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Abstract—Implicit surfaces are used for a number of tasks in computer graphics, including modeling soft or organic objects, morphing,

collision detection, and constructive solid geometry. Although operating on implicit surfaces is usually straightforward, creating them is

not. We introduce a practical method for creating implicit surfaces from polygonal models that produces high-quality results for

complex surfaces. Whereas much previous work in implicit surfaces has been done with primitives such as “blobbies,” we use implicit

surfaces based on a variational interpolation technique (the three-dimensional generalization of thin-plate interpolation). Given a

polygonal mesh, we convert the data to a volumetric representation to use as a guide for creating the implicit surface iteratively. We

begin by seeding the surface with a number of constraint points through which the surface must pass. Iteratively, additional constraints

are added; the resulting surfaces are evaluated, and the errors guide the placement of subsequent constraints. We have applied our

method successfully to a variety of polygonal meshes and consider it to be robust.

Index Terms—Geometric modeling, surface representations, implicit surfaces.

æ

1 INTRODUCTION

THE task of constructing smooth surfaces is ubiquitous
throughout computer graphics. Often, parametric sur-

faces are the choice representation because of the capabil-
ities of many commercial modeling packages. Once
constructed, the parametric surfaces are then used in a
variety of graphics algorithms, ranging from ray-tracing to
morphing. However, many of these graphics algorithms
have more elegant solutions when used with implicit
surfaces. For implicit surfaces to become more widely
used, however, they must become easier to create. We
approach this issue by introducing a new method to
convert polygonal surfaces to smooth implicit surfaces
automatically.

Because points can be evaluated easily as being inside or
outside an implicit surface, many applications that are
challenging for parametric surfaces (including polygonal
meshes) become simple when implicit surfaces are used.
Boolean CSG operations (union, intersection, subtraction)
reduce to simply examining the signs of the implicit
functions. Operations on implicit surfaces that may cause
the genus of the surface to change have simple implementa-
tions because the operations affect every point in space—on
the isosurface, inside, and outside. Shape morphing can be
performed simply by interpolating between two implicit
functions, and the two shapes can be of arbitrary manifold
topology [1], [2], [3]. Implicit surfaces can collide and
deform [4], [5]; the resulting fusions and separations are
handled automatically. Often, in graphics, implicit func-
tions are created by summing many infinitely differentiable

functions, yielding surfaces that are smooth and seamless.
The forms that they can represent are useful for modeling
organic shapes and some classes of machine parts that
require blends and fillets.

Although implicit surfaces have many benefits, they can
be difficult to model (as well as to texture and render). Most
parametric surface representations use basis functions with
finite support and, thus, give the user an easy way to
perform local control of the surface shape. In contrast, the
bases that are used as primitives for implicit surfaces can
often have nonobvious influences on surface position.
Modeling with “blobbies” [6] suffers from this problem
because each blobby primitive only indirectly influences the
position of the isosurface. We note that the work of Witkin
and Heckbert is aimed at overcoming this difficulty [7].

In our approach, rather than using the more traditional
blobby primitives approach to implicit surface creation, we
instead use variational implicit surfaces. This form of
implicit surface allows a user to specify locations that the
surface will exactly interpolate; this property allows more
direct control over surface creation. As we will describe
more fully later, solving a set of linear equations will
guarantee that the surface interpolates a given set of
constraint points. In addition to this interpolating property,
variational implicit functions are smooth when their basis
functions are chosen to satisfy an energy functional related
to the desired degree of smoothness. Our approach to
creating these surfaces is to add new constraints iteratively
until the model is a close approximation to the input
polygonal mesh. Fig. 1 shows 23 iterations of our algorithm
while creating a frog model.

We focus on the creation of implicit models from
polygonal meshes because of the large number of existing
high-quality polygonal meshes. Having a robust automatic
conversion procedure from meshes to implicits should
provide a pathway towards creating a large library of
implicit surfaces. With such a technique, all of the
interactive modeling tools for creating polygonal meshes
can then be used to create implicit surfaces. This ability
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would mean that we can avoid having to create special
purpose modeling programs for implicit surfaces.

The rest of the paper will proceed as follows: We briefly
discuss previous work in implicit surface modeling in
Section 2. In Section 3, we explain the variational implicit
surface representation. Then, in Section 4, we introduce a
set of tools that will be used by the algorithm. We present
the algorithm in Section 5, analyze the algorithm’s para-
meters in Section 6, and show results in Section 7. Finally
we conclude and discuss future work in Section 8.

