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Urban search and rescue (USAR) missions for mobile robots require reliable state estimation systems resilient to
conditions given by the dynamically changing environment. We design and evaluate a data fusion system for
localization of a mobile skid-steer robot intended for USAR missions. We exploit a rich sensor suite including
both proprioceptive (inertial measurement unit and tracks odometry) and exteroceptive sensors (omnidirec-
tional camera and rotating laser rangefinder). To cope with the specificities of each sensing modality (such as
significantly differing sampling frequencies), we introduce a novel fusion scheme based on an extended Kalman
filter for six degree of freedom orientation and position estimation. We demonstrate the performance on field
tests of more than 4.4 km driven under standard USAR conditions. Part of our datasets include ground truth
positioning, indoor with a Vicon motion capture system and outdoor with a Leica theodolite tracker. The overall
median accuracy of localization—achieved by combining all four modalities—was 1.2% and 1.4% of the total
distance traveled for indoor and outdoor environments, respectively. To identify the true limits of the proposed
data fusion, we propose and employ a novel experimental evaluation procedure based on failure case scenarios.
In this way, we address the common issues such as slippage, reduced camera field of view, and limited laser
rangefinder range, together with moving obstacles spoiling the metric map. We believe such a characterization
of the failure cases is a first step toward identifying the behavior of state estimation under such conditions. We
release all our datasets to the robotics community for possible benchmarking. C© 2014 Wiley Periodicals, Inc.

1. INTRODUCTION

Mobile robots are sought for many tasks, from tour-guide
robots to autonomous cars. With the rapid advance in sen-
sor technology, it has been possible to embed richer sensor
suites and extend the perception capabilities. Such sensor
suites provide multimodal information that naturally en-
sures perception robustness, allowing also better means of
self-calibration, fault detection, and recovery—given that
appropriate data fusion methods are exploited. Indepen-
dently from the application, a key issue of mobile robotics
is state estimation. It is crucial for both perception, such as
mapping, and action, such as avoiding obstacles or terrain
adaptation.

In this paper, we address the problem of data fusion
for localization of an unmanned ground vehicle (UGV) in-
tended for urban search and rescue (USAR) missions. There

has been a significant effort presented in the field of USAR
for robot localization that mostly aims for a minimal suit-
able sensing setup, usually exploiting the inertial measure-
ments aided by either vision or laser data. Having suffi-
cient onboard computational power, we therefore aim for
a richer sensor suite and hence better robustness and relia-
bility. Therefore, our UGV used in this work (see Figure 1)
embeds track encoders, an inertial measurement unit (IMU),
an omnidirectional camera, and a rotating laser rangefinder.

Our first contribution lies in the development of a
model for such multimodal data fusion using an extended
Kalman filter (EKF), especially in the way we incorporate
sensors with slow and fast measurement update rates. To
cope with such a significant difference in the update rates
of various sensor modalities, we concentrated the model
design on integrating the slow laser and visual odometry
with the faster IMU and track odometry measurements. For
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Figure 1. Picture of two USAR UGVs used for experimental evaluation (FP7-ICT-247870 NIFTi project) and a detail of the sensor
setup (a PointGrey Ladybug 3 omnicamera and a rotating SICK LMS-151 laser rangefinder). See Section 3.1 for more details.

this purpose, we propose and investigate three different
possible methods—one of them, the trajectory approach (see
Section 4.3.3 for further details), is our contribution that we
compare to the velocity approach, which is a common state-
of-the-art practice. We show that a standard EKF designed
with the velocity approach does not cope well with such sig-
nificant differences in the frequency, whether or not our
proposed trajectory approach does.

The context of USAR missions implicitly defines the
challenges and limitations of our application. The envi-
ronment is often unstructured (collapsed buildings) and
unstable (moving objects or other ongoing changes, de-
formable terrain causing high slippage). Robots need to
cope with indoor-outdoor transitions (change from con-
fined to open spaces), as well as bad lighting conditions with
rapid changes and sometimes decreased visibility (smoke
and fire). These are essentially the main challenges that
come with the sensor data we process. Therefore, our main
contribution lies in the actual experimental evaluation and
analysis of the limits of the proposed filter. We review the
different sensing modalities and their expected failure cases
to assess the impact of possible data degradation (or outage)
on the overall precision of localization. We believe that the
field deployment of state estimation for multimodal data
fusion needs to be characterized both under standard ex-
pected conditions and for partial or full failures of sens-
ing modalities. Indeed, robustness to sensor data outage or
degradation is a key element to the scaling up of a field
robotics system. Therefore, we evaluate our filter using sev-
eral hours and kilometers of experimental data validated
by indoor or outdoor ground truth measurements. To share
this contribution with the robotics community, we release
all the captured datasets (including the ground truth mea-
surements) to be used as benchmarks.1

1The datasets are available as bagfiles for ROS at https://sites
.google.com/site/kubelvla/public-datasets

The state of the art of sensor fusion for state estimation
is elaborated in Section 2. In Section 3, we present the hard-
ware and software used in this work before describing in
detail the design of our data fusion algorithm (Section 4).
In Section 5, we explain our experimental evaluation in-
cluding our fail-case methodology before a discussion and
conclusion (Section 6).

2. RELATED WORK

In general, the information obtained from various sensors
can be classified as either proprioceptive (inertial measure-
ments, joint sensors, motor or wheel encoders, etc.) or exte-
roceptive [global positioning system (GPS), cameras, laser
rangefinder, ultrasonic sensors, magnetic compass, etc.]. Ex-
teroceptive sensors that acquire information from the envi-
ronment can also be used to perceive external landmarks
that are necessary for long-term precision in navigation
tasks. In modern mobile robots, a popular solution lies usu-
ally in the combination of a proprioceptive component in
the form of an inertial navigation system (INS) (Titterton
and Weston, 1997) that captures the body dynamics at high
frequency, and an external source of aiding, using vision
(Chowdhary, Johnson, Magree, Wu, & Shein, 2013) or range
measurements (Bachrach, Prentice, He, & Roy, 2011). The
key issue lies in the appropriate integration of the different
characteristics of the different sensor modalities.

As was repeatedly shown, the combination of an IMU
with wheel odometry is a popular technique to localize a
mobile robot in a dead-reckoning manner. It generally al-
lows for a very high sampling frequency as well as pro-
cessing rate, usually without excessive computational load.
Dead reckoning can be used for short-term navigation with-
out any necessity of perceiving the surrounding environ-
ment via exteroceptive sensors. In real outdoor conditions,
the dynamically changing environment often causes sig-
nal degradation or even outage of exteroceptive sensors.
However, proprioceptive sensing, in principle, is too prone
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to accumulating errors to be used as a stand-alone solu-
tion. Computational and environmental errors as well as
errors caused by misalignment and instrumentation cause
the dead-reckoning system to drift quickly with time. More-
over, motor encoders do not reflect the true path, especially
the heading of the vehicle, in the case of frequent wheel slip.
In Yi, Zhang, Song, and Jayasuriya (2007) and Anousaki and
Kyriakopoulos (2004), an improvement through the skid-
steer model of a four-wheel robot is presented, based on
a Kalman filter estimating trajectory using velocity con-
straints and slip estimate. An alternative method appears
in Endo, Okada, Nagatani, and Yoshida (2007), where the
IMU and odometry are used to improve tracked vehicle
navigation via slippage estimates. We addressed this prob-
lem in Reinstein, Kubelka, and Zimmermann (2013). Sub-
stantial effort has also been made to investigate the odome-
try derived constraints (Dissanayake, Sukkarieh, Nebot, &
Durrant-Whyte, 2001) or innovation of the motion models
(Galben, 2011). Concerning all the references so far, local-
ization of the navigated object via dead reckoning was per-
formed only in two dimensions. There exist solutions pro-
viding real three-dimensional (3D) odometry derived from
the rover-type multiwheel vehicle design (Lamon & Sieg-
wart, 2004). Nevertheless, the error is still about one order
of magnitude higher than what we aim to achieve (below
2% of the total distance traveled).

However, if long-term precision and reliability are to be
guaranteed, dead-reckoning solutions require other extero-
ceptive aiding sensor systems. In the work of Shen, Tick, and
Gans (2011), it is shown that a very low-cost IMU and odom-
etry dead-reckoning system can be realized and success-
fully combined with visual odometry (VO) (Sakai, Tamura,
& Kuroda, 2009; Scaramuzza & Fraundorfer, 2011) to pro-
duce a reliable navigation system. With the increasing on-
board computational power, visual odometry is becoming
very popular even for large-scale outdoor environments.
Most solutions are based on the EKF (Chowdhary, Johnson,
Magree, Wu, & Shein, 2013; Civera, Grasa, Davison, &
Montiel, 2010; Konolige, Agrawal, & Sola, 2011; Oskiper,
Chiu, Zhu, Samarasekera, & Kumar, 2010) or a dimensional-
bounded EKF with a landmark classifier introduced in Jesus
and Ventura (2012). However, in Rodriguez F, Fremont, and
Bonnifait (2009) it is pointed out that a tradeoff between pre-
cision and execution time has to be examined. Moreover, VO
degrades due to high rotational speed movements and it is
susceptible to illumination changes and lack of sufficient
scene texture (Scaramuzza & Fraundorfer, 2011).

