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Abstract—To properly process data, we need to take into
account both the measurement errors and the fact that some
of the observations may be outliers. This is especially important
in radar-based localization problems, where some signals may
reflect not from the analyzed object, but from some nearby object.
There are known methods for dealing with both measurement
errors and outliers in situations in which we have full information
about the corresponding probability distributions. There are also
known statistics-based methods for dealing with measurement
errors in situations when we only have partial information
about the corresponding probabilities. In this paper, we show
how these methods can be extended to situations in which we
also have partial inf0ormation about the outliers (and even to
situations when we have no information about the outliers). In
some situations in which efficient semi-heuristic methods are
known, our methodology leads to a justification of these efficient
heuristics – which makes us confident that our new methods will
be efficient in other situations as well.

I. FORMULATION OF THE PROBLEM

Need for data processing. In many practical situations, we
are interested in the values of the quantities p1, . . . , pm which
are difficult to measure directly.

For example, when solving a localization problem – whether
it is a problem of locating a robot (see, e.g., [3]) or of locating
a satellite (see, e.g., [4]) – we are interested in the coordinates
p1, . . . of this object. It is possible to directly measure physical
quantities such as distance, velocity, density, etc. However,
coordinates are an artificial construction that does not directly
correspond to any physical quantity. As a result, it is not
possible to directly measure coordinates of an object.

The quantities of interest do affect results of some mea-
surements; namely, the value of the corresponding easier-to-
measure quantity y depends, in a known way, on the values
p1, . . . , pm – and on some auxiliary quantities x1, . . . , xn that
describe the measurement’s setting:

y = f(p1, . . . , pm, x1, . . . , xn).

For example, to determine 3-D coordinates (p1, p2, p3) of
an object, we can measure the distance

y =

√√√√ 3∑
i=1

(pi − xi)2

between the object of interest and another object with known
coordinates (x1, x2, x3).

So, to find the values of pi, we measure the value yk
of the corresponding quantity y under different settings
(xk1, . . . , xkn), and then reconstruct the desired values pi from
the condition that

yk = f(p1, . . . , pm, xk1, . . . , xkn) (1)

for all the measurements k = 1, . . . ,K.
For example, to locate an object, we measure the distance

between this object and several objects with known coordi-
nates. This is how, e.g., radar-based systems determine the
coordinates of an airplane.

Such reconstruction is an important case of data processing.

Need to take into account measurement uncertainty and
outliers. Measurement are never absolutely accurate; see,
e.g., [18]. As a result, there is always a non-zero difference
between the measurement result yk and the actual (unknown)
value f(p1, . . . , pm, xk1, . . . , xkn) of the corresponding quan-
tity:

∆yk
def
= yk − f(p1, . . . , pm, xk1, . . . , xkn) ̸= 0. (2)

It is important to take into account this measurement uncer-
tainty when processing data.

Measurement errors are usually reasonably small. Hence,
the measured value yk is usually close to the actual value



f(p1, . . . , pm, xk1, . . . , xkn). However, the measuring instru-
ment is not always 100% reliable. Sometimes, the measuring
instrument malfunctions, and we get outliers, values which
are very different from the actual values of the corresponding
quantity. In processing data, we also need to take into account
the existence of outliers.

This is especially important in localization problems, where
the radar-type signal, instead of reflecting from the desired
object, reflects from some other objects. In this case, the
corresponding measurement result describes the distance to
a different object – i.e., from the viewpoint of our problem,
is an outlier.

What is known, what are the remaining problems, and
what we do in this paper. There are many efficient techniques
for taking into account measurement uncertainty. There are
also techniques for taking into account outliers, and there
are techniques for taking into account both measurement
uncertainty and outliers.

