thresholds in
order to detect crack segments and reconnects them in
varying conditions of image and structure (road/concrete)
degradation. The experiments showed that compared to
existing approaches, our method remained effective in the
presence of complex blur, and was able to retrieve the
structures of interest, except perhaps the finer details which
were fully lost due to the blurring process. In perspective,
we intend to explore adding higher level constraints on
the alignment among the detected crack parts, while at the
same time maintaining a low computational cost.

Future work will also focus on coupling this strategy with
image restoration algorithms in order to further minimize

the impact of the blur on the result, and on implementing
the algorithm efficiently on embedded architectures.
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