Another typically used six degree of freedom (6 DOF)
aiding source is a laser rangefinder, which is used for
estimating vehicle motion by matching consecutive laser
scans and creating a 3D metric map of the environment
(Suzuki, Kitamura, Amano, & Hashizume, 2010; Yoshida,
Irie, Koyanagi, & Tomono, 2010). Examples of successful
application can be found for both indoor use—without
IMU but combined with vision (Ellekilde, Huang, Miro, &

Dissanayake, 2007)—as well as outdoor use—relying on the
IMU (Bachrach et al., 2011). As in case of the visual odome-
try, solutions using EKF are often proposed (Bachrach, Pren-
tice, He, & Roy, 2011; Morales, Carballo, Takeuchi, Abu-
radani, & Tsubouchi, 2009). The most popular approach of
scan matching is based on the iterative closest point (ICP) al-
gorithm first proposed by Besl and McKay (1992) and in par-
allel by Chen and Medioni (1991). More recently, Nuchter,
Lingemann, Hertzberg, and Surmann (2007) proposed a 6D
simultaneous localization and mapping (SLAM) system re-
lying mainly on ICP. Closer to USAR applications, Nagatani
et al. (2011) demonstrated the use of ICP in exploration mis-
sions and used a pose graph minimization scheme to han-
dle multirobot mapping. Kohlbrecher, Stryk, Meyer, and
Klingauf (2011) proposed a localization system combining
a 2D laser SLAM with a 3D IMU/odometry-based nav-
igation subsystem. A combination of 3D-landmark-based
SLAM and multiple proprioceptive sensors is also pre-
sented in Chiu, Williams, Dellaert, Samarasekera, and Ku-
mar (2013), whose work focuses mainly on a low latency
solution while estimating the navigation state by means of a
sliding-window factor graph. The problem of utilizing sev-
eral sensors for localization that may provide contradictory
measurements is discussed in Sukumar, Bozdogan, Page,
Koschan, & Abidi (2007). The authors use Bayes filters to
estimate sensor measurement uncertainty and sensor valid-
ity to intelligently choose a subset of sensors that contribute
to localization accuracy. As opposed to the later publica-
tions realized in the context of SLAM, we only consider the
results of the ICP algorithm as a local pose measurement,
similarly to Almeida and Santos (2013), who use the ICP
algorithm to extract the steering angle and linear velocity
of a carlike vehicle to update its nonholonomic model of
motion. In our approach, the 3D reconstruction of the en-
vironment is considered locally coherent, and neither loop
detection nor error propagation is used.

As stated in Kelly, Sibley, Barfoot, & Newman (2012),
it is the right time to address issues concerning the state
of the art in long-term navigation and autonomy. In this
respect, the benefits and challenges of repeatable long-range
driving were addressed in Barfoot, Stenning, Furgale, and
McManus (2012). In this context, we believe that bringing
more insight into multimodality state estimation algorithms
is an important step for the long-term stability of a USAR
system evolving in a complex range of environments.

Regarding multimodal data fusion, we built on our pre-
vious work concerning complementary filtering (Kubelka &
Reinstein, 2012), odometry modeling (Reinstein et al., 2013),
and design of EKF error models (Reinstein & Hoffmann,
2013), even though the latter work applied to a legged robot.

3. SYSTEM DESCRIPTION

Our system is aimed at high state estimation accuracy
while ensuring robust performance against rough terrain
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navigation and obstacle traversals. We selected four modal-
ities to achieve this goal: the inertial measurements (IMU),
odometry data (OD), visual odometry (VO), and laser
rangefinder data (ICP) processed by the ICP algorithm. This
section explains the motion capabilities of the Search & Res-
cue platform and the preprocessing computation applied
to its sensors in order to extract meaningful inputs for the
state estimation. These explanations provide a motivation
for a list of states to be estimated by the EKF described in
Section 4.

3.1. Mobile Robotic Platform

Figure 1 presents the UGV designed for the USAR mis-
sion that we use in this paper. As described in Kruijff et al.
(2012), this platform was deployed multiple times in col-
laboration with various rescue services (Fire Department of
Dortmund/Germany, Vigili del Fuoco/Italy). It has two bo-
gies linked by a differential that allows a passive adaptation
to the terrain. On each of the tracks, there are two indepen-
dent flippers that can be position-controlled in order to in-
crease the mobility in difficult terrain. For example, they can
be unfolded to increase the support polygon, which helps
to overcome gaps and increase stability on slopes. They can
also be raised to help with climbing over higher obstacles.
Given that the robot was designed to operate in 3D unstruc-
tured environments, the state estimation system needs to
provide a 6 DOF localization.

Encoders are placed on the differential, giving the an-
gle between the two bogies and the body, on the tracks to
give their current velocity, and on each flipper to give its
position with respect to its bogies. Inside the body, vertical
to the center of the robot, lies the Xsens MTi-G IMU provid-
ing angular velocities and linear acceleration along each of
the three axes. The IMU data capture the body dynamics at
the high rate of 90 Hz. GPS is not taken into account due to
the low availability of the signal indoors or in close prox-
imity with buildings. The magnetic compass is also easily
disturbed by metallic masses, pipes, and wires, which make
it highly unreliable, and hence we do not use it.

The exteroceptive sensors of the robot consist of an om-
nidirectional camera and a laser rangefinder. The omnidi-
rectional camera is the PointGrey Ladybug 3 and produces
a 12 megapixels stitched omnidirectional images at 5–6 Hz.
The omnidirectionality of the sensor provides a stronger
stability of rotation estimation at the expense of scale esti-
mation, which would be better handled by a stereocamera.
The laser rangefinder used is the Sick LMS-151 mounted on
a rolling axis in front of the robot. The laser spins left and
right alternately, taking a full 360◦ scan at approximately
0.3 Hz to create a point cloud of around 55,000 points.

3.2. Inertial Data Processing

Although the precision and reliability of the IMU measure-
ments is sufficient in the short term, in the long term the in-

formation provided suffers from random drift that, together
with integrated noise, causes unbounded error growth. To
cope with these errors, all the six sensor biases have to be
estimated (see Section 4.1 for more details). Therefore, we
have included sensor biases in the state space of the pro-
posed EKF estimator. Furthermore, correct calibration of
the IMU output and its alignment with respect to the robot’s
body frame has to be assured.

3.3. Odometry for Skid-steer Robots

Our platform is equipped with caterpillar tracks, and there-
fore steering is realized by setting different velocities for
each of the tracks (skid-steering). The encoders embedded in
the tracks of the platform measure the left and right track
velocities at approximatively 15 Hz. However, in contradis-
tinction to differential robots, the odometry for skid-steering
vehicles has significant uncertainties. Indeed, as soon as
there is a rotation, the tracks must either deform or slip
significantly. The slippage is affected by many parameters
including the type and local properties of the terrain. To
keep the computation complexity low, we assume only a
simple odometry model and we do not model the slippage.
Instead, we take advantage of the exteroceptive modalities
in our data fusion to observe the true motion dynamics
using different sources of information. Hence, the fusion
compensates for cases in which the tracks are slipping be-
cause the surface is slippery or because of an obstacle block-
ing the robot. Another advantage of using caterpillar tracks
odometry lies in the opportunity to exploit nonholonomic
constraints. Further explanations on those constraints are
given in Section 4.3.

3.4. ICP-based Localization

Using as Input the current 3D point cloud, a registration pro-
cess is used to estimate the pose of the robot with respect to
a global representation called Map. We used a derivation of
the point-to-point ICP algorithm introduced by Chen and
Medioni (1991) combined with the trimmed outlier rejec-
tion presented by Chetverikov, Svirko, Stepanov, and Krsek
(2002).

The implementation uses libpointmatcher,2 an open-
source library fast enough to handle real-time processing
while offering modularity to cover multiple scenarios as
demonstrated in Pomerleau, Colas, Siegwart, & Magnenat
(2013). The complete list of modules used with their main
parameters can be found in Table I. More specifically, the
configuration of the rotating laser produced a high den-
sity of points in front of the robot, which was desirable to
predict collision but not beneficial to the registration mini-
mization. Thus, we forced the maximal density to 100 points
per m3 after having randomly subsampled the point cloud

2https://github.com/ethz-asl/libpointmatcher
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Table I. Configurations of ICP chains for the NIFTi mapping applications.

Step Module Description

Input Read. filtering SimpleSensorNoise SickLMS
SamplingSurfaceNormal keep 80%, surface normals based on 20 NN
ObservationDirection add vector pointing toward the laser
OrientNormals orient surface normals toward the obs. direction
MaxDensity subsample to keep point with density of 100 pts/m3

Registration Ref. filtering - processing from the rows Map
Read. filtering - processing from the rows Input
Data association KDTree kd-tree matching with 0.5 m max. distance, ǫ = 3.16
Outlier filtering TrimmedDist keep 80% closest points

SurfaceNormal remove paired normals angle > 50◦

Error min. PointToPlane point-to-plane
Trans. checking Differential min. error below 0.01 m and 0.001 rad

Counter iteration count reached 40
Bound transformation fails beyond 5.0 m and 0.8 rad

Map Ref. filtering SurfaceNormal Update normal and density, 20 NN, ǫ = 3.16
MaxDensity subsample to keep point with density of 100 pts/m3

MaxPointCount subsample 70% if more than 600,000 points

in order to finish the registration and the map maintenance
within 2 s. We expected the error on prealignment of the
3D scans to be less than 0.5 m based on the velocity of the
platform and the number of ICPs per second that were to
be executed. So we used this value to limit the matching
distance. We also removed paired points with an angle dif-
ference larger than 50◦ to avoid the reconstruction of both
sides of walls from collapsing when the robot was explor-
ing different rooms. The surface normal vector used for the
outlier filtering and for the error minimization are computed
using 20 nearest neighbors (NNs) of every point within a
single point cloud. As for the global map, we maintained a
density of 100 points per m3 every time a new input scan
was merged in it. A maximum of 600,000 points were kept
in memory to avoid degradation of the computation time
when exploring a larger environment than expected. How-
ever, the only output of the ICP algorithm we consider is the
robot’s localization, i.e., position and orientation relative to
its inner 3D point-cloud map. We do not attempt to create
a globally consistent map and we do not exploit the map in
any other way than for analysis of the ICP performance (no
map corrections or loop closures are performed).