Such methods work well if we have a complete knowledge
about the probabilities of different values of the measurement
error and the probabilities of different outliers. In practice,
however, we often only have a partial information about these
probabilities – all the way to the case when we have no infor-
mation about such probabilities at all; see, e.g., [18]. In such
extreme situations, there are methods that take into account
either measurement uncertainty or outliers – but not both.
In this paper, we briefly overview and analyze the existing
techniques of taking into account measurement uncertainty
and outliers, and then use this analysis to develop a natural
new technique for taking into account both measurement
uncertainty and outliers.

The structure of this paper is as follows. In Section 2, we
describe the methods of dealing with uncertainty – beware,
however that we will describe them in such a way so as to
prepare us for the new technique. In Section 3, we use our
analysis to show how outliers can also be taken into account.

Most of our results are new. In some cases, as a particular
case of our general approach, we get a well-known effective
outlier-processing technique; the fact that in some cases, we
get well-known well-established efficient techniques makes us
confident that our method will be efficient in other situations
as well.

II. HOW MEASUREMENT UNCERTAINTY IS USUALLY
TAKEN INTO ACCOUNT

Case when we know the exact probability distribution of
the measurement error. Let us first consider a situation in
which we have a complete information about the probability
density function ρ(∆y) that describes the probability distri-
bution of the measurement error. In this case, once we have
the measurement results yk (1 ≤ k ≤ K) corresponding to
settings xk = (xk1, . . . , xkn), then for each parameter tuple
p = (p1, . . . , pm) and for each k, the probability to observe
yk is proportional to ρ(∆yk) = ρ(yk − f(p, xk)).

Measurement errors corresponding to different measure-
ments are usually independent. Thus, the probability of observ-
ing all the observed values y1, . . . , yK is equal to the product
of the probabilities of observing each value yk. Thus, this

probability is proportional to the product
K∏

k=1

ρ(yk−f(p, xk)).
In this case, we usually have different parameter tuples

which are consistent with the given observations. If we need
to select a single “best estimate”, it is reasonable to select the
parameter tuple which is the most probable, i.e., for which

the product L def
=

K∏
k=1

ρ(yk − f(p, xk)) takes the largest

possible value. This idea is known as the Maximum Likelihood
Method; see, e.g., [14]. Under reasonable conditions, this
method indeed leads to estimates which are optimal in some
reasonable senses; see, e.g., [14], [19].

Example. Let us consider a simple example, in which the
measurement error is normally distributed with 0 mean and
a known standard deviation σ. In this case, the probability
density function has the form

ρ(∆y) =
1√

2π · σ
· exp

(
− (∆y)2

2σ2

)
.

Minimizing the corresponding product

L =
K∏

k=1

1√
2π · σ

· exp
(
− (∆yk)

2

2σ2

)
(2)

is equivalent to minimizing minus logarithm of this product

ψ
def
= − ln(L) = K · ln(

√
2π · σ) + 1

2σ2
·

K∑
k=1

(∆yk)
2. (3)

One can easily see that this minimization is equivalent to
minimizing the sum

K∑
k=1

(∆yk)
2 =

K∑
k=1

(yk − f(p, xk))
2.

This minimization – known as the Least Squares Method – is
one of the most widely used data processing techniques.

What is we only have partial information about the
probabilities: case of a finite-parametric family. In some
cases, we do not know the exact probability distribution of
the measurement errors, but we are aware that it belongs to
a known finite-parametric family of probability distributions
ρ(∆y, θ) depending on the parameter tuple θ = (θ1, . . . , θℓ).

In this case, the corresponding “likelihood function” L takes

the form L =
K∏

k=1

ρ(∆yk, θ). Now, instead of selecting only

only the parameters p of the model, we also need to select
the parameters θ of the corresponding probability distribution.
In this case, it is reasonable to select the most probable pair
(p, θ), i.e., the pair for which the product

L =
K∏

k=1

ρ(yk − f(p, xk), θ)



takes the largest possible value.