2 PREVIOUS WORK

The very first implicit surfaces used in computer graphics
were quadrics (degree-two polynomials of x, y, and z), such
as spheres, ellipsoids, and cylinders [8]. Blinn generalized
these implicit surfaces for the purpose of modeling
molecules [6]. Basing his model on electron densities, he
developed the blobby molecule model, which consists of
Gaussian-like primitives blended together:

fiðxÞ ¼ Aie
bi jjxÿcijj

2

: ð1Þ

Each primitive is a radial basis function that can be tuned
to control its size and blobbiness (its tendency to blend).
This method and its variants [9] are widely used in the
computer graphics community. As mentioned earlier,
however, this form of implicit surface does not allow a

user to directly specify points that the surface interpolates.
The user must somehow estimate the location of the middle
of the shape because this is where the centers of the
primitives must be placed.

Another genre of implicit surfaces is the convolution
surface [10]. These surfaces are created by convolving a
skeleton shape (e.g., a collection of polygons) with a kernel
such as a Gaussian. The skeletons for the convolutions can
actually be any form of geometry, including both
2D surfaces and solid objects. The resulting convolution
surface is smooth. As with the blobby implicits, convolution
surfaces do not allow a user to give specific points to be
interpolated. Recent work by Sherstyuk [11] shows promis-
ing results for creating convolution surfaces interactively.
Offset surfaces are used to approximate the convolution
surfaces during interactive editing.

Interactive modeling techniques can be used to create
implicit surfaces of modest complexity. One elegant method
for interactive modeling was described by Witkin and
Heckbert, in which they use particles to sample and control
implicit surfaces [7]. Particles diffuse across the surface and
are created and destroyed as necessary. They implemented
their technique with blobby spheres and cylinders, and
their technique is adaptable to variational implicit surfaces
as well. Ferley et al. [12] maintain a cube list representing
the isosurface of an implicit function. By updating the cube
list, they can achieve interactive editing rates. Their
technique is limited to the fixed resolution of the volume,
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Fig. 1. A polygonal frog (top left) is converted to an implicit surface via our incremental improvement algorithm. The algorithm took 23 iterations to

reach the final result. The results from each iteration are shown in successive images. The frog is a near fit after the first three rows; in the last row

the toes get refined.



but wavelet techniques may grant them more flexibility.
Still, however, for creating complicated models, more
automatic methods are needed.

Muraki developed a method to approximate range data
by a blobby implicit surface [13]. Muraki’s method
incrementally adds primitives one at a time. At each
iteration, his algorithm picks a primitive, duplicates it,
and then solves an optimization problem to minimize an
energy functional. Because this requires solving an optimi-
zation problem every iteration, the method is exceedingly
slow—a model with 243 primitives took a few days to create
on a Stardent Titan3000 2CPU.

Bittar et al. addressed the modeling of an implicit surface
from volume data [14]. They calculate a medial axis of the
volume data as an aid to implicit function creation. They
then use an optimization scheme based on Muraki’s work to
add positive primitives along the medial axis in substan-
tially less time than Muraki’s approach. They also devel-
oped a similar method in which the user dissects an object
into intuitive reconstruction windows [15]. The optimiza-
tion problems run inside the individual reconstruction
windows for a significant gain in speed. However, the
implicit surfaces that they generated with their method
were small (the largest had only about 50 primitives). These
three methods only calculate a one-way error, namely for
the points on the goal surface, seeing how far the isosurface
deviates away. To prevent stray components of the implicit
surface that the error metric would not be able to catch, they
use an Eshrink term that minimizes the field of influence for
each primitive. Our method, on the other hand, uses a two-
way error metric. Another difference between our method
and the above methods is they calculate the deviation of the
isosurface by its value at the goal surface, rather than the
Euclidean distance of the zero-set from the goal surface. It
should also be noted that these methods cannot be applied
directly to variational implicit surfaces.

This brief summary barely scratches the surface of work
on implicits in computer graphics. For an excellent over-
view of the area and more details on kinds of implicit
surfaces, see the book by Bloomenthal et al. [16].

3 VARIATIONAL IMPLICIT SURFACES

In this section, we give the equations that describe
variational implicit surfaces and outline the algorithm that
we use to create such surfaces from polygonal meshes.

3.1 Basic Formulation

Variational implicit surfaces are created by solving a
scattered data interpolation problem [17]. The particular
solution technique is based on ideas from the calculus of
variations (solving an energy minimization problem). To
create a variational implicit function, a user specifies a set of
k constraint points fc1; c2; . . . ; ckg, along with a set of values
fh1; h2; . . . ; hkg at the given constraint positions. The
surfaces are controlled directly using three types of
constraints. Boundary constraints are those positions that
are specified to take on the value zero, and the created
implicit surface will exactly pass through these points. In
addition, we can specify that certain points will be interior
or exterior to the surface. Interior constraints are given
positive values, and exterior constraints are given negative
values. To create the appropriate implicit function, these
constraints are handed to a sparse data interpolation

routine that creates a function that exactly matches the
given constraints.