There is one ICP-related issue observed with our plat-
form. Although the ICP creates a locally precise metric map,
the map as a whole tends to slightly twist or bend (we do not
perform any loop-closure). This is why the position and the
attitude estimated by the ICP odometry collide with other
position information sources. Another limitation is the re-
fresh rate of the pose measurements limited to 0.3 Hz. This
rate is far from our fastest measurement (i.e., the IMU at
90 Hz), which poses a linearization problem. For these rea-
sons, we investigated three different types of measurement
models; see Section 4.3.3 for details.

Furthermore, the true bottleneck of the ICP-based lo-
calization lies in the way it is realized on our platform and
hence is prone to mechanical issues. As the laser rangefinder
has to be turning to provide a full 3D point cloud, in an en-
vironment with high vegetation such a mechanism is easily
struck, causing this modality to fail. Large open spaces,
indoor/outdoor transitions, or significantly large moving
obstacles can also cause the ICP to fail updating the metric
map. Since this modality is very important, we analyzed
these failure cases in Section 5.4.

3.5. Visual Odometry

Our implementation of visual odometry generally follows
the usual scheme (Scaramuzza & Fraundorfer, 2011; Tardif,
Pavlidis, & Daniilidis, 2008). The VO computation runs
solely on the robot onboard computer and estimates the
pose at the frame rate 2–3 Hz, which, compared to the
robot speed, is sufficient. It does search for correspondences
(i.e., image matching) (Rublee, Rabaud, Konolige, & Brad-
ski, 2011), landmark reconstruction, and sliding bundle
adjustment (Fraundorfer & Scaramuzza, 2012; Kummerle,
Grisetti, Strasdat, Konolige, & Burgard, 2011), which refines
the landmark 3D positions and the robot poses. The perfor-
mance essentially depends on the visibility and variety of
landmarks. The more variant landmarks are visible at more
positions, the more stable and precise is the pose estima-
tion. The process uses panoramic images constructed from
spherical approximation of the Ladybug camera model. The
Ladybug camera is approximated as one central camera.
The error of the approximation is acceptable for landmarks
that are a few meters from the robot.
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The visual odometry starts with detecting and match-
ing features in two consecutive images. We use OpenCV
implementation of the Orb keypoint detector and descrip-
tor (Rublee et al., 2011). Only the matches that are distinc-
tive above a certain threshold survive. The initial matching
is supported by a guided matching that uses an initial esti-
mate of the robot movement. The robot movement is esti-
mated by the five-point solver (Li & Hartley, 2006) encap-
sulated in RANSAC iterations. As the error measure, we
use the angular deviation of points from epipolar planes.
This is less precise than the usual distance from epipo-
lar lines. However, as we work with spherical projection,
we have epipolar curves. Computing angular deviations
is faster than computing the distance to the epipolar curve.
The movement estimate projects already known landmarks,
and we can actively search around the projection. The fea-
ture tracks are updated and associated with landmarks if
they pass an observation consistency test. The landmark
3D position is triangulated from all possible observations,
and the complete estimate of landmark and robot posi-
tions is refined by a bundle adjustment (Kummerle et al.,
2011).

Using an almost omnidirectional camera for the robot
motion estimation is geometrically advantageous (Brodsky,
Fermueller, & Aloimonos, 1998; Svoboda, Pajdla, & Hlaváč,
1998). The scale estimation however, depends on the preci-
sion of 3D reconstruction where the omnidirectionality does
not really help. It is also important to note that the omni-
directional camera we use sits very low above the terrain
(below 0.5 m) and directly on the robot body. This makes a
huge difference compared to, e.g., Tardif et al. (2008), where
the camera is more than 2 m above the terrain and sees
the ground plane much better than our camera. Estima-
tion of the yaw angle is still well conditioned since it relies
mostly on the side correspondences. The pitch estimation,
however, would sometimes need more landmarks on the
ground plane. The pitch part of the motion induces the
largest disparity of the correspondences in the front and
back cameras. Unfortunately, the back view is significantly
occluded by the battery cover. This is especially problem-
atic in the street scenes where the robot moves along the
street; see, e.g., Figure 11. The front cameras see the street
level better; however, the uniform texture of the tar sur-
face often generates only a few reliable correspondences.
The search for correspondences is further complicated by
the tilting flippers, which occlude the field of view and in-
duce outliers. The second problem is the agility of the robot
combined with the relatively low frequency of the visual
odometry. The robot can turn on a spot very quickly, much
quicker than an ordinary wheeled car. Even worse, the quick
turn is the usual way in which the movement direction is
changed. This makes correspondence search difficult. In the
future versions of visual odometry, we want to improve
the landmark management in order to resolve the problem
of too few landmarks surviving the sudden turn. We also

think about replacing the approximate spherical model by
reformulating it in a multiview model.

4. MULTIMODAL DATA FUSION

The core of the data fusion system is realized by an error-
state EKF inspired by the work of Weiss (2012). The descrip-
tion of the multimodal data fusion solution we propose can
be divided into two parts. First is the process error model
for the EKF, which shows how we model the errors, which
we aim to estimate and use for corrections. The second part
is the measurement model, which couples the sensory data
coming at different rates.

The overall scheme of our proposed approach is shown
in Figure 2. Raw sensor data are preprocessed and used as
measurements in the error state EKF (the FUSION block).
There is no measurement rejection implemented; based on
the assumption that fusion of several sensor modalities
should deal with anomalous data inherently—for details see
Sections 5 and 6—this, however, will be subjected to a fu-
ture work. As is apparent from Figure 2, measurement rates
significantly differ among the sensor modalities—the main
difference is especially between the IMU at 90 Hz and the
ICP output at 0.3 Hz. Having the update rate of the EKF at
90 Hz, the experiments have proven that this issue is crucial
and has to be resolved as part of the filter design to ensure
reliable output from the fusion process (see Section 5.3.3).
In our case, this problem concerns mainly the ICP-based lo-
calization that provides measurements at a very low rate of
0.3 Hz—too low to capture the motion dynamics as the IMU
does (i.e., the motion dynamics spectrum gets subsampled).
During these 3 s, real-world disturbances (which are often
non-Gaussian and difficult to model and predict, e.g., tracks
slippage) accumulate. This was the motivation to investi-
gate various ways of fusing measurements at significantly
different rates. Three proposed approaches that incorporate
the ICP measurements are described in Section 4.3.3.

4.1. Process Error Model

For the purpose of localization, we model our robot as a
rigid body with constant angular rate and constant rate
of change of velocity (ω̇ = 0, v̇ = const). The presence of
constant gravitational acceleration is expected and incor-
porated into the system model; no dissipative forces are
considered.

We define four coordinate frames: the R(obot) frame
coincides with the center of the robot, the I(MU) frame rep-
resents the inertial measurement unit coordinate frame as
defined by the manufacturer, the O(dometry) frame repre-
sents the tracked gear-frame, and the N(avigation) frame
represents the world frame. In all these frames, the North-
West-Up axes convention is followed, with the x-axis point-
ing forward (or to the North in the N -frame), the y-
axis pointing to the left (or to the West), and the z-axis
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Figure 2. The scheme of the proposed multimodal data fusion system [ω is angular velocity, f is specific force (Savage, 1998), v is
velocity, and q is quaternion representing attitude].

pointing upward. Rotations about each axis follow the right-
hand rule. The fundamental part of the system design is the
differential equations describing the development of the
states in time. The state space with the corresponding er-
rors is defined as

x =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

pN

qR
N

vR

ωR

fR

bω,I

bf,I

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, �x =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�pN

δθ

�vR

�ωR

�fR

�bω,I

�bf,I

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (1)

where pN is position of the robot in the N -frame, qR
N is a

unit quaternion representing its attitude, vR is the velocity
expressed in the R-frame, ωR is the angular rate, fR is the
specific force (Savage, 1998), and bω,I and bf,I are accelerom-
eter and angular rate sensor IMU-specific biases expressed
in the I -frame.

The error state �x is defined—following the idea of
Weiss (2012) (Eq. 3.25)—as the difference between the sys-
tem state and its estimate �x = x − x̂ except for attitude,
where the rotation error vector δθ is the vector part of the
error quaternion δq = q ⊗ q̂−1 multiplied by 2; ⊗ represents
quaternion multiplication as defined in Breckenridge (1999).

The states and the error states of the robot, modeled as
a rigid body movement, propagate in time according to the
following equations:

ṗN = CT

(qR
N

)
vR, �ṗN ≈ CT

(q̂R
N

)
�vR − CT

(q̂R
N

)
δθ , (2)

q̇R
N =

1

2
�(ωR)qR

N , δθ̇ ≈ −⌊ω̂R⌋δθ + �ωR + nθ , (3)

v̇R = fR − C(qR
N

)gN + ⌊vR⌋ωR,

�v̇R ≈ �fR − ⌊C(q̂R
N

)gN⌋δθ + ⌊v̂R⌋�ωR − ⌊ω̂R⌋�vR + nv,

(4)

ω̇R = 0, ḟR = 0, ḃω,I = 0, ḃf,I = 0,

�ω̇R = nω, �ḟR = nf ,

�ḃω,I = nb,ω, �ḃf,I = nb,f , (5)

where the derivation of the left part of Eq. (3) can be found
in Trawny and Roumeliotis (2005) (Eq. 110) and the left
part of Eq. (4) is based on Nemra and Aouf (2010) (Eq. 5);
the difference from the original is caused by different ways
of expressing attitude. The right parts of Eqs. (2)–(4) can
be derived by neglecting higher-order error terms and by
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an approximation of the error in attitude by the rotation
error vector δθ following Weiss (2012) (Eq. 3.44). We define
gN = [0, 0, g]T , n(.) are the system noise terms, and �(ωR)
in Eq. (3) is a matrix representing quaternion and vector
product operation (Trawny & Roumeliotis, 2005, Eq. 108). It
is constructed as

