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Robust D-Stability Analysis for Uncertain Discrete
Singular Systems With State Delay

Shengyuan Xu, James Lam, and Liqian Zhang

Abstract—This brief investigates the problem of robust D-stability anal-
ysis for uncertain discrete singular systems with state delay and structured
uncertainties. Sufficient conditions are developed to ensure that, when the
nominal discrete singular delay system is regular, causal and all its finite
poles are located within a specified disk, the uncertain system still pre-
serves all these properties when structured uncertainties are added into
the nominal system. A computationally simple approach is proposed and a
numerical example is given to demonstrate the application of the proposed
method.

Index Terms—Discrete systems, robust D-stability, singular systems,
state delay, structured uncertainties.

I. INTRODUCTION

It is well known that satisfactory transient behavior of a linear time-
invariant control system can be achieved by using the pole assignment
technique. When there is no uncertainty in the system, it is possible
to exactly place the poles at specified locations. However, in practical
applications, one cannot place all the poles in precise locations due
to parametric uncertainties originating from various sources, such as
identification errors, aging of elements, and so on. Therefore, it is rea-
sonable in practice to assign all the poles of the closed-loop system in
a desired region rather than exact assignment. This has brought about
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the study of pole assignment in a specified region, particular circular
region in the left half complex plane for continuous systems or in the
unit disk with center at the origin for discrete systems. The problem
of assigning all poles of a system in a specified disk is referred to as
a D-pole placement problem. Considerable amount of results on this
issue have been reported in the literature, see, e.g., [3], [9], [10]. It is
worth mentioning that these results have been further extended to dis-
crete systems with parameter uncertainties and time delays [12], [16],
[17].

Singular systems have been studied by many researchers in the past
years. This is due not only to theoretical interest but also to the ex-
tensive applications of these systems to circuits [14], boundary control
systems [15], chemical processes [11], and other areas. Singular sys-
tems are also referred to as descriptor systems, implicit systems, gener-
alized state-space systems, differential-algebraic systems or semi-state
systems [5], [13]. The problem of pole assignment for singular systems
has also received considerable attention. Under certain controllability
assumptions and with different treatments, the exact pole assignment
problem for singular systems have been dealt with [4], [8]. When para-
metric uncertainties appear, the problems of robust D-stability anal-
ysis and robust D-pole placement for discrete-time singular systems
have been investigated in [7], and sufficient conditions have been ob-
tained. Similar results for continuous-time singular systems have been
reported in [6]. Both results in [6] and [7] can be viewed as exten-
sions of those for state–space systems. It is worth pointing out that the
robust D-stability problem for singular systems is much more compli-
cated than that for state–space systems because it requires to consider
not only D-stability robustness, but also regularity and impulse immu-
nity (for continuous singular systems) and causality (for discrete sin-
gular systems) simultaneously [6], [7], while for state–space systems,
the latter two issues do not arise. It is also noted that when both para-
metric uncertainties and state delay appear in singular discrete systems,
no results on D-stability robustness for these systems are available in
the literature, this problem is still open and remains challenging.

In this brief, we consider the problem of robust D-stability analysis
for uncertain discrete singular systems with state delay. Structured un-
certainties are discussed. The purpose of this paper is to develop con-
ditions such that, when the nominal discrete singular delay system is
regular, causal and all its finite poles are located within a specified disk,
the uncertain system still preserves all these properties when structured
uncertainties are present in the nominal system. We first propose a
computationally simple approach, which can be viewed as an exten-
sion of that in [3], to present a robust stability result for uncertain dis-
crete singular delay systems. Then, based on this, sufficient conditions
for D-stability robustness are obtained. Finally, a numerical example is
given to demonstrate the results.