Example. Let us assume that the measurement error is nor-
mally distributed with 0 mean, but this time, the standard
deviation σ is unknown. In this case, we have ℓ = 1 and
θ1 = σ. So, we need to maximize the expression (2) – or,
equivalently, minimize the expression (3) – with respect to
both p and σ.

Minimizing the expression (3) with respect to parameters p
leads to the same Least Squares estimate as before. Once we
find p, we can differentiate the expression (3) with respect to
σ, equate the derivative to 0, and get the desired expression

σ =

√√√√ 1

K
·

K∑
k=1

(yk − f(p, xk)2.

What if we only have partial information about the prob-
abilities: non-parametric case. In many practical situations,
we do not know the finite-parametric family containing the
actual distribution. For example, often, all we know is the
upper bound ∆ on the measurement error; see, e.g., [18].
In this case, the only information that we have about the
actual probability distribution ρ(∆y) is that this distribution
is located somewhere on the interval [−∆,∆].

There are many such probability distributions. To apply
the Maximum Likelihood principle in this case, we need to
select a single “most reasonable” distribution from all these
possible distributions. Each of these distributions ρ(∆y) can
be characterized by its uncertainty (entropy)

S = −
∫
ρ(∆y) · ln(ρ(∆y)) d∆y

that describes how many binary (“yes”-“no”) questions we
need to ask to uniquely determine the corresponding value
∆y; see, e.g., [2], [8], [16].

Out of all possible distributions ρ(∆y) we have distributions
located on a single value v. For these distributions, we do not
need any questions, we already know the value v. However,
selecting such a distribution would be cheating – in actuality,
we do not know the value ∆y, so we would like to select the
distribution that to the largest extent reflects this uncertainty. In
other words, it is reasonable to select a distribution for which
the entropy is the largest possible.

For all the distributions ρ(∆y) located on the inter-
val [−∆,∆], maximum of entropy under the constraint∫∆

−∆
ρ(∆y) d∆y = 1 can be obtained by using the Lagrange

multiplier method, that reduces the corresponding constraint
optimization problem to the unconstrained optimization prob-
lem

−
∫ ∆

−∆

ρ(∆y) · ln(ρ(∆y)) d∆y+

λ ·

(∫ ∆

−∆

ρ(∆y) d∆y − 1

)
→ max

ρ(∆y)

for an appropriate Lagrange multiplier λ. Differentiating this
expression with respect to ρ(∆y) and equating the derivative

to 0, we conclude that ρ(∆y) = const, i.e., that we have
a uniform distribution on the interval [−∆,∆], with the
probability density

ρ(∆y) =
1

2∆
.

This selection makes perfect sense: since we have no reason
to believe that some values from the interval [−∆,∆] are more
probable than others, it is therefore reasonable to conclude that
all the values from this interval are equally probable. This
argument goes back to Laplace and is thus known as Laplace
Indeterminacy Principle.

Now that we have selected a probability distribution, we can
use the Maximum Likelihood method to find the correspond-
ing parameter values p. In this case, each probability density
ρ(∆yk) is equal to 0 if ∆yk is outside the interval [−∆,∆] and
to a constant (equal to 1/(2∆)) when ∆yk inside this interval.
Thus, the product L of the corresponding probabilities is equal
to 0 if one of the values ∆yk is inside the interval, and to the

same constant
1

(2∆)K
when |∆yk| ≤ ∆ for all k. So, instead

of a single tuple p, we know need to describe all the tuples p
for which |yk − f(p, xk)| ≤ ∆ for all k = 1, . . . , k.

The problem of finding the range of such tuples under
interval uncertainty (∆yk ∈ [−∆,∆]) is a particular case of
interval computations; see, e.g., [5], [15]. In interval compu-
tations, there are many efficient techniques for solving this
problem [5], [15].

What if we have no information whatsoever about the
probabilities of measurement errors. In some practical
situations, we have no information at all about the probability
distribution ρ(∆y) of the corresponding measurement error.
This situation is somewhat similar to the previous one – with
the only difference that now, we do not know the bound ∆.