The form of the function created by this technique is a
weighted set of radial basis functions and a polynomial
term. The weights of the basis function are found by solving
a matrix equation (given below). We use the radial basis
function �ðxÞ ¼ jxj3, which minimizes the curvature func-
tional

Z

x2


X

i;j

@2fðxÞ

@xi@xj

� �2

dx: ð2Þ

The reason why �ðxÞ ¼ jxj3 minimizes this functional is
nonobvious, and we refer the interested reader to [18] for
details. It is important to note that this functional does not
represent curvature on the isosurface (the 2-manifold
fðxÞ ¼ 0 embedded in bounded region 
), but rather the
aggregate curvature of f over the entire region.

Using this radial basis function, the implicit function that
we create has the form

fðxÞ ¼
X

n

j¼1

dj�ðxÿ cjÞ þ P ðxÞ: ð3Þ

In the above equation, cj are the locations of the
constraints, the dj are the weights, and P ðxÞ is a first-
degree polynomial that accounts for the linear and constant
portions of f .

To solve for the set of dj that will satisfy the interpolation
constraints hi ¼ fðciÞ, we can substitute the right side of (3)
for fðciÞ, which gives:

hi ¼
X

k

j¼1

dj�ðci ÿ cjÞ þ P ðciÞ: ð4Þ

Because (4) is linear with respect to the unknowns, dj and
the coefficients of P ðxÞ, it can be formulated as simple
matrix equation. For interpolation in three dimensions, let
ci ¼ ðcxi ; c

y
i ; c

z
i Þ and let �ij ¼ �ðci ÿ cjÞ. Then, the linear

system can be written as the following matrix equation:
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The above matrix system is symmetric and is the
standard one used to solve this type of interpolation
problem [18]. We used LU decomposition to solve this
system for all of the examples shown in this paper. With the
coefficients from the matrix solution (the ds and ps),
evaluating the implicit function from (3) becomes simple.
We refer the interested reader to [3], [17], [19] for more
mathematical details about this form of implicit function.

3.2 Outline of Our Approach

We will now examine how the constraints for a variational
implicit surface can be derived from a polygonal model.
This task is easy for models that are composed of polygons
that are all nearly the same size. For such a polygonal
model, we may use the vertices of the model as the
positions of the boundary constraints. Similarly, we can
create exterior constraints by moving out from each vertex
in the normal direction. This basic technique was originally
described in [17]. Unfortunately, most models are made of
polygons that are widely varying in size, and for such
models it is more difficult to create a variational implicit
that faithfully matches a given polygonal model.

To produce high-quality implicit models from polygons,
we created an iterative method that repeatedly adds new
constraints to a variational implicit representation in a
manner that is guided by a volumetric description of the
model. To do so, we use a voxelization process to create the
volumetric model from the polygons. The volumetric
description of the given model acts as an ideal (but
storage-intensive) implicit representation of the model that
we can use to compare against the current variational
implicit surface. Another possibility would have been to use
just the mesh vertices to guide the implicit surface, but this
would undersample the surface where the original mesh
polygons are large. In addition to the volumetric model, we
also use a signed distance function to measure errors in the
current iteration and to place new boundary, interior and
exterior constraints. We repeatedly add new constraints
until the implicit model is a near match to the original. In

Section 4, we discuss the creation of the volumetric model,
the signed distance function and the error metrics for
evaluating the model. Later, we describe in detail, how they
are used to define new constraints to make a variational
implicit surface approximating our original polygonal
model.

4 VOLUMES AND ERROR METRICS

We choose to convert the polygonal model into a volumetric
model due to its convenience for rapid evaluation of inside/
outside queries. The disadvantages of a volumetric model
are storage and computation costs. Using wavelets or
subdivision could reduce the complexity; we delegate
investigation of such techniques to future work.

4.1 Voxelization of a Polygonal Mesh

To convert a polygonal model into a volumetric representa-
tion, we cast a grid of parallel rays through the mesh and
regularly sample the points along these rays. Each sample
becomes one voxel. A parity count of surface crossings
determines interior from exterior. To minimize aliasing
artifacts we perform supersampling and filtering so that the
final densities vary continuously between zero and one.
Further details of the voxelization process, including
variations to handle troublesome meshes, can be found in
[20]. For example, Fig. 2 shows the original polygonal
scorpion model (Fig. 2a), the intermediate volumetric model
(Fig. 2b), and the final implicit representation generated by
our algorithm (Fig. 2c). The intermediate volumetric model
captures all but the finest detail, such as the hairs on the tail,
and serves as the goal surface for the surface evaluation and
refinement. Note that, if one has a volumetric representa-
tion of a given model, our method can be used directly to
produce an implicit surface. Unfortunately most models do
not originally come in a volumetric form, hence, our need
for conversion from polygons to voxels. A number of other
researchers have also produced methods of voxelizing
polygons [21], [22], [23], and any of these methods could
have been used.
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Fig. 2. Original polygonal model of a scorpion (a), intermediate volumetric representation (b), and final implicit surface (c) generated by our algorithm.