Notation: Throughout this paper, for matricesX, Y 2 n�n, the
notationX � Y means thatXij � Yij , i, j = 1; 2; . . . n, where
Xij , Yij (i, j = 1; 2; . . . n), are elements ofX andY , respectively.
I is the identity matrix with appropriate dimension. The superscript
“T ” represents the transpose.Dint(q; r) stands for the interior of the
disk with center atq + j0 and radiusr. Thus,Dint(0; 1) is the in-
terior of the unit disk with center at the origin, and for stability, we
requireDint(q; r) � Dint(0; 1). �(E; A; Ad) = fzj det(zE�A�

z�dAd) = 0g. �(E; A) = fzjdet(zE � A) = 0g. jxj denotes the
Euclidean norm ifx is a vector and absolute value ifx is a scalar.�(M)

refers to spectral radius of matrixM andjM jm is the modulus matrix
ofM . Matrices, if not explicitly stated, are assumed to have compatible
dimensions.
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II. PRELIMINARIES AND PROBLEM FORMULATION

Consider the following uncertain linear discrete singular system with
state delay:

Ex(k + 1) = (A+�A)x(k) + (Ad +�Ad)x(k � d) (1)

wherex(k) 2 n is the state and the matrixE 2 n�n may be sin-
gular, we shall assume that rankE = r � n.A andAd are known real
constant matrices with appropriate dimensions.d > 0 is a known pos-
itive integer time delay of the system,�A and�Ad are highly struc-
tured matrices representing time-invariant parameter uncertainties, and
are assumed to have the following properties [7], [12]:

j�Ajm �MA j�Adjm �Md (2)

whereMA andMd are constant matrices whose elements are all non-
negative.�A and�Ad are said to be admissible if (2) holds.

The nominal discrete singular delay system of (1) is given as follows:

Ex(k + 1) = Ax(k) + Adx(k � d): (3)

Throughout this paper, we use the following definitions.
Definition 1 [5], [18]:

I) The pair(E; A) is said to be regular ifdet(zE � A) is not
identically zero.

II) The pair(E; A) is said to be causal ifdeg(det(zE�A)) =
rankE.

III) The singular systemEx(k+1) = Ax(k) or simply the pair
(E; A) is said to be stable if�(E; A) � Dint(0; 1).

Definition 2 [1]: For a regular pair(E; A), �(E; A) are said to be
finite spectrum (or finite modes) of the pair(E; A). Suppose a nonzero
vector�1 2 n, �1 6= 0 satisfyingE�1 = 0. Then, the infinite eigen-
values associated with the generalized principal vectors�k satisfying
�k 6= 0,E�k = A�k�1, k = 2; 3; 4; . . . , are said to be the noncausal
modes.

Proposition 1 [1]: The following statements are equivalent.

I) The pair(E; A) is causal;
II) The pair(E; A) has no noncausal modes;
III) (zE � A)�1 is proper.
For the discrete singular delay system (3), if we set

X(k) = x(k)T ; x(k � 1)T ; . . . ; x(k � d)T
T

then system (3) can be rewritten as

ÊX(k+ 1) = ÂX(k) (4)

where

Ê =
E 0n�nd

0nd�n Ind�nd

Â =
A 0n�n(d�1) Ad

Ind�nd 0nd�n
: (5)

Therefore, we introduce the following definition for discrete singular
delay system (3).

Definition 3: The discrete singular delay system (3) is said to be
regular if system (4) is regular. System (3) is said to be causal if system
(4) is causal. System (3) is said to be stable if system (4) is stable.

Remark 1: In the case when singular system (3) is regular, causal
and stable, from Definition 3, it can be shown that for any admissible
initial condition, the following singular system:

Ex(k + 1) = Ax(k) + Adx(k � d) + u(k) (6)

has a unique solution, and its solution can be determined by the initial
condition and past inputs, no future inputs is required. That is,x(k)
(k � 0) can be completely determined at any timek by x(0) and past
inputsu(0), u(1); . . . ; u(k). Furthermore, when the inputu(k) � 0,
that is, (6) reduces to (3), in this case, its solutionx(k) satisfiesx(k)!
0, k ! 1.