How can we find a good estimate for this value ∆? A
reasonable idea is to use the Maximum Likelihood method
and select the value ∆ for which the corresponding likelihood

L =
1

(2∆)K
is the largest possible. Once can easily see that

the smaller ∆, the larger this likelihood L. Thus, selecting
the largest possible L is equivalent to selecting the smallest
possible ∆.

The only constraints on ∆ is that we should have ∆ ≥ |∆yk|
for all k. This is equivalent to having ∆ ≥ max

k
|∆yk|.

The smallest value satisfying this inequality is the value
∆ = max

k
|∆yk|. Thus, minimizing ∆ means selecting the

parameter p for which the corresponding maximum

max
k

|∆yk| = max
k

|yk − f(p, xk)|

is the smallest possible; see, e.g., [9].
The corresponding minimax approach is indeed frequently

used in data processing; see, e.g., [1], [5], [6], [11], [12], [13],
[20], [21], [22], [23].

III. HOW TO TAKE OUTLIERS INTO ACCOUNT

Which cases are possible? In the previous section, we
considered possible types of knowledge about the probability



distribution. In our analysis, we considered the following four
cases, in the decreasing order of the available information
about the probabilities:

• we know the exact distribution;
• we know the finite-parametric family of distributions;
• we know the upper bound on the (absolute value) of the

corresponding difference; and
• we have no information whatsoever, not even the upper

bound.

If we take outliers into account, then, in principle, we may
have the same four possible types of information about the
corresponding probability density function ρ0(∆y). At first
glance, it may therefore seem that we can have 4 × 4 = 16
possible combinations. In reality, however, not all such com-
binations are possible.

Indeed, once we gather enough data, we can determine the
corresponding probability distributions. Thus, the fact that we
do not yet have detailed information about the probability
distribution of the measurement error means that we have
not yet collected a sufficient number of measurement results.
In this case – since the number of outlier is usually much
smaller than the number of actual measurement results – we
have even fewer outliers. So, if we cannot determine the
probability distribution for the measurement errors, even more
so, we cannot determine the probability distribution for the
outliers either. In general, for the same reason, the amount of
information that we have about the outliers is smaller than the
amount of information that we have about the measurement
errors.

Hence, instead of 16 options, we only have options in which
the amount of information about the outlier-related probability
distribution ρ0(∆y) does not exceed the amount of information
about the probabilities of measurement errors ρ(∆y). Let us
consider all these cases one by one.

Full information about both distributions. Let us first con-
sider the ideal case, when we have the complete information
about the probabilities. Specifically:

• we know the probability density function ρ(∆y) that
describes the probability of different values of the mea-
surement error, and

• we know the probability density function ρ0(∆y) that de-
scribes the probability of different values of the difference
∆y = y − f(p, x) corresponding to outliers y.

In this case, once we have the measurement results yk (some of
which may come from malfunctioning and are thus outliers),
the probability of these observations occurring depends not
only on the parameters p, but also on which of the values yk
are outliers and which are actual measurement results. Once
we know the set M ⊆ {1, . . . ,K} of indices k for which yk is
the actual measurement, we can then compute the probability
L as

L =

(∏
k∈M

ρ(∆yk)

)
·

∏
k ̸∈M

ρ0(∆yk)

 .

Now, we can use the Maximum Likelihood approach to
determine both the parameter tuple p and the set M .

Once p is found, and thus, the values ∆yk = yk − f(p, xk)
are determined, maximizing the product L means:

• selecting k ∈ M if the value ρ(∆yk) is larger than
ρ0(∆yk), and

• selecting k ̸∈ M if the value ρ0(∆yk) is larger than
ρ(∆yk).

In both cases, the resulting factor in the product L takes the
form max(ρ(∆yk)), ρ0(∆yk)).