The volumetric representation captures all but the finest detail, such as the hairs on the tail. Our algorithm refined the implicit surface using the

volumetric model as the goal.



4.2 Signed Distance Transform

We use a signed distance transform to measure the error
between our volumetric model and a given implicit
representation. We use the voxelization of a given object
as an inside-outside function of the object, and for this
purpose we clamp all densities to either zero or one. A
distance transform of an inside-outside function is the
distance of a point to the nearest boundary (the transition
regions between densities of zero and one). A signed
distance transform negates the distances of those points
that are outside the object. We use a three-dimensional
version of Danielsson’s method for computing Euclidean
distances [24] to compute the signed distance in Oðn3Þ. This
method requires making a small fixed number of sweeps
through the entire volume, and at each voxel only a few
neighbors are examined. The final result is a set of distances
at each voxel that is a close approximation to the (signed)
Euclidean distance to the nearest boundary. We could also
have used one of the published methods for converting
polygons directly to a distance field, such as [1], [25]. We
chose our two-step approach for speed and to allow
subvoxel constraint placement.

4.3 Error Metric

To guide our surface creation method, we use a metric to
evaluate how closely our current variational implicit surface
matches the original data. Let @fcurr be the set of boundary
voxels in the volumetric representation of the current
implicit surface, and let @fgoal be the boundary voxels of
the goal, that is, the volumetric representation of the
original data. We want @fcurr to equal @fgoal, and we can
measure the symmetric difference by the Hausdorff metric

H ¼ max max
x2@fgoal

min
y2@fcurr

jjxÿ yjj

� �

; max
x2@fcurr

min
y2@fgoal

jjxÿ yjj

� �� �

:

ð6Þ

The Hausdorff metric is zero if and only if @fcurr and
@fgoal are identical. Furthermore, we can identify the voxels
x farthest from the other surface and refine the surface by
placing constraints at those locations. Using the signed
distance functions sdgoalðxÞ and sdcurrðxÞ for the goal and
current surfaces as lookup tables, the new constraint
location is defined concisely and calculated efficiently as

Cnew ¼ argmax max
x2@fgoal

jsdcurrðxÞj; max
x2@fcurr

jsdgoalðxÞj

� �

: ð7Þ

The error metric has a two-fold purpose: to evaluate the
attempted fit and to suggest where to refine the implicit
representation further. Fig. 3 illustrates the use of the metric
as part of our algorithm on a two-dimensional teapot. Note
that, for 2D objects, the iso-valued set is one or more closed
contours. In the black and white portions of this figure,
black denotes interior (positive function values) and white
denotes exterior (negative values). Fig. 3a, Fig. 3b, Fig. 3c,
Fig. 3d, and Fig. 3e show the refinement at the third
iteration. Image (a) shows the signed distance function of
the current implicit curve (sdcurrðxÞ) with the boundary of
the goal (@fgoal) overlaid. Similarly, Fig. 3b shows sdgoalðxÞ
with @fcurr overlaid. Positive values of the signed distance
are blue and negative red. As the magnitude increases, the

colors go from dark to light. To find the locations to place
new constraints, we simply walk around the overlaid
boundaries in Fig. 3a and Fig. 3b and choose points with
the brightest background color (furthest distance from the
other curve). The newly chosen constraints are shown as
magenta dots in Fig. 3c (boundary constraints) and Fig. 3d
(interior and exterior constraints). The implicit curve with
these refinements is in Fig. 3e. Fig. 3f, Fig. 3g, Fig. 3h, Fig. 3i,
and Fig. 3j show the respective information for the
refinement at the seventh iteration. After later iterations,
the implicit curve becomes nearly indistinguishable from
the original data.

5 ITERATIVE IMPROVEMENT OF MODEL

We now describe how the above tools let us model implicit
surfaces. Using (7) to find candidate locations for new
constraints, we can design an iterative method to refine the
surfaces. Below is pseudocode for our algorithm.