The robust D-stability problem to be dealt with in this paper can
be formulated as follows. Suppose the nominal discrete singular delay
system (3) is regular, causal and its finite eigenvalues are located within
diskDint(q; r), that is,�(Ê; Â) � Dint(q; r), we shall develop suffi-
cient conditions guaranteeing that the uncertain discrete singular delay
system (1) remains regular, causal and its finite eigenvalues are located
within diskDint(q; r), that is,�(Ê; Â+�Â) � Dint(q; r), where

�Â =
�A 0n�n(d�1) �Ad

0nd�nd 0nd�n

:

III. M AIN RESULTS

In this section, we first present a computationally simple sufficient
condition ensuring robust stability for uncertain discrete singular delay
systems, which will play a key role in the derivation of robust D-sta-
bility results.

From Definition 3, the regularity, causality and stability of the un-
certain singular delay system (1) can be determined by testing whether
the pair(Ê; Â + �Â) is regular, causal as well as stable or not, for
which many testing conditions exist in the literature [5], [13]. How-
ever, it should be noted that for a�d increase in the time delayd the
sizes of matrixÊ andÂ + �Â will increase byn�d. Therefore, for
large delays the sizes of matrix̂E andÂ +�Â become large and the
testing conditions for the pair(Ê; Â + �Â) will become difficult to
apply. It is then desirable to develop simple conditions to test the regu-
larity, causality and stability of discrete singular delay system (1).

The following lemma shows that testing the regularity, causality and
stability of system (3) can be converted into testing the regularity and
causality of the pair(E; A) together with�(E; A; Ad) � Dint(0; 1).

Lemma 1: The discrete singular delay system (3) is regular, causal
and stable if and only if the pair(E; A) is regular, causal and

�(E; A; Ad) � Dint(0; 1): (7)

Proof: (Sufficiency)Suppose the pair(E; A) is regular, causal
and�(E; A; Ad) � Dint(0; 1), then it follows from [5] that there
exist two invertible matricesM andN such that

MEN =
I 0

0 0
MAN =

A1 0

0 I
: (8)

Writing

MAdN =
Ad1 Ad2

Ad3 Ad4

compatible with (8) and noting

det zÊ � Â = z
nd det(zE � A� z

�d
Ad) (9)
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we have

det zÊ�Â = z
nd det(M�1

N
�1)

� det
zI�A1�z

�dAd1 �z�dAd2

�z�dAd3 �I�z�dAd4

: (10)

It is easy to show that for sufficiently largez, det(zÊ � Â) 6= 0.
Therefore, there exists a scalarz 2 such thatdet(zÊ� Â) 6= 0, this
implies that the pair(Ê� Â) is regular. Furthermore, from (10), it can
be seen that

deg det zÊ � Â = nd+ rankE = rank Ê:

Hence, it follows from Definition 1 that the pair(Ê; Â) is causal. The
stability of the pair(Ê�Â) can be shown from (7) and (9). Thus, from
Definition 3, the discrete singular delay system (3) is regular, causal
and stable.

(Necessity)Suppose the discrete singular delay system (3) is regular,
causal and stable. Then from Definition 3, we have that the pair (Ê; Â)
is regular, causal and stable. Next we shall show that the pair(E; A) is
regular, causal and�(E; A; Ad) � Dint(0; 1). Suppose, by contra-
diction, the pair(E; A) is not regular, then from [5, Theorem 1–2.1],
there exist an integerk � 1 and a vector�T = [�T1 ; �

T
2 ; . . . ; �

T
k ],

� 6= 0, �i 2 n, i = 1; 2; . . . ; k, such that

�(k)� = 0 (11)

where

�(k) =

E

A E

A
. . .
. . . E

A

2 (k+1)n�nk
:

Without loss of generality, suppose�1 6= 0, then it follows from (11)
that

E�1 = 0; A�1 = �E�2: (12)

Let

�
T
1 = [�T1 ; 0; 0; . . . ; 0] �

T
2 = [��T2 ; �

T
1 ; 0; . . . ; 0];

�1; �2 2
(d+1)n

;

then�1 6= 0, �2 6= 0. From (12), it is easy to see

Ê�1 = 0; Ê�2 = Â�1: (13)

From Proposition 1, we have that (13) is a contradiction because the
pair (Ê; Â) is causal. Therefore, the pair(E; A) is regular.