�(ω) =

⎡

⎢

⎢

⎢

⎣

0 ω3 −ω2 ω1

−ω3 0 ω1 ω2

ω2 −ω1 0 ω3

−ω1 −ω2 −ω3 0

⎤

⎥

⎥

⎥

⎦

. (6)

In Eq. (5), time derivations of angular rates and specific
forces are equal to zero—usually, they are considered rather
as input than state. However, we included them into the
state vector to be updated by the EKF. The error model
equations can be expressed in compact matrix form:

�ẋ = Fc�x + Gcn, (7)

where Fc is a continuous-time state transition matrix, Gc is
a noise-coupling matrix, and n is a noise vector composed
of all the n(.) terms; the Fc matrix is

Fc =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∅3 −CT

(q̂R
N

)
CT

(q̂R
N

)
∅3 ∅3 ∅3 ∅3

∅3 −⌊ω̂R⌋ ∅3 I3 ∅3 ∅3 ∅3

∅3 −⌊C(q̂R
N

)gN⌋ −⌊ω̂R⌋ ⌊v̂R⌋ I3 ∅3 ∅3

∅3 ∅3 ∅3 ∅3 ∅3 ∅3 ∅3

∅3 ∅3 ∅3 ∅3 ∅3 ∅3 ∅3

∅3 ∅3 ∅3 ∅3 ∅3 ∅3 ∅3

∅3 ∅3 ∅3 ∅3 ∅3 ∅3 ∅3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(8)

and the Gcn term is

Gcn =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∅3 ∅3 ∅3 ∅3 ∅3 ∅3

I3 ∅3 ∅3 ∅3 ∅3 ∅3

∅3 I3 ∅3 ∅3 ∅3 ∅3

∅3 ∅3 I3 ∅3 ∅3 ∅3

∅3 ∅3 ∅3 I3 ∅3 ∅3

∅3 ∅3 ∅3 ∅3 I3 ∅3

∅3 ∅3 ∅3 ∅3 ∅3 I3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

nθ

nv

nω

nf

nb,ω

nb,f

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (9)

The noise-coupling matrix describes how particular noise
terms affect the system state. Each n(·) term is a random
variable with normal probability distribution. The proper-
ties of these random variables are described by their co-
variances in the system noise matrix Qc. Since they are
assumed independent, the matrix Qc is diagonal, Qc =
diag(σ 2

θx
, σ 2

θy
, σ 2

θz
, σ 2

vx
, σ 2

vy
, . . .), where σ is the standard de-

viation.
To implement the proposed model, we have to trans-

form the continuous-time equations to the discrete time
domain. We use the Van Loan discretization method (Van
Loan, 1978) instead of explicitly expressing the values of

the discretized matrices. We substitute into the matrix M

defined by Van Loan,

M =

[

−Fc GQcG
T

∅ F T
c

]

�t, (10)

and we evaluate the matrix exponential,

eM =

⎡

⎣

. . . F −1
d Qd

∅ F T
d

⎤

⎦ . (11)

The result of the matrix exponential contains the discretized
system matrix Fd in the bottom-right part and the dis-
cretized system noise matrix Qd left multiplied by the in-
version of Fd in the top-right part. The discretized system
matrix Fd can be easily extracted; Qd can be obtained by left
multiplying the upper right part of eM by Fd .

4.2. State Prediction and Update Using the EKF

The extended Kalman filter (McElhoe, 1966; Smith, Schmidt,
& McGee, 1962) is a modification of the Kalman filter
(Kalman, 1960), i.e., an optimal observer minimizing the
variances of the observed states. Since the error-state EKF
is used in our approach, the state of the system is expressed
as a sum of the current best estimate (x̂) and some small
error (�x). The only difference compared to a standard EKF
is that the linearized system matrices F and Q describe
only the error state and the error-state covariance propaga-
tion in time, rather than the whole state and state covari-
ance propagation in time. This is mainly beneficial from the
computational point of view since it simplifies lineariza-
tion of the system equations. A flow chart describing the
error-state EKF computation is shown in Figure 3 and can
be decomposed into a series of steps that describe the ac-
tual implementation. As new measurements arrive, state
estimate (x̂) and its error covariance matrix (P ) are avail-
able from the previous time-step (or as initialized during
first iteration). This state estimate x̂ is propagated in time
using the nonlinear system equations. The continuous-time
Fc and Gc matrices are evaluated based on the current value
of x̂. The Van Loan discretization method is used to obtain
discrete forms of Fd and Qd . Then the error-state covariance
matrix P is propagated in time. Expected measurements
are compared to the incoming ones, and their difference is
expressed in the form of measurement residual �y. Inno-
vation matrix H , expressing the measurement residual as a
linear combination of the error-state components, is evalu-
ated. Using the a priori estimate of P , H and the variance
of the sensor signals expressed as R, the Kalman gain ma-
trix K is computed. The error state �x is updated using the
Kalman gain and the measurement residual; the a posteriori
estimate of the error-state covariance matrix P is evaluated
as well. Finally, the a priori state estimate x̂ is corrected using
the estimated error �x.
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Figure 3. Standard EKF (left) computation flowchart compared to the error state EKF computation flowchart (right): in the error
state EKF prediction step, the a priori state is estimated using the nonlinear system equation f (), and the covariances are estimated
using Fd (linearized matrix form of the error state propagation equations). In the update step, the measurement residual �y is
obtained by comparing the incoming measurement y with its predicted counterpart. The residual covariance S and the Kalman
gain K are evaluated and used to update the state and covariance matrix to obtain the a posteriori estimates. Note that in the case
of the error state EKF, Qd and Hk couple system noise and measurements with the error state �x rather than x̂.

Although this EKF cycle can be repeated each time mea-
surements arrive, for performance reasons we have chosen
to group the incoming measurements to the highest fre-
quency measurement, i.e., the IMU data. Hence, each time
any non-IMU measurement arrives, it is slightly delayed un-
til the next IMU measurement is available. The maximum
possible sampling error caused by this grouping approach
is 1/(2 × 90) s and thus it can be neglected compared to the
significantly longer sampling periods of the non-IMU data
sources. The update rate of the EKF is then equal to the IMU
sampling rate, i.e., 90 Hz.

4.3. Measurement Error Model

In general, the measurement vector y can be described as
a sum of measurement function h(x) of the state x and of
some random noise m due to properties of the individual
sensors:

y = h(x) + m. (12)

Using the function h, we can predict the measured
value based on current knowledge about the system state:

ŷ = h(x̂). (13)

There is a difference �y = ŷ − y caused by the mod-
eling imperfections in the state estimate as well as by the
sensor errors. This difference can be expressed in terms of

the error state �x:

�y = y − ŷ = h(x) − h(x̂) + m

= h(x̂ + �x) − h(x̂) + m. (14)

If function h is linear, Eq. (14) becomes

�y = h(�x) + m. (15)

Although the condition of linearity is not always met, we
still can approximate the behavior of h in some close prox-
imity to the current state x̂ by a similar function h′, which is
linear in elements of x̂ such that

h(x̂ + �x) − h(x̂) ≈ h′(�x)|x̂ = Hx̂�x, (16)

where Hx̂ is the innovation matrix projecting observed dif-
ferences in measurements onto the error states.

4.3.1. IMU Measurement Model

The inertial measurement unit is capable of measuring spe-
cific force (Savage, 1998) in all three dimensions as well
as angular rates. The specific force measurement is a sum
of acceleration and gravitational force, but it also con-
tains biases—constant or slowly changing value indepen-
dent of the actual acting forces—and sensor noise, which is
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expected to have zero mean normal probability. All the val-
ues are measured in the I -frame,

yf,I = fI + bf,I + mf,I , (17)

where yf,I is the measurement, fI is the true specific force,
bf,I is sensor bias, and mf,I is sensor noise.

Since the interesting value yf,I is expressed in the I -
frame, we define a constant rotation matrix CI

R of the R-
frame to the I -frame. Translation between the I - and R-
frames does not affect the measured values directly; thus,
it is not considered. Since the IMU is placed close to the R-
frame origin, we neglect centrifugal force induced by rota-
tion of the R-frame and conditioned by nonzero translation
between the R- and I -frames. Using this rotation matrix, we
express the measurement as

yf,I = CI
RfR + bf,I + mf,I , (18)

where both fR and bf,I are elements of the system state.
If we compare the measured value and the expected mea-
surement, we can express the h function, which is—in this
case—equal to the h′:

yf,I − ŷf,I = �yf,I = CI
RfR + bf,I − CI

R f̂R − b̂f,I + mf,I

= CI
R�fR + �bf,I + mf,I , (19)

and hence can be expressed in Hx̂�x form as

�yf,I =
[

∅3 ∅3 ∅3 ∅3 CI
R ∅3 I

]

�x + mf,I , (20)

where the error state �x was defined in Eq. (1).
The angular rate measurement is treated identically;

the output of the sensor is

yω,I = ωI + bω,I + mω,I , (21)

where ωI is the angular rate, bω,I is sensor bias, and mω,I is
sensor noise.