Algorithm MakeImplicitSurface(Volume fgoal,

SDFunc sdgoal)

Begin

Constraints = InitialConstraints(NumInit)

Repeat

fcurr = MakeImplicit(Constraints)

sdcurr = SignedDist(fcurr)

GenerateCandidateConstraints()
Repeat

PruneCandidateList()

NewCandidate = SelectHighestError()

Constraints.add(NewCandidate)

Until NoMoreCandidates

Until DoneRefining

End

First, NumInit initial constraints are chosen, discussed
in Section 5.1. Then, for each iteration, the following steps
are taken: The implicit surface for the current set of
constraints is generated by solving (5). The result is
evaluated over the volume to obtain fcurr (see Section 5.2),
and its signed distance sdcurr is calculated. New candidate
constraints are selected by (7). They may be pruned due to
proximity to other constraints or other reasons; see
Section 5.3. The remaining candidates become new con-
straints, and the evaluation-refinement process repeats. The
algorithm terminates when the surface fits fgoal well
enough; termination criteria is discussed in Section 5.4.

5.1 Initialization

The algorithm needs to start with an initial guess for the
implicit surface before it can begin refining. We need to
decide how many initial constraints to place—we want to
create a reasonable first attempt, but we do not want to
overwhelm the system with too many constraints. To get a
good balance between these two extremes, we sample
50 boundary constraints from the points on the surface
@fgoal. Three-dimensional Poisson-disk sampling bandlimits
the spatial frequency of constraints; when constraints are
close to each other tend to have more influence on the rest
of the system and can cause (5) to be ill-conditioned. We
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recommend the article by Mitchell for information on
Poisson disk sampling [26]. Other methods such as a
point-repulsion technique may yield a more uniform
sampling, but we feel our simple initialization technique
is quite satisfactory.

In addition to choosing boundary constraints, we place
nonzero constraints to indicate what portions of space are
interior or exterior. It is essential to have these further
specifications; otherwise, the iso-surface could fit the goal
exactly but the implicit function might be inside-out. These
nonzero constraints are weighted by the actual signed
distances; constraints more distant from the surface have
larger magnitudes. For each of the boundary constraints
that we have selected, we follow a path along the gradient
of sdgoalðxÞ until we reach a local extremum (or the
boundary of the volume) and place a constraint there. The
local extrema are the tops of ridges and the bottoms of
valleys of the signed distance function—that is, positions on
the medial axis of the shape. To decide whether to traverse
the gradient uphill or downhill, we try both directions and
pick the longer path (hitting the boundary of the volume is
by default the longer path). Shorter paths are usually in the
direction that is locally concave. By selecting the longer
path, our interior and exterior constraints then tend to “fan
out” instead of getting clustered in ridges or valleys of the
signed distance function. Because the implicit surface is
smooth (locally planar), placing the interior or exterior

constraints along the gradient of sdgoalðxÞ not only tells the
surface what direction is outside but also suggests the
surface normal.

5.2 Implicit Function Evaluation

Given a current set of constraints, we solve the variational
problem to obtain the basis-function weights for the
corresponding implicit surface. Then, the implicit surface
is evaluated throughout the volume to find the boundary
voxels @fcurr and the signed-distance function sdcurr. Once
we classify the boundary voxels and then compute signed
distance function, we can evaluate the error metric
described in Section 5.

Evaluating the implicit surface throughout the volume
can be costly. Although surface-following isosurface-extrac-
tion techniques can reduce the complexity by an order of
magnitude, they make assumptions about topology, e.g.,
they may miss a detached portion of the surface. We wish
@fcurr to capture all connected components since they may
indicate error in the current implicit surface. Because the
radial basis functions we use have infinite support, a
refinement could create errors elsewhere. We do not want
to overlook any surface components, but we do not want to
evaluate over the entire volume. Our solution is to sample
the volume finely in a thin shell around the goal boundary
voxels and to sample coarsely elsewhere, then sampling
more finely if we detect a boundary. First, we sample the
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Fig. 3. Creating a two-dimensional implicit curve: To find the locations with greatest errors, we walk around the boundary of the goal curve and see
how far it is from the boundary of the current curve. This query is done via a signed distance lookup, seen in (a). (b) Shows the symmetric
counterpart, walking around the boundary of the goal curve and using the signed distance of the current curve. Locations of greates errors become
new constraints, shown in magenta. (c) Shows the new boundary constraints and (d) shows the new interior and exterior constraints (which appear
on the boundary of the incorrect shape). (e) Shows the new curve after these refinements. (f), (g), (h), (i), and (j) show the method applied to a later
iteration of the algorithm.



volume at coordinates that are all multiples of four. If any
4� 4� 4 cube does not have its eight vertices entirely in the
interior or exterior of the surface, we sample that cube voxel
by voxel; otherwise it is filled uniformly. Likewise, if a cube
is within eight voxels @fgoal, we sample it finely. Although
this coarse sampling could possibly miss very thin
components, we have not found this to happen for any of
the models that we have tried.