Now, we show the pair(E; A) is causal. Suppose, by contradiction,
the pair(E; A) is not causal. Then, it follows from Proposition 1 that
there exist at least two nonzero vectors�1,�2 2 n satisfyingE�1 = 0
andE�2 = A�1. Set

�1 = [�T1 ; 0; 0 � � � 0]
T

�2 = [�T2 ; �
T
1 ; 0; . . . 0]

T
;

�1; �2 2
(d+1)n

:

It is easy to show that

Ê�1 = 0; Ê�2 = Â�1:

This is also a contradiction because the pair(Ê; Â) is causal. There-
fore, the pair(E; A) is causal.

Finally, �(E; A; Ad) � Dint(0; 1) can be established by noting
the stability of the pair(Ê; Â) and the equality (9). This completes the
proof.

Before stating the robust stability results, we introduce the following
lemmas which will be used in the proof of our main results.

Lemma 2 [2]: LetM(z) be a square rational matrix and be decom-
posed uniquely asM(z) = Mp(z)+Msp(z), whereMp(z) is a poly-
nomial matrix andMsp(z) is a strictly proper rational matrix. Then,
M�1(z) is proper if and only ifM�1

p (z) exists and is proper.
Lemma 3: Suppose the nominal discrete singular delay system (3)

is regular, causal and stable, and defineGp(z) as

Gp(z) = (zE �A� Adz
�d)�1 (14)

then

jGp(z)jm � H; jzj � 1

where

H =

1

k=0

jG(k)jm; jzj � 1 (15)

andG(k) is the pulse response sequence matrix ofGp(z).
Proof: SinceG(k) is the pulse response sequence matrix of

Gp(z), we can write

Gp(z) = (zE � A� Adz
�d)�1 =

1

k=0

G(k)z�k: (16)

Then, by [7, Lemma 3], the desired result follows immediately.
Now, we are in a position to present the robust stability result for

uncertain discrete singular delay systems.
Theorem 1: Suppose the nominal discrete singular delay system (3)

is regular, causal and stable. Then, for all admissible uncertainties, the
uncertain discrete singular delay system (1) remains regular, causal and
stable if

�(H(MA +Md)) < 1 (17)

whereH is defined in (15).
Proof: From Lemma 1, the regularity, causality, and stability

of system (3) imply that the pair(E; A) is regular and causal and
�(E; A; Ad) � Dint(0; 1). Therefore, forjzj � 1, we have

det(zE � A� Adz
�d) 6= 0:

Using [7, Lemma 3] and noting (17), it follows that

�((zE�A�Adz
�d)�1�A) � �(HMA) � �(H(MA+Md)) < 1

for jzj � 1. Thus, forjzj � 1

det(I � (zE � A� Adz
�d)�1�A) 6= 0: (18)

Considering the regularity and causality of the pair (E; A) and noting
(18), we can show that there exists a sufficiently large scalarz1 2
such that

det[I � (z1E �A �Adz
�d
1 )�1(�A�Adz

�d
1 )] 6=0 (19)

and

det(z1E �A� Adz
�d
1 ) 6=0: (20)
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Then, it follows from (19) and (20) that

det[z1E � (A +�A)]

= det[(z1E � A� Adz
�d
1 )� (�A� Adz

�d
1 )]

= det(z1E �A �Adz
�d
1 )