Similarly, the measurement residual is obtained:

yω,I − ŷω,I = �yω,I = CI
R�ωR + �bω,I + mω,I , (22)

which can be expressed in the matrix form

�yω,I =
[

∅3 ∅3 ∅3 CI
R ∅3 ∅3 I

]

�x + mω,I . (23)

4.3.2. Odometry Measurement Model

Our platform is equipped with caterpillar tracks and, there-
fore, steering is realized by setting different velocities to
each of the tracks (skid-steering). The velocities are measured
by incremental optical angle sensors at 15 Hz. Originally, we
implemented a complex model introduced in Endo et al.
(2007), which exploits angular rate measurements to model
the slippage to further improve the odometry precision.
However, with respect to our sensors, no improvement was
observed. Moreover, since the slippage is inherently cor-
rected via the proposed data fusion, we can neglect it in the

odometry model, assuming only a very simple but sufficient
model:

vO,x =
vr + vl

2
, (24)

where vO,x is the forward velocity, and vl and vr are track
velocities measured by incremental optical sensors—the ve-
locities in the lateral and vertical axes are set to zero. Since
the robot position is obtained by integrating velocity ex-
pressed in the R-frame, we define a rotation matrix CO

R :

vO = CO
R vR, (25)

which expresses the vR in the O-frame.
During experimental evaluation, we observed a minor

misalignment between these two frames, which can be de-
scribed as rotation about the lateral axis by approximately
one degree. Although relatively small, this rotation caused
the position estimate in the vertical axis to grow at a constant
rate while the robot was moving forward. To compensate
for this effect, we handle the CO

R as constant—its value was
obtained by means of calibration. The measurement equa-
tion is then as follows:

yv,O = CO
R vR + mv,O , (26)

where yv,O is linear velocity measured by the track odom-
etry, expressed in the O-frame. Since this relation is linear,
the measurement innovation is

yv,O − ŷv,O = �yv,O

= CO
R vR − CO

R v̂R + mv,O

= CO
R �vR + mv,O (27)

and expressed in the matrix form

�yv,O =
[

∅3 ∅3 CO
R ∅3 ∅3 ∅3 ∅3

]

�x + mv,O . (28)

4.3.3. ICP-based Localization Measurement Model

The ICP algorithm is used to estimate translation and ro-
tation between each new incoming laser scan of the robot
surroundings and a metric map created from the previously
registered laser scans. In the course of our work, three ap-
proaches processing the output of the ICP were proposed
and tested. The first approach treats the ICP-based localiza-
tion as movement in the R-frame in between two consec-
utive laser scans in the form of a position increment (the
incremental position approach). The idea of measurements ex-
pressed in a form of some �p can be, for example, found in
Ma et al. (2012). In our case, the increment is obtained as

�pR,ICP,i = C(qR
N,ICP,i−1)(pN,ICP,i − pN,ICP,i−1), (29)

where both the position pN,ICP and attitude qR
N,ICP are out-

puts of the ICP algorithm. The increment �pR,ICP,i is added
to the position estimated by the whole fusion algorithm at
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time-step i − 1 to be used as a direct measurement of po-
sition. The same idea is applied in the case of attitude (an
increment in attitude is extracted by means of quaternion
algebra). The purpose is to overcome the ICP world frame
drift. However, it is impossible to correctly discretize the
system equations with respect to the laser scan sampling
frequency ( 1

3
Hz). Also, the assumption of measurements

being independent is violated by utilizing a previously esti-
mated state to create a new measurement. Thus, corrections
that propagate to the system state from this measurement
tend to be inaccurate.

The second approach treats the ICP output as velocity
in the R-frame (the velocity approach). We consider it a state-
of-the-art practice utilized, for example, by Almeida and
Santos (2013). The velocity is expressed in the N -frame first:

vN,ICP =
pN,ICP,i − pN,ICP,i−1

t(i) − t(i − 1)
, (30)

where t() is time corresponding to a time-step i. To express
the velocity in the R-frame:

vR,ICP(t) = C(qR

R′,ICP (t)⊗qR′
N,ICP,i−1)vN,ICP, (31)

it is necessary to interpolate the attitude between qR
N,ICP,i−1

and qR
N,ICP,i in order to obtain the increment qR

R′,ICP(t). An-

gular velocity is assumed to be constant between the two
laser scans. The velocity vR,ICP and the constant angular ve-
locity obtained from the interpolation can be directly used as
measurements that are independent of the estimated state,
and because of the interpolation, they can be generated with
arbitrary frequency and thus there is no problem with dis-
cretization (compared to the previous approach). However,
this approach expects the robot to move in a line between
the two ICP scans. This is a too strong assumption and also a
major drawback of this approach, which results in incorrect
trajectory estimates.

Therefore, we propose the third approach, the trajectory
approach, which overcomes the assumption of the velocity ap-
proach by (suboptimal) use of the estimated states in order to
approximate possible behavior of the system between each
two consecutive ICP scans. This trajectory approach proved
to be the best for preprocessing the output of the ICP algo-
rithm; for details, see Section 5.4.5.

The trajectory approach assumes that the first estimate
of the trajectory (without the ICP measurement) is locally
very similar to the true trajectory (up to the effects of drift).
Thus, when a new ICP measurement arrives, the trajectory
estimated since the previous ICP measurement is stored to
be used as the best guess around the previous ICP pose.
The ICP poses at time-steps i and i − 1 are aligned with the
N -frame so the ICP pose at time-step i − 1 coincides with
the first pose of the stored trajectory. In this way, the ICP
world frame drift is suppressed. Then, the stored trajectory
is duplicated and aligned with the new ICP pose to serve as

Figure 4. The principle of trajectory approach: when the new
ICP measurement arrives (time-step i), the trajectory estimate
based on measurements other than ICP (black dotted line) is
duplicated and aligned with the incoming ICP measurement
(black dashed line), and the weighted average (red solid line)
of these two trajectories is computed.

the best guess around the new ICP pose; see Figure 4. The
resulting trajectory is obtained as the weighted average of
the original and the duplicated trajectories:

p̂N,weighted,k = p̂N,kwk + p̂′
N,kw

′
k, (32)

where p̂N,k are points of the original trajectory (black dotted
line in Figure 4), p̂′

N,k are points of the realigned duplicated
trajectory (black dashed line in Figure 4), and wk ,w′

k are
weights—linear functions of time equal to 1 at the time-step
of associated ICP measurement and equal to 0 at the time-
step of the other ICP measurement. The resulting trajectory
is used to generate the velocity measurements in the N -
frame as follows:

vN,weighted,k =
pN,weighted,k − pN,weighted,k−1

t(k) − t(k − 1)
, (33)

where t(k) and t(k − 1) are the time-steps of poses of the
resulting weighted trajectory. The k denotes indexing of the
fusion algorithm high-frequency samples. Velocities can be
expressed in the R-frame using the attitude estimates q̂R

N,k :

vR,weighted,k = C(q̂R
N,k

)vN,weighted,k, (34)

and they can be used directly as measurement, whose pro-
jection onto the error-state vector yields

�yv,weighted =
[

∅3 ∅3 I3 ∅3 ∅3 ∅3 ∅3

]

�x

+ mv,weighted. (35)

The velocity expressed in the R-frame can be used in this
way as a measurement, but its values for the time period
between two consecutive ICP outputs are known only after
the second ICP measurement arrives. Thus it is necessary to
recompute state estimates for this whole time period (typ-
ically in a length of 300 IMU samples), including the new
velocity measurements.
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To process the attitude information provided as the ICP
output, we use a simple incremental approach such that the
drift of the ICP world frame with respect to the N -frame is
suppressed. To achieve this, we extract only the increment
in attitude between two consecutive ICP poses:

qR
N,ICP,i = qR

R′,ICP ⊗ qR′

N,ICP,i−1, (36)

qR
R′,ICP = qR

N,ICP,i ⊗
(

qR′

N,ICP,i−1

)−1

, (37)

where qR
R′,ICP is rotation that occurred between two con-

secutive ICP measurements, qR′

N,ICP,i−1 and qR
N,ICP,i . We ap-

ply this rotation to the attitude state estimated at time-step
k′ ≡ i − 1:

yq,ICP = qR
R′,ICP ⊗ q̂R

N,k′ . (38)

To express the measurement residual, we define the follow-
ing error quaternion:

δqICP,i = q̂R
N,k ⊗

(

yq,ICP

)−1
, (39)

where q̂R
N,k is the attitude estimated at time-step k ≡ i. We

express this residual rotation by means of rotation vector
δθ ICP,i ,

δθ ICP,i = 2 �δqICP,i, (40)

which can be projected onto the error state as

�yδθ,ICP =
[

∅3 I3 ∅3 ∅3 ∅3 ∅3 ∅3

]

�x

+ mδθ,ICP. (41)

Although the ICP is very accurate in measuring transla-
tion between consecutive measurements, the attitude mea-
surement is not as precise. Noise introduced in the pitch
angle can cause wrong velocity estimates expressed in the
R-frame, resulting in a problem described as climbing robot—
the system tends to slowly drift in the vertical axis. Since
the output of the trajectory approach is velocity vR,weighted,i ,
applying a constraint assuming only planar motion in the
R-frame is fully justified, easy to implement, and resolves
this issue.

4.3.4. Visual Odometry Measurement Model

As explained in Section 3.5, the VO is an algorithm for es-
timating translation and rotation of a camera body based
on images recorded by the camera. The current implemen-
tation of the data fusion utilizes only the rotation part of
the motion estimated by the VO, since it is not affected by
the scale. The set of 3D landmarks maintained by the VO
is not in any way processed by the fusion algorithm—it is
used by the VO to improve its attitude estimates internally.
Similarly, the bundle adjustment ensures more consistent
measurements, yet still, it does not enter the data fusion

models.3 The way we incorporate the VO measurements is
equivalent to the ICP trajectory approach, however, reduced
only to the incremental processing of the attitude measure-
ments. In this way, the whole VO processing block can easily
be replaced by an alternative (for example, by stereovision-
based VO), provided the output—the estimated rotation—is
available in the same way. The motivation is to have the VO
measurement model independent of the VO internal imple-
mentation details. The implementation of the VO attitude
aiding is identical to the ICP attitude aiding; the attitude
increment is extracted and used to construct a new mea-
surement yq,VO:

qR
N,VO,i = qR

R′,VO ⊗ qR′

N,VO,i−1, (42)

qR
R′,VO = qR

N,VO,i ⊗
(

qR′

N,VO,i−1

)−1

, (43)

where qR
R′,VO is rotation that occurred between two con-

secutive VO measurements qR′

N,VO,i−1 and qR
N,VO,i . We ap-

ply this rotation to the attitude state estimated at time-step
k′ ≡ i − 1:

yq,VO = qR
R′,VO ⊗ q̂R

N,k′ . (44)

Then, the measurement residual is expressed as an error
quaternion:

δqVO,i = q̂R
N,k ⊗

(

yq,VO

)−1
, (45)

where q̂R
N,k is the attitude estimated at time-step k ≡ i. We

express this residual rotation by means of rotation vector
δθVO,i ,

δθVO,i = 2 �δqVO,i, (46)

which can be projected onto the error state as

�yδθ,VO =
[

∅3 I3 ∅3 ∅3 ∅3 ∅3 ∅3

]

�x + mδθ,VO,

(47)

where mδθ,VO is the VO attitude measurement noise.