5.3 Refinement

Now that the boundary voxels can be evaluated by the
metric, we can add constraints to refine the implicit surface.
We want to avoid adding constraints one by one because
performing an iteration per constraint would be costly.
However, we also want to avoid refinements interfering
with each other. Likewise, making fine changes could be
useless if coarse changes are made elsewhere on the surface
because such changes may have a nonlocal effect.

We scan through @fcurr and @fgoal to find the voxel with
the maximum error. In a tie, we favor @fgoal. The error for a
voxel x in @fcurr is jsdgoalðxÞj, and the error for a voxel y in
@fgoal is jsdcurrðyÞj. We will use the notation jsdðxÞj to
represent both these cases. Searching for the maximum
error is equivalent to walking along the overlaid boundaries
in Fig. 3a and Fig. 3b, and finding the largest magnitude
(lightest background color).

We pick our new constraints from the boundary voxels
@fcurr and @fgoal. Constraints added from @fgoal are
boundary constraints. To prevent artifacts from the vox-
elization appearing, these constraints are actually placed at
subvoxel precision by trilinearly interpolating the densities
of the voxels. Another way to place the constraints more
accurately would be to return to the actual polygonal data,
but we have not done so. Constraints from @fcurr are interior
or exterior constraints, and take on the values given by the
signed distance function of fgoal.

Not all candidate constraint locations will improve the
surface. To avoid having (5) become ill-conditioned, we
discard candidates less than one voxel from any preexisting
constraint. We eliminate any candidate that is
within 2� sdðxÞ of a voxel x where a constraint was added
on the current iteration. This distance restriction, along with
the greedy approach of adding the constraints with greatest
errors first, guarantees that for all i, the spheres of radius
sdðxiÞ centered at xi will be disjoint. Often, adding a
constraint in one location will greatly improve the surface
nearby. Boundary voxels with errors less than half the
maximum error at the current iteration are considered too
fine an adjustment and are discarded.

5.4 Termination

Finally we discuss how the algorithm terminates. Empiri-
cally, we found that the models tend to refine quickly at
first and then slow as they converge to the goal (see Fig. 1).
We terminate the algorithm under four conditions: if the
model has reached a maximum error of one voxel, if a
model has not improved in the previous four iterations, if
too many iterations have passed (we use 30), or if too many
constraints have been placed (we use a maximum of 5,000).
When successive models have the same Hausdorff error, we
pick the best model based from a similarly derived root-

mean-square (RMS) error. For most of our results, termina-
tion was from the model not improving over the last few
iterations.

6 PROGRAM PARAMETERS

Our algorithm has several parameters that govern its
behavior. We will discuss each of these parameters and
show that the quality of the results are largely insensitive to
their values. We note that the parameter settings can have
some effect on the running times to generate the results,
especially when using extreme numbers of initial con-
straints. All of the timing data in the tables were from using
one 195 MHz R10000 MIPS processor of an SGI Origin.

6.1 Volume Resolution

Because our algorithm attempts to fit an implicit surface to a
signed distance function over voxels, the performance is
dependent on the voxel resolution. A coarse volume might
not capture much detail from a polygonal model, and a fine
volume can be computationally expensive. We use one byte
per voxel, and by far, the largest factor for memory usage in
our algorithm is the size of the voxel grids. For the models
shown in Section 7, we use high-resolution volumes,
making sure that the volumetric models lose little detail
from the polygonal originals. However, our method can
also make implicit surfaces out of coarse volumetric data. In
this case, much detail cannot be captured in the implicit
surfaces because of the absence of detail in the volumetric
models, but they can be computed in mere minutes. We also
tried running a few models at higher voxel resolutions.
There were no noticeable improvements, which is not
surprising because the results in Section 7 had errors larger
than a voxel. To determine the resolution, a user could view
the model with the radius of regularity or the radius of
curvature color-coded and textured.

Table 1 shows the results from varying the voxel
resolution. For the coarsest models, our algorithm rapidly
generates a nearly exact fit because the high-frequency
details are smoothed in the volumetric models. Fig. 4 shows
the volumetric models and resulting implicit surfaces for
models of a horse and the head at two resolutions.

6.2 Number of Initial Constraints

The final implicit surface is dependent on the number of
constraints used to construct the initial surface before the
refinement passes. (For all the examples shown in Section 7,
50 boundary constraints and a total of 50 interior and
exterior constraints were used for initialization.) Too few
initial constraints could be inefficient because the algorithm
has to spend time up front just trying to get a rough fit of
the goal, such as trying to make the surface bounded. While
using many initial constraints can cut down the number of
iterations needed, using too many initial constraints results
in too much time being spent on solving for unnecessary
constraints. For example, in Table 2, both models took the
longest to calculate when given the most initial constraints.