The resulting value L takes the following form:

L =
K∏

k=1

max(ρ(∆yk)), ρ0(∆yk)) =

K∏
k=1

max(ρ(yk − f(p, xk)), ρ0(yk − f(p, xk))).

We thus need to select the parameters p for which this product
attains the largest possible value.

Comment. From the computational viewpoint, the correspond-
ing problem is similar to the usual maximum likelihood
problem, with a new function g(∆y) def

= max(ρ(∆y), ρ0(∆y))
instead of the original probability density function ρ(∆y). It is
worth mentioning, however, that, in contrast to the probability
density function ρ(∆y) for which

∫
ρ(∆y) dy = 1, for the

new function g(∆y), we have, in general,∫
g(∆y) dy >

∫
ρ(∆y) dy = 1

(as long as the probability densities ρ(∆y) and ρ0(∆y) are
different).

Full information about ρ(∆y), finite-parametric family
for ρ0(∆y). In this case, instead of single distribution ρ0(∆y),
we have a finite-parametric family of distributions ρ0(∆y, φ)
with unknown parameters φ. In such a situation, we need to
determine all the parameters p and φ from the requirement
that the likelihood

L =
K∏

k=1

max(ρ(∆yk), ρ0(∆yk, φ)) =

K∏
k=1

max(ρ(yk − f(p, xk)), ρ0(yk − f(p, xk), φ))

attains the largest possible value.

Full information about ρ(∆y), bound W on the outlier-
related differences ∆yk. In this case, based on the maximum
entropy approach, as a distribution ρ0(∆y), we select a uni-
form distribution on the interval [−W,W ], with the probability

density ρ0(∆yk) =
1

2W
.

In such a situation, we determine the parameters p from the
requirement that the likelihood

L =
K∏

k=1

max

(
ρ(∆yk),

1

2W

)
=



K∏
k=1

max

(
ρ(yk − f(p, xk)),

1

2W

)
attains the largest possible value under the constraint that

|∆yk| = |yk − f(p, xk)| ≤W

for all k = 1, . . . ,K.

Full information about ρ(∆y), no information whatsoever
about the outlier-related differences ∆yk. In this case, we
select the value W for which the likelihood L as described
in the previous example if the largest possible – under the
constraint that |∆yk| ≤W for all k.

One can easily see that the smaller the bound W , the larger

the density
1

2W
and thus, the larger the likelihood function.

Thus, to determine the largest possible value of the likelihood
function L, we must select the smallest possible value W . The
constraints on W have the form that W ≥ |∆yk| for all k. The
smallest possible value W that satisfies all these constraints is
the value

W = max
ℓ

|∆yℓ| = max
ℓ

|yℓ − f(p, xℓ)|.

Substituting this expression into the above formula, we con-
clude that we need to select the parameters p for which the
likelihood

L =

K∏
k=1

max

ρ(yk − f(p, xk),
1

2 ·max
ℓ

|yℓ − f(p, xℓ)|


attains the largest possible value.

Finite-parametric information about ρ(∆y) and about
ρ0(∆). In this case, instead of single distributions ρ(∆y) and
ρ0(∆y), we have finite-parametric families of distributions
ρ(∆y, θ) and ρ0(∆y, φ) with unknown parameters θ and φ.
In such a situation, we need to determine all the parameters
p, θ, and φ from the requirement that the likelihood

L =

K∏
k=1

max(ρ(∆yk, θ)), ρ0(∆yk, φ)) =

K∏
k=1

max(ρ(yk − f(p, xk), θ), ρ0(yk − f(p, xk), φ))

attains the largest possible value.

Finite-parametric information about ρ(∆y), bound W on
the outlier-related differences ∆yk. In such a situation, we
determine the parameters p and θ from the requirement that
the likelihood

L =
K∏

k=1

max

(
ρ(∆yk, θ),

1

2W

)
=

K∏
k=1

max

(
ρ(yk − f(p, xk), θ),

1

2W

)

attains the largest possible value under the constraint that

|∆yk| = |yk − f(p, xk)| ≤W

for all k = 1, . . . ,K.