5. EXPERIMENTAL EVALUATION

Our evaluation procedure involves several different tests.
First, we describe our evaluation methodology in Sec-
tion 5.1. It covers obtaining ground-truth positioning mea-
surements for both indoors and outdoors. Then we present
and discuss our field experiments with the global behav-
ior of our state estimation (Section 5.2). We also show two
examples of typical behavior of the filter in order to give
more insight on its general characteristics (Section 5.3). We

3The same idea applies for the ICP-based localization: although it
builds an internal map, this map is independent from our local-
ization estimates. This would not be the case in a SLAM approach
with integrated loop closures.

Journal of Field Robotics DOI 10.1002/rob



Kubelka et al.: Robust Data Fusion of Multimodal Sensory Information for Mobile Robots • 459

Figure 5. The experimental setup with the Leica reference theodolite for obtaining ground truth trajectory (left). Part of the 3D
semistructured environment for an indoor test with motion capture ground truth (right).

take advantage of them to explain the importance of the tra-
jectory approach compared to more standard measurement
models. Finally, we analyze the behavior of the filter under
failure case scenarios involving partial or full outage of each
sensory modality (Section 5.4).

5.1. Evaluation Metrics

To validate the results of our fusion system, we need accu-
rate measurements of part of our system states to confront
with the proposed filter. For indoor measurements, we use
a Vicon motion capture system with nine cameras covering
more than 20 m2 and giving a few millimeter accuracy at
100 Hz.

For external tracking, we use a theodolite from Leica
Geosystems, namely the Total Station TS15; see Figure 5
(left). It can track a reflective prism to measure its position
continuously at an average frequency of 7.5 Hz. The posi-
tion precision of the theodolite is 3 mm in continuous mode.
However, this system cannot measure the orientation of the
robot. Moreover, the position measured is that of the prism
and not directly of the robot, therefore we calibrated the
position of the prism with respect to the robot body using
the theodolite and precise blueprints. However, the posi-
tion of the robot cannot be recovered from the position of
the prism without the information about orientation. That
explains why, in the validations below, we do not compare
the position of the robot but rather the position of the prism
from the theodolite and reconstructed from the states of our
filter. With these ground-truth measurements, we use dif-
ferent metrics for evaluation. First, we simply plot the error
as a function of time. More precisely, we consider position
error, velocity error, and attitude error and we compute them
by taking the norm of the difference between the prediction
made by our filter and the reference value.

Since this metric shows how the errors evolve over
time, a more condensed measure is needed to summarize
and compare the results of different versions of the filter.

Therefore, we use the final position error expressed as a per-
centage of the total trajectory length:

erel =
||pl − pref,l ||

distance traveled
, (48)

where l is the index of the last position sample pl with the
corresponding reference position pref,l .

While this metric is convenient and widely used in the
literature, it is, however, representative only of the end point
error regardless of the intermediary results. This can be
misleading for long trajectories in a confined environment
as the end point might be close to the ground truth by
chance. This is why we introduce, as a complement, the
average position error:

eavg(l) =

∑l

i=1 ||pi − pref,i ||

l
, (49)

where 1 ≤ l ≤ total number of samples. To improve the leg-
ibility of this metric in the plots, we express the eavg as a
function of time,

e′
avg(t) = eavg(l(t)), (50)

where l(t) simply maps time t to the corresponding
sample l.

5.2. Performance Overview of the Proposed Data
Fusion

With these metrics, we can actually evaluate the perfor-
mance of our system in a quantitative way. We divided the
tests into indoor and outdoor experiments.

5.2.1. Indoor Performance

For the indoor tests, we replicated a semistructured envi-
ronment found in USAR environments, including ramps,
boxes, a catwalk, a small passage, etc. Figure 5 (right) shows
a picture of part of the environment. Due to the limitations
of our motion capture setup, this testing environment is
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Table II. Comparison of combinations of different modalities evaluated on indoor experiments performed under standard con-
ditions with the Vicon system providing ground truth in position and attitude. Final position error expressed in percent of the
total distances traveled was chosen as a metric for each experiment; the total distance of the 28 experiments was 765 m, including
traversing obstacles.

Final position error in % of the distance traveled

Exp. Distance traveled (m) Exp. duration (s) OD, IMU OD, IMU, VO OD, IMU, ICP OD, IMU, ICP, VO

1 47.42 254 2.17 2.30 1.71 0.79
2 36.52 186 1.99 2.21 0.36 0.14
3 48.74 244 3.15 2.63 0.50 0.18
4 29.40 237 2.22 2.06 0.42 0.45
5 82.10 585 2.51 2.24 0.90 0.71
6 74.64 452 2.05 3.64 0.98 1.24
7 74.65 387 1.70 1.72 2.28 0.58
8 30.57 194 1.98 3.42 1.59 2.29
9 26.58 287 2.67 2.23 1.90 1.19
10 26.57 236 1.53 3.94 0.77 2.11
11 26.96 208 1.25 1.20 0.95 0.66
12 29.13 211 1.27 1.29 0.88 0.87
13 26.35 180 1.37 1.25 0.94 0.77
14 40.23 240 6.58 6.70 0.88 0.99
15 21.01 167 5.26 5.27 0.61 0.57
16 19.04 209 5.94 5.95 0.55 0.60
17 10.95 405 3.44 2.89 2.15 2.05
18 8.65 238 2.87 2.77 1.36 1.38
19 9.36 284 4.14 3.91 1.83 1.85
20 9.02 282 2.90 3.36 2.73 2.65
21 10.82 308 3.79 3.23 1.43 1.41
22 9.45 237 5.36 5.45 2.66 2.68
23 12.75 204 2.65 2.84 2.66 1.79
24 7.81 179 1.58 1.83 2.82 3.06
25 10.85 165 3.85 4.14 3.25 2.17
26 10.83 163 2.36 1.84 0.62 0.68
27 12.79 237 15.42 14.95 2.48 2.53
28 12.07 239 28.42 27.07 2.89 2.98

Lower quartile|Median|Upper quartile 2.0|2.7|4.0 2.1|2.9|4.0 0.8|1.4|2.4 0.7|1.2|2.1

not as large as typical indoor USAR environments. Never-
theless, it features most of the complex characteristics that
make state estimation challenging in such an environment.

For this evaluation, we recorded approximately 2.4 km
of indoor data with ground truth; 28 runs represent stan-
dard conditions (765 m in total), and 36 runs represent fail-
ure cases of different sensory modalities induced artificially
(1,613 m in total). Table II presents the results of each com-
bination of sensory modalities for the 28 standard condi-
tions runs; the failure scenarios are analyzed in Section 5.4
separately.

The sensory modality combinations can be divided
into two groups by including or excluding the ICP modal-
ity; these two groups differ by the magnitude of the final
position error. From this fact, we conclude that the main
source of error is slippage of the caterpillar tracks—the VO
modality in our fusion system corrects only the attitude

of the robot. Also, the results confirmed sensitivity to
erroneous attitude measurements originating from the
sensory modalities. In this instance, VO slightly worsened
the median of the final position error—the indoor experi-
ments are not long enough to make the difference between
drift rates of the bare IMU+OD combination and possible
VO errors that originate from incorrect pairing of image
features. Nevertheless, the results are not significantly
different.4 A significant improvement is achieved with the
ICP modality, which compensates for the track slippage
and reduces the resulting median of the final position
errors by 50% (approximately). As expected during the

4All statistically significant results are assessed using the Wilcoxon
signed-rank test with p < 0.05 testing whether the median of cor-
related samples is different.
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Figure 6. Pictures of the outdoor environments in Zurich. Left: street canyon, right: urban park.

Table III. Comparison of combinations of different modalities evaluated on outdoor experiments performed under standard
conditions with the Leica system providing ground truth in position.

Final position error in % of the distance traveled

Experiment Distance traveled (m) Exp. duration (s) OD, IMU OD, IMU, VO OD, IMU, ICP OD, IMU, ICP, VO

1: basement 1 120.62 825 2.08 26.61 1.83 17.84
2: basement 2 175.67 853 1.37 12.53 2.42 5.91
3: hallway straight 159.42 738 1.10 20.48 0.43 12.22
4: street 1 135.18 584 2.78 0.72 0.24 0.62
5: street 2 259.86 992 9.74 0.80 0.26 0.80
6: park big loop 145.31 918 2.65 2.66 1.03 1.76
7: park small loop 88.20 601 1.94 1.60 1.25 0.97
8: park straight 99.29 560 1.20 20.18 0.62 11.50
9: 2 floors 238.28 1010 9.10 0.62 0.58 0.43
10: 2 floors opposite 203.23 1107 3.23 6.79 0.51 0.42
Lower quartile|Median|Upper quartile 1.4|2.4|3.2 0.8|4.7|20.2 0.4|0.6|1.2 0.6|1.4|11.5

filter design, fusing all sensory modalities yields the best
result (not significantly different from that without VO),
with a median of 1.2% final position error; the occasional
VO attitude measurement errors are diminished by the ICP
modality attitude measurement (and vice versa).