We experimented with seeding the implicit surface
with values ranging from 50 to 1,600 boundary con-
straints (100 to 3,200 total constraints). For all configura-
tions, the algorithm returned satisfactory results.
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Furthermore, simply adding more initial constraints did

not alone produce a good surface. The results in Table 2

indicate that, although the first iterations of the surfaces

get better with more constraints, they are still nowhere

near the desired fit. Fig. 5 illustrates using varying

amounts of initial constraints on the triceratops model.

The implicit surfaces created from the initial constraints

alone get consistently better with more constraints, but

even with 3,200, key features such as the horns are still

lacking, yet the final implicit surfaces captured these key

features. Not only do these results indicate the insignif-

icance of the amount of initial constraints, but they also

demonstrate the need for iterative refinement.
For all of the results shown in Section 7, we initialize

with 50 zero constraints and 50 interior and exterior

constraints. Using fewer initial constraints produces results

faster, and the results are comparable to those started with

more constraints.

6.3 Regularization Parameter

If we wish to approximate rather than exactly interpolate
some of the constraints, we can use a slight adaptation of (5)
for creating the implicit surfaces. We modify the matrix’s
diagonal entries of the form �ii to �ii þ �i. Since �ii ¼ 0, a
constraint with a nonzero � is not interpolated exactly.
Instead, the constraint’s position becomes a weighted
average of the desire for interpolation and the desire for
regularization (smoothness).

We examined the results of our algorithm using nonzero
� values at the boundary constraints. Instead of running our
algorithm again with the new �, we simply took the
constraints already produced and solved (5) with the new �.
Although our algorithm refined the set of constraints given
the old � ¼ 0, the implicit surface with the new � is still a
nice fit. Fig. 6 shows enlarged images of the implicit horse
with � ¼ 0 and � ¼ 100. Using � ¼ 100 improved the ears
but sacrificed detail around the nostrils. The smoother
version of the leg with � ¼ 100 is more pleasing than the
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Fig. 4. Top row: low-resolution volumetric representations of the horse (104� 70� 119, 195� 120� 228) and the head (69� 69� 76,

118� 120� 135). Bottom row: respective implicit surfaces generated by our algorithm.

TABLE 1
Volume Resolution



� ¼ 0 version, especially the hoof and the dimple on the
inner thigh. All of the results in Section 7 use � ¼ 0; a user
who wishes a smoother model can set � accordingly.

7 RESULTS

The main goal of our research is to create an entirely
automatic algorithm for creating implicit models from
polygons, a robust method not requiring human interven-
tion. We tested our algorithm on a variety of polygonal
models and the results convinced us that it will behave
robustly for all but the most pathological of polygonal
models.

Fig. 7 and Fig. 8 show the resulting implicit surfaces from
our algorithm. The subimages in these figures are arranged
in pairs, with the intermediate volumetric models (the left
subimages in a pair), which do not capture all the details
from the polygonal models, shown side-by-side with the
resulting implicit surfaces created by our method (right
subimage of pair). For example, some surfaces that are
paper-thin are problematic for our algorithm because the
voxelization will alias those regions or not even capture
them. While some forms of implicit surfaces can represent
such thin features, we do not know of any automatic
method for creating thin-featured models from polygons.

Fig. 7 shows our results on six high-resolution models
obtained from laser range scanning. In all cases, our
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TABLE 2
Number of Initial Constraints

Fig. 5. Triceratops model, showing the effect of the number of initial constraints. At far left is original polygon model and the volumetric mode. Pairs of

models show results after just the initial constraints (left image of pairs, with number of constraints in corner), and after subsequent refinement until

the algorithm terminates (right image of pairs).



algorithm produced implicit surfaces that capture all of the
main features of each model. The bunny and teeth implicit
surfaces look nearly identical to their volumetric counter-
parts. The two head models are also close matches,
although small but sharp creases such as wrinkles or
eyelids are not always captured. The algorithm performs
the least well on the Buddha model, apparent from both the
image and Table 3. The Buddha model is difficult because
of the fine detail, especially high curvature areas such as the
folds on the robe. The implicit surface for the dragon model
captures all of the macroscopic features but does not
capture the fine scales. Perhaps more constraints could
capture these very fine details, but at too great a cost. A
more reasonable approach would be to encode the scales as
a bump map or displacement map (see Future Work). We
do not know of any other method for creating implicit
surfaces using radial basis functions that would give results
comparable to those shown in this figure.