� det[I � (z1E �A� Adz
�d
1 )�1(�A�Adz

�d
1 )] 6= 0 (21)

which implies that the pair(E; A+�A) is regular for all admissible
uncertainties. Next, we show that, for all admissible uncertainties, the
pair(E; A+�A) is causal. To this end, we note that the matrix(zE�
A � Adz

�d)�1 can be expressed as

(zE � A�Adz
�d)�1 = G(0) +Gsp(z)

whereG(0) is a constant matrix andGsp(z) is a strictly proper rational
matrix. From [7, Lemma 3] and (17), it is easy to see that

�(G(0)�A) � �(jG(0)jmMA) � �(HMA)

� �(H(MA +Md)) < 1:

This inequality implies thatI �G(0)�A is invertible. We write

[zE � (A+�A)]�1

= [zE � (A+�A)� Adz
�d + Adz

�d]�1

= [I � (zE � A�Adz
�d)�1�A

+ (zE �A� Adz
�d)�1Adz

�d]�1

� (zE � A� Adz
�d)�1

= [(I �G(0)�A) + (zE �A �Adz
�d)�1Adz

�d

�Gsp(z)�A]
�1(zE �A �Adz

�d)�1: (22)

Noting(zE�A�Adz
�d)�1Adz

�d�Gsp(z)�A is a strictly proper
rational matrix and recallingI �G(0)�A is invertible, it then follows
from Lemma 2 that[(I�G(0)�A)+(zE�A�Adz

�d)�1Adz
�d�

Gsp(z)�A]
�1 is proper and so is(zE � (A + �A))�1. Hence, by

Proposition 1, we have that the pair(E; A +�A) is causal.
Now, using [7, Lemma 3] again, we obtain

�[(zE � A�Adz
�d)�1(�A+�Ad)] � �(H(MA +Md)) < 1

for jzj � 1. Therefore, it can be shown that

det(zE � (A+�A)� (Ad +�Ad)z
�d)

= det(zE �A �Adz
�d)

� det(I � (zE �A �Adz
�d)�1(�A+�Ad)) 6= 0

for jzj � 1. That is,

�(E; A+�A; Ad +�Ad) � Dint(0; 1): (23)

Finally, by recalling the pair(E; A+�A) is regular and causal, noting
(23) and using Lemma 1, we have that the uncertain discrete singular
delay system (1) is regular, causal and stable for all admissible uncer-
tainties. This completes the proof.

The following result is needed in the proof of the main results.
Lemma 4: The discrete singular delay system (3) is regular, causal

and all its finite eigenvalues are located within the diskDint(q; r) if
and only if the pair(E; Ar) is regular, causal and

det vE � Ar �
1

r
(rv + q)�dAd 6= 0; jvj � 1 (24)

where

Ar =
1

r
(A� qE): (25)

Proof: From Lemma 1 and (9), it follows that (3) is reg-
ular, causal and all its finite eigenvalues are located within disk
Dint(q; r) if and only if the pair (E; A) is regular, causal and
�(E; A; Ad) � Dint(q; r), or

det(zE � A� z
�d
Ad) 6= 0;

z � q

r
� 1: (26)

Let

v =
z � q

r
: (27)

Then, we have that the pair(E; A) is regular, causal and (26) holds if
and only if the pair (E; Aq) is regular, causal and (24) holds.

Now, we present the robust D-stability result for uncertain singular
delay system (1) in the following theorem.

Theorem 2: Suppose the nominal discrete singular delay system (3)
is regular, causal and all its finite eigenvalues are located within the
disk Dint(q; r). Then, for all admissible uncertainties, the uncertain
discrete singular delay system (1) remains regular, causal and all its
finite eigenvalues are located within the diskDint(q; r) if