5.2.2. Outdoor Performance

We ran outdoor tests in various environments, namely a
street canyon and an urban park with trees and stairs in
Zurich. Figure 6 shows pictures of the environments.

In those environments, we recorded in total approxi-
mately 2 km, with ground truth available for 1.6 km; the
rest were returns from the experimental areas. These 1.6 km
are split into 10 runs. Table III, likewise Table II, presents the
results of each combination of sensory modalities for each
run.

Contrary to the indoor experiments, combining all four
modalities does not improve the precision of localization

compared to ICP, IMU, and odometry fusion (the fusion
of all is significantly worse than ICP, IMU, and odometry
only). Although some runs show improvement while com-
bining all the sensory modalities (runs 7, 9, and 10) or are at
least comparable with the best result 0.4|0.6|1.2 (runs 4, 5,
and 6), there were several experiments in which VO failed
due to the specificities of the environments. Such failures
result in erroneous attitude estimates significantly exceed-
ing expected VO measurement noise and compromising the
localization accuracy of the fusion algorithm. The reasons
for the failures are described in the Section 5.4 together with
other failure cases. Since we did not artificially induce these
VO failures, as we did in the case of the indoor experiments,
we do not exclude these runs from the performance evalua-
tion in Table III—we consider such environments standard
for USAR. Moreover, we treat them as additional proof of
the fusion algorithm sensitivity to erroneous attitude mea-
surement originating both from VO and ICP modalities, and
we will address them in the conclusions and future work.

Journal of Field Robotics DOI 10.1002/rob



462 • Journal of Field Robotics—2015

Figure 7. The 3D structure for testing obstacle traversability
shown as a metric map created by ICP.

5.3. In-depth Analysis of the Examples of
Performance

To provide more insight into the characteristics of the filter,
we selected some trajectories, and we present more infor-
mation than just the final position error metric.

5.3.1. Example of Data Fusion Performance in an Indoor

Environment

In this example, we address the caterpillar track slippage
when traversing an obstacle (Figure 7). Since we are looking
forward to USAR missions, such environment with condi-
tions inducing high slippage can be expected, e.g., collapsed
buildings full of debris and dust that impair traction on
smooth surfaces such as exposed concrete walls or floors,
mass traffic accidents with oil spills, etc. The Vicon system
was used to obtain precise position and orientation ground
truth for computing the average position error development
in time.

When traversing a slippery surface, any track odome-
try inevitably fails with the tracks moving with significantly
diminishing traction. For this reason, trajectory and state es-
timates resulting from the IMU+OD fusion showed unac-
ceptable error growth; see Figure 8. The robot was operated
to attempt to climb up the yellow slippery board (Figure 7),
which deteriorated the traction to the point that the robot
was sliding back down with each attempt to steer. Because
of the slippage, it failed to reach the top. Then, it was driven
around the structure and up, to further slowly slip down
the slope backward, with the tracks moving forward to
spoil traction. The effect of the slippage on the OD is ap-
parent from the purple line in Figure 8. The corresponding
average position error of the bare combination of IMU+OD
starts to build up as soon as the robot enters the slippery
slope. At 75 s, the IMU+OD has already an error of 0.5 m
and finishes at 200 s at an error of 4.4 m (outside Figure 8).
Without exteroceptive modalities this problem is unsolv-
able, and, as expected, including these modalities signifi-
cantly improves the localization accuracy; the final average
position error is only 0.14 m for the IMU+OD+VO+ICP
combination. The resulting state estimates for the combi-

nation of all modalities are shown in Figures 9 and 10.
Figure 9 depicts position estimates (the upper left quarter)
with the reference values. The difference between the esti-
mate and the reference is plotted in the bottom left quarter;
similarly, the right half of the figure displays the velocity
estimate. In the left part of Figure 10, the attitude estimate
expressed in Euler angles is shown with its error compared
to the Vicon reference. The right part of this figure demon-
strates estimation of the sensor biases, which are part of
the system state. Note that the biases in angular rates are
initialized to values obtained as the mean of angular rate
samples measured when the robot remains stationary be-
fore each experiment—short self-calibration. In conclusion,
adding the exteroceptive sensor modalities—as proposed
in our filter design—compensated for the effect caused by
high slippage shown in this example, as shown by the shape
of trajectories and the average position error.

5.3.2. Example of Data Fusion Performance in an Outdoor

Environment

This outdoor experiment took place on the Clausiusstrasse
street (near ETH in Zurich) (Figure 11), and the purpose
was to test the exteroceptive modalities (the ICP and the
VO) in an open urban space. In this standard setting, both
the ICP and the VO are expected to perform reasonably well,
although the ICP—compared to a closed room—is missing
a significant amount of spatial information (laser range is
limited to approximately 50 m, no ceiling, etc.). The Leica
theodolite was used to obtain the ground-truth position
during this experiment (Figure 5).

The results are shown in Figures 12 and 13, and they
demonstrate the improvement of performance when includ-
ing more modalities up to the full setup. The basic dead-
reckoning combination (IMU+OD) showed a clear drift in
the yaw angle caused by accumulating error due to angu-
lar rate sensor noise integration (see the purple trajectory
in the left part of Figure 12). By including the VO attitude
measurements (resulting in IMU+OD+VO), the drift was
compensated. Although the VO is not in fact completely
drift-free, the performance is clearly better than the angular
rate integration—rather it is the scale of the trajectory that
matters. The IMU+OD+VO modality combination suffered
from inaccurate track odometry velocity measurements (the
green line in Figure 12), but this problem was resolved
by incorporating the ICP modality into the fusion scheme.
The IMU+OD+ICP+VO combination proved to provide
the best results; see the average position error plot in Fig-
ure 12 (right). The attitude estimates and estimates of the
sensor biases are shown in Figure 14.

5.3.3. Evaluation of the Measurement Model

We claim that a standard measurement model—as is
usually used for measurements coming at comparable
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Figure 8. Trajectories obtained by fusing different combinations of modalities during the indoor experiment testing obstacle
(depicted in Figure 7) traversability under high slippage (left, middle); development of the average position error (right).

Figure 9. The corrected position (top left) and velocity estimates (top right) for the IMU+OD+ICP+VO combination corresponding
to the trajectory in Figure 8 (testing obstacle traversability). Errors in position and velocity are obtained as the norm of difference
between the Vicon reference and the corresponding state at each time-step (bottom left, bottom right). The Vicon reference for both
position and velocity is shown in black.
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Figure 10. The corrected attitude estimates (top left) for the full multimodal combination IMU+OD+ICP+VO corresponding to
the trajectory shown in Figure 8 (testing obstacle traversability). Errors in attitude are obtained as the difference between the Vicon
reference and the corresponding state at each time-step (bottom left). Estimated biases for the specific forces (top right) and angular
rates (bottom right).

Figure 11. An example of trajectory driven by the robot over
the Clausiusstrasse street.

frequency—is not well-suited for measurements with sig-
nificant differences in sampling frequencies as well as in
values that correspond to the same state observed. This
is crucial when the difference in states obtained from the
IMU or the OD at high frequency is very large compared to
the measurements provided by the ICP or the VO sensory
modalities at relatively low frequency—such as in the case
of high slippage.

Table IV shows the overall comparison of the three mea-
surement models we evaluated for fusing the ICP and the
VO sensory modalities in the filter. Figure 15 presents a typ-
ical example of trajectory reconstructed by all three mea-
surement approaches we introduced in Section 4.3.3. The
velocity approach—the state-of-the-art practice—that consid-

ers that information as relative measurements, is the least
precise, with the highest average position error; see Fig-
ure 15 (right). This is due to the corner cutting behavior
emphasized in Figure 15 (middle). The incremental position
approach performs reasonably well in indoor environments,
which are well-conditioned for the ICP and the VO sensory
modalities. In particular, the ICP algorithm is very precise
as there are enough features to unambiguously fix all de-
grees of freedom. On the other hand, in larger environments
with fewer constraints (expected for USAR), the trajectory
approach allows the IMU and the OD information to better
correct the drift of the ICP and the VO sensory modalities.

5.4. Failure Case Analysis

As seen in the previous sections, there are many occasions
in USAR environments for which the generic assumptions
of the EKF are not valid. The most frequent example is
track slippage, which violates the assumption of Gaussian
observation centered on the actual value.

Our failure case analysis reviews each sensory modal-
ity involved in the filter to see how the resulting estimate
degrades with partial outage of the modality. IMUs are not
subject to much partial failure other than bias and noise,
which are already accounted for in our filter.

5.4.1. Robot Slippage and Sliding

A typical failure case of the odometry modality is signifi-
cant slippage. Small slippage occurs routinely when turning
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Figure 12. Trajectories obtained by fusing different combinations of modalities during the outdoor experiment with Leica reference
system (left) and the corresponding average position error in time (right).

Figure 13. The position and velocity estimates (top left and bottom, respectively) for the IMU+OD+ICP+VO combination
corresponding to the outdoor trajectory in Figure 12; errors in position obtained as the norm of differences between the Leica
reference and the corresponding state at each time-step (top right).

skid-steer robots and is usually accounted for by the uncer-
tainty in the odometry model. However, on surfaces such
as ice, or inclined wet or smooth surfaces, stronger slippage
can occur. Stronger slippage or sliding are outliers of the
odometry observation model. IMU, ICP, and VO sensory

modalities are not affected in such a case. To simulate such
a situation, we placed the robot on a trolley and moved it
manually.

Figure 16 shows both the trajectory from the top (top-
left plot) and the comparison between the fusion of all four
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Figure 14. The attitude estimates (left) for the IMU+OD+ICP+VO combination corresponding to the outdoor trajectory in
Figure 12; biases estimated for the specific forces (top right) and angular rates (bottom right).

Table IV. Comparison of the different measurement models; for each model, we show the lower|median|higher quartile statistics
of the relative and average metrics. The average metric eavg is evaluated for the last sample of each experiment; see Eq. (49). We
distinguish the indoor and outdoor environments.