Fig. 8 shows our results on six polygonal models that
contain high-curvature regions or thin surfaces. The tricera-
tops has sharp horns, and the horse has skinny legs and
pointy ears. All of these features are captured by the surface
created by our method. The foot model contains many
slender bones, but the most difficult feature is not the bones,
but the thin gaps between the bones. The flamingo not only
has wiry legs but also the thin foot webbing and wings. The
wings are particularly hard to fit because they are separated
from the rest of the body by a very small gap. The model
with the ants crawling around the trefoil knot is also a very
difficult model because of the high curvature around the
many holes. The implicit representation we use has the
effect of rounding off the sharp edges of this model. For the
other five models, despite their high-curvature features, our
results fit the original data well.

For more quantitative comparisons, Table 3 gives the
numbers of iterations, the numbers of constraints in the
final implicit surfaces, and the errors of the final implicit
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Fig. 6. Implicit horse: head and leg. Top shows � ¼ 0 (exact interpolation) and bottom shows � ¼ 100 (weighted average of exact interpolation and

curvature minimization).



surfaces. Each final implicit surface was specified using
roughly two to three thousand constraints and achieved a
root-mean-squared error of less than one voxel. The Igea
artifact model (upper left in Fig. 7) took the fewest
iterations; most likely the algorithm did not have to refine
much because the model did not have many high-curvature
regions. The scorpion and flamingo took the most iterations;
we conjecture that the variational implicit surfaces had a
difficult time fitting these goal models due to their high
curvature.

Table 4 shows the running times for the algorithm on all
of the models. The running times ranged from a few hours
to just over a day for the Buddha model. Most of the
compute time for the algorithm was in the implicit function
evaluation stage. Each evaluation of the implicit surface at a
point requires time linear in the number of constraints. Our
evaluation method tests a shell of voxels finely and a
volume of voxels coarsely. However, the shell is rather
thick, and in the later iterations, evaluating at a point
becomes costly from so many constraints. For many of our
models, the last few iterations amounted to half the total
running time or more. Because we wanted to err conserva-
tively regarding evaluating the implicit function as exactly
as possible, there may be room for speeding up the
evaluation, such as reducing the thickness of the shell.
Solving (5) is also expensive for a large number of
constraints. LU decomposition is cubic in the number of

constraints, but because the evaluation was still more
expensive, we did not focus on improving the matrix
solution. Jacobi iteration with the last set of weights as the
initial value could accelerate the matrix solution. The table
also shows timing information to achieve root-mean-
squared errors less than two voxels and less than one
voxel; for most of the models, the algorithm reached these
accuracies in substantially less time.

8 CONCLUSIONS AND FUTURE WORK

To the best of our knowledge, our method is the first

approach that automatically converts an arbitrary poly-

gonal mesh to a smooth radial-basis-function implicit

surface. We have tested our method on a variety of

complex polygonal meshes, and we are convinced empiri-

cally that it behaves robustly. Specifically, we feel that our

method makes the following new contributions to compu-

ter graphics:

. Automatically converts any manifold polygonal
mesh to a smooth implicit surface.

. Generates implicit surfaces from low-resolution data
very fast.
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Fig. 7. Six large scanned polygonal models: intermediate volumetric representations (left images of pairs) and final implicit surfaces (right images of

pairs) from our algorithm.



. Provides a general framework for other basis
functions or other implicit surface representations.

One avenue for future work is looking at classes of basis

functions that either have finite support or approach zero

asymptotically. We will still be able to specify constraints to

be interpolated exactly, but the basis functions will not

minimize the aggregate curvature discussed in Section 3.

However, using such basis functions should speed up the
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Fig. 8. Six models with thin or high-curvature regions: intermediate volumetric representations (left images of pairs) and final implicit surfaces (right

images of pairs) from our algorithm.

TABLE 3
Implicitization of Polygonal Models



algorithm because the matrix will be sparse and implicit
function evaluations will only have to use nearby basis
functions. Recent work by Morse et al. has demonstrated the
promise of using compactly supported basis functions [19].

More work still needs to be done on representing high-
frequency features such as thin surfaces and fine detail. Thin
surfaces might be better represented by other radial basis
functions or by basis functions that could be weighted along
principal directions (much like the covariance matrix for a
Gaussian). We do not feel that addingmore constraints is the
right way to capture fine detail. Rather, fine detail could be
added by local-influence implicit surfaces. Another logical
path to explore is adding fine features (such as scales on the
dragon) using normal or displacement maps, such as the
work in [27], [28], [29].

A different representation of the volumes could be used to
reduce memory usage and computation times. Recently,
researchers atMERLusedadaptively sampleddistance fields
to represent surfaces [30] efficiently. Using wavelets to
represent the volume data might have similar benefits [22].
Such an adaptive approach might be useful to speed up
several of the algorithm tasks, especially in evaluating the
metrics andsearching for locationswhere the surfaceneeds to
be refined.
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