�(r�1Hr(MA + �
�d
Md)) < 1 (28)

where

� = min(jq + rj; jq � rj)

andHr is defined as

Hr =

1

k=0

jGr(k)jm (29)

whereGr(k) is the pulse response sequence matrix ofGpr(v) defined
by

Gpr(v) = vE �Ar �
1

r
(rv + q)�dAd

�1

in whichAr is given in (25).
Proof: Under the condition of the theorem, we can deduce that

the uncertain discrete singular delay system (1) is regular, causal by
using Lemma 4 and following a similar line as in the proof of Theorem
1. Next, we will establish that all the finite eigenvalues of system (1)
are located within the diskDint(q; r). To this end, we note

det vE �Ar �
1

r
(rv + q)�dAd 6= 0; jvj � 1 (30)

and

Gpr(v) =

1

k=0

Gr(k)v
�k
:

It follows that

�
1

r
Gpr(v)[�A+ (rv + q)�d�Ad]

� �
1

r
jGpr(v)jm[j�Ajm + jrv + qj�dj�Adjm]

� �
1

r
Hr(MA + �

�d
Md) < 1
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for jvj � 1. Therefore, we have

det(I � r
�1
Gpr(v)(�A + (rv + q)�d�Ad)) 6= 0; jvj � 1:

This together with (30) implies that

det vE � Ar �
1

r
�A �

1

r
(rv + q)�d(Ad +�Ad)

= det vE � Ar �
1

r
(rv + q)�dAd

� det I �
1

r
Gpr(v)(�A+ (rv + q)�d�Ad) 6=0; jvj � 1:

By Lemma 4, it follows from this inequality that

�(E; A +�A; Ad +�Ad) � Dint(q; r):

This completes the proof.
Remark 2: The criteria developed in Theorems 1 and 2 are compu-

tationally simple, and can be tested easily. Moreover, it can be seen that
all advantages stated in [3] and [17] are still preserved in our method
to deal with uncertain discrete singular delay systems with structured
uncertainties. It is also worth pointing out that the results in both The-
orems 1 and 2 can be extended to the case of multiple time delays.

IV. NUMERICAL EXAMPLE

In this section, we give an example to illustrate the effectiveness of
the proposed method.

Consider the linear uncertain discrete singular delay system (1) with
parameters as follows:

E =

1 0 0

0 0 0

0 1 0

A =

0:1 0 0

0 0 �0:4

0 0:3 0:5

Ad =

0:12 0:2 0

0 0 0:1

0 0:1 �0:1

MA =

0:1 0:01 0:1

0:01 0 0:01

0 0:01 0:1

Md =

0:03 0 0:1

0 0:01 0:02

0:01 0 0:1

andd = 1. It can be verified that the nominal singular delay system
is regular, causal, and the eigenvalues of the nominal system can be
calculated as

�(E; A; Ad) = f�0:3; �0:2; 0:25; 0:4; 0:5g:

In this example, we setDint(q; r) = Dint(0:1; 0:6). Thus,
�(E; A; Ad) � Dint(0:1; 0:6). The purpose of this example is
to check whether the uncertain system is still regular, causal and
the eigenvalues of the perturbed system are located within disk
Dint(0:1; 0:6).

From (29), the matrixHr is computed as

Hr =

1:6667 2:9461 1:5556

0 3:2407 2:3334

0 2:3333 0

:

Then, we have

�(r�1
Hr(MA + �

�d
Md))

= �

0:5454 0:1519 1:8567

0:1318 0:1469 1:4367

0:0389 0:0778 0:1944

= 0:8264 < 1:

Therefore, by Theorem 2, we have that the uncertain discrete singular
delay system is still regular, causal and all its finite eigenvalues are
located within diskDint(0:1; 0:6) for all admissible uncertainties.

V. CONCLUSIONS

In this brief, we have developed a computationally simple approach
to analyze the D-stability robustness for uncertain discrete singular sys-
tems with state delay. Sufficient conditions have been obtained to guar-
antee not only robust pole location within a specified disk but also regu-
larity, causality of the uncertain singular system. Structured uncertain-
ties have been discussed. The proposed method can be easily extended
to analyze the D-stability robustness for discrete singular systems with
multiple time delays.
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