Indoor Outdoor

Model erel eavg erel eavg

incremental position 0.4|0.7|1.2 0.1|0.1|0.2 0.8|1.5|11.0 0.7|2.4|6.1
velocity 1.0|1.3|2.3 0.1|0.1|0.3 0.9|1.8|12.2 0.8|2.5|6.1
trajectory 0.7|1.2|2.1 0.0|0.1|0.2 0.6|1.4|11.5 0.6|2.2|6.1

sensory modalities and the fusion of only IMU+OD. We can
see that the latter wrongly estimates no motion, whereas the
fusion of all modalities correctly estimates the trajectory.
The failure of the partial filter can be explained by the low
acceleration of the platform during the test. As the IMU
acceleration signal is quite noisy, confidence in the IMU
cannot compensate for the odometry modality asserting an
absence of motion.

It should be noted that such a failure of the odometry
modality does not lead to a failure of our complete filter.

5.4.2. Partial Occlusion of the Visual Field of View

Partial occlusion, overexposure, or projections of dirt on the
camera could lead to faulty estimation of the motion by the
VO. To test this situation, we occluded one of the cameras
of the omnicamera (see Figure 17). Reduction of the field of
view of the omnicamera causes in the vast majority of cases

a reduction in the number of visual features being robustly
detected by the VO. The insufficient number of features can
then cause the VO to incorrectly estimate the attitude. This
information then propagates into the state estimate and can
cause the fusion algorithm to fail.

Figure 18 shows the result of the filter in such a case.
We can see that during a first loop of the trajectory, the
state estimation is correct. Then, lacking a sufficient number
of features, the VO computes an erroneous estimate and
the final state estimate degenerates. On the contrary, by
leaving out the visual odometry, the state estimation would
continue to perform satisfactorily.

It should be noted that the number, quality, and distri-
bution of features matter more than the portion of the field
of view that is occluded. One typical way to prevent this
issue is to monitor the number of features and eventually
their distribution in the field of view—our VO tries to have
corresponding features spread over the whole image.
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Figure 15. Comparison of effects of the three different ICP aiding approaches on the estimated trajectory (left, middle) and on the
average position error (right). Note the corner cutting effect of the velocity approach.

Figure 16. Test trajectory for robot slippage. Black line: ground truth; red solid line: state estimate with all four modalities; green
dashed line: IMU and odometry fusion. Top left: top view of the trajectory; bottom left: average error as a function of time; top,
middle, bottom right: evolution of x, y, and z coordinates.

5.4.3. Temporary Laser Scanner Outage

As demonstrated above, our trajectory approach to fusion
of ICP measurements is able to cope with the relatively
low frequency of laser scanning. As the laser is moving, it
can be blocked in the case of collision or high vibration of
the platform (a safety precaution at the level of the motor
controller). When this happens, it is necessary to initiate a
recalibration procedure that can take around 30 s.

We simulated this situation by throttling the laser point
clouds, which resulted in ICP measurement outages of up

to 40 s. Figure 19 shows the trajectory estimates for this test.
On the left, the cyan polygon shows the position estimates
of ICP linked by straight lines (no filtering). It should be
noted that in this case, the positions are accurate compared
to the ground truth but of very low sampling rate. We can
see in the middle and right graphs that the filter estimates
degrade gracefully. There is some drift, mostly along eleva-
tion due to slippage, but even with this low frequency, the
ICP measurements help to correct the state estimates over
just the IMU, odometry, and visual odometry.
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Figure 17. Picture from the partially occluded omnicamera. Notice the dark rectangle in the middle.

Figure 18. Trajectory reconstruction with several faulty VO motion estimates. Black line: ground truth; solid red line: state estimate
with all four modalities; dashed green line: state estimate excluding visual odometry; black arrow: visual odometry failure. Top
left: top view of the trajectory; top right: average position error around visual odometry failure; bottom: attitude estimated along
the trajectory.
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Figure 19. Trajectory estimates in the case of low ICP frequency. Black line: ground truth; cyan line: positions estimated by ICP
alone; red line: state estimate with all four modalities; green dashed line: state estimate excluding ICP measurements. Left: top
view; middle: 3D view; right: average position error.

Figure 20. Trajectory estimates in the case of a moving obstacle in a reduced field of view. Solid black line: ground truth; solid
red line: state estimate with all four modalities; dashed green line: state estimate excluding ICP measurements; cyan line: position
estimated by ICP alone; black arrow: start of moving obstacle. Top left: 3D view; bottom left: average error as a function of time;
right: x, y, and z coordinates as a function of time.

5.4.4. Moving Obstacle and Limited Laser Range

Unlike the cameras, laser range sensors are not sensitive
to illumination conditions. On the other hand, they have
a limited sensor range that can induce a lack of points in
large environments. Close-range obstacles might then be the
dominant cluster of points, and hence the ICP registration
might converge to a wrong local minimum, following the
motion of the obstacles.

To test this situation, we artificially limited the range of
the laser range sensor to 2 m. This is similar to heavy smoke

or dust scenarios that can arise in USAR conditions. This
prevents the laser from observing the walls and the ceiling,
which are usually the strongest cues for correct point cloud
registration indoors.

Additionally, we used a large board to simulate a mov-
ing obstacle of significant size. This caused the ICP to drift,
following the motion of the board.

Figure 20 shows the result of the filter compared to
the ground truth. We can see that when the large obstacle
starts to move, the estimate of the ICP drifts with it. As a

Journal of Field Robotics DOI 10.1002/rob



470 • Journal of Field Robotics—2015

Figure 21. Deformed point cloud map created by ICP. The points are colored alongside the corridor from red (initial position) to
blue. Left: front view; top right: side view; bottom right: top view.

Figure 22. Trajectory estimates in the case of map deformation. Solid black line: ground truth; solid red line: state estimate with
all four modalities; cyan line: position estimated by ICP alone. Top: side view; bottom: roll angle along the trajectory.

consequence, the whole filter drifts as well. This is analo-
gous to the slippage situation, in which the ICP modality
compensates for the combined estimate of the other three
modalities. Using the omnicamera information not only as
a visual compass but also as a complete visual odometry
modality would probably allow us to differentiate between
those two situations.

5.4.5. Map Deformation

As explained above, the ICP map is not globally optimized.
This means that the map might have some large-scale defor-
mations due to the accumulation of small errors. We were

able to observe this particularly in a long corridor that we
used to assess the impact of map deformation on the state
estimate.

Figure 21 shows an instance of the deformed map. We
drove along two superposed corridors over two floors. We
can see that both ends of the corridor are not aligned: the
ground plane of the blue end has a roll angle of several
degrees compared to the red end. We used the theodolite
system to acquire ground truth on the upper floor.

Figure 22 shows the impact of map deformation on
the state estimate. The top graph shows that even if the
ICP estimate is erroneous, the full filter maintains a correct,
drift-free estimate. The bottom graph compares the estimate
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of the roll angle between ICP only and the fusion. It clearly
shows the drift in roll of the ICP estimate and the lack of im-
pact it has on the fusion. The difference with previous failure
case lies in the kind of drift. The drift of the roll angle can be
compensated for by the IMU, especially the accelerometer.
On the other hand, the drift in position of previous failure
cases is not observable by the other modalities.

6. CONCLUSION

We designed and evaluated a multimodal data fusion sys-
tem for state estimation of a mobile skid-steer robot in-
tended for urban search and rescue missions. USAR mis-
sions often involve indoor and outdoor environments with
challenging conditions such as slippage, moving obstacles,
bad or changing light conditions, etc. To cope with such
environments, our robot is equipped with both proprio-
ceptive (IMU, tracks odometry) and exteroceptive (laser
rangefinder, omnidirectional camera) sensors. We designed
such a data fusion scheme in order to adequately include
measurements from all four of these modalities with an
order-of-magnitude difference in update frequency from
90 Hz to 1

3
Hz.

We tested our algorithm on approximately 4.4 km of
field tests (over more than 9 h of data) both indoors and out-
doors. To ensure precise quantitative analysis, we recorded
ground truth using either a Vicon motion capture sys-
tem (indoors) or a Leica theodolite tracker (outdoors). In
so doing, we proved that our scheme is a significant im-
provement upon standard approaches. Combining all four
modalities—IMU, tracks odometry, visual odometry, and
ICP-based localization—we achieved precision in the total
distance driven of 1.2% error in the indoor environment and
1.4% error in the outdoor environment. Moreover, we char-
acterized the reliability of our data fusion scheme against
sensor failures. We designed failure case scenarios accord-
ing to potential failures of each sensory modality that are
likely to occur during real USAR missions. In the course of
this testing, we evaluated robustness with respect to heavy
slippage (odometry failure case), reduction of field of view
of the omnicamera (visual odometry failure case), and re-
duction of the laser rangefinder together with large moving
obstacles spoiling the created metric map (ICP-based local-
ization failure case).

While our filter demonstrates good accuracy during
our field tests and is robust against some of the failures ex-
pected in USAR, there is still room for improvement, namely
the need for an automatic failure detection and resolution.
Exploring different methods of detecting anomalous mea-
surements and rejecting them in order to improve the over-
all performance is one of the ways, but it is currently left
for future work. Furthermore, developing a visual odom-
etry solution capable of also providing estimates of scaled
translation is another topic for the future.

It is not surprising that combining more modalities
yields greater precision. However, we were able to show
that if such a rich multimodal system is well-designed, it
will perform reasonably well even in cases in which other
systems exploiting fewer modalities fail completely. We de-
scribe how to design such a system using the commonly
used EKF. In this way, we contribute by proposing and
comparing three different approaches to treat the ICP mea-
surements, out of which the trajectory approach proved to
perform best.

To contribute to the robotics community, we release
our datasets used in this paper, including the ground truth
measurements from the Vicon and Leica systems.
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