Finite-parametric information about ρ(∆y), no informa-
tion about the outlier-related differences ∆yk. In this case,
similarly to the above case when we had no information
about the outlier-related differences ∆yk, we should select the
smallest possible W , i.e., W = max

ℓ
|∆yℓ|. Thus, we need to

select the parameters p and θ for which the likelihood

L =

K∏
k=1

max

ρ(yk − f(p, xk), θ),
1

2 ·max
ℓ

|yℓ − f(p, xℓ)|


attains the largest possible value.

Bound ∆ on the measurement errors, bound W on the
outlier-related differences ∆yk. In this case, by using the
maximum entropy approach, we select the following distribu-
tions:

• the measurement errors are uniformly distributed on the
interval [−∆,∆], with the probability density

ρ(∆y) =
1

2∆
;

• the outlier-related differences ∆yk are uniformly dis-
tributed on the interval [−W,W ], with the probability

density ρ0(∆y) =
1

2W
.

In this case, we need to select the parameters p that maximize

the likelihood L =
K∏

k=1

g(∆y), where

g(∆y) = max(ρ(∆y), ρ0(∆y)).

For the above uniform distributions, the auxiliary function
g(∆y) takes the following form:

• for the values ∆y for which |∆y| ≤ ∆, we have

g(∆y) =
1

2∆
;

• for the values ∆y for which ∆ < |∆y| ≤ W , we have

g(∆y) =
1

2W
; and

• for the values ∆y for which |∆y| > W , we have
g(∆y) = 0.

Thus, maximizing the product L =
∏
k=1

g(∆yk) means min-

imizing the number of outliers under the constraint that
|∆yk| = |yk − f(p, xk)| ≤ W for all k. In other words, we
select p for which, under the above constraints, the number
of observations for which |yk − f(p, xk)| > ∆ is the smallest
possible.

Bound ∆ on the measurement errors, no information
about the outlier-related differences ∆yk. In this case, since
we take W = max

ℓ
|yℓ − f(p, xℓ)|, there are no longer any

limitations on p.



Thus, in this case, the maximum likelihood method simply
means selecting the values of the parameters p for which the
number of outliers (i.e., values for which |yk−f(p, xk)| > ∆)
is the smallest possible.

Comment. This idea has been actively used, as a heuristic idea,
to deal with data processing under outliers, see, e.g., [3], [7],
[10]. Several practical applications of this heuristic idea are
described, e.g., in [3].

Our probability-based justification for this heuristics was
first announces in [17] (see also [4]).

Final case, when we have no information about the
probabilities. Finally, let us consider the case when we
have no information about the probabilities, neither about the
probabilities of different values of the measurement errors, nor
about the probabilities of different outlier-related differences

∆y = y − f(p, x).

In this case, we need to select the corresponding bounds ∆
and W for which the corresponding likelihood function attains
its largest possible value. Similar to the previous cases, for
each parameter tuple p, the maximum of the likelihood L is
attained if we take W (p) = maxℓ |∆yℓ|, so it only remains to
select p and ∆.

For each p and ∆, let us denote by n(p,∆) the number
of values k for which |yk − f(p, xk)| ≤ ∆. In terms of this
notation, the desired likelihood value

L(p,∆) =

K∏
k=1

g(yk − f(p, xk))

has the form

L(p,∆) =
1

(2∆)n(p,∆)
· 1

(2W (p))K−n(p,∆)
,

i.e., equivalently, the form

L(p,∆) =
1

(2W (p))K
·
(
W (p)

∆

)n(p,∆)

.

Maximizing this expression is equivalent to minimizing its
minus logarithm

ψ(p,∆) = − ln(L(p,∆)) =

K · ln(2W (p)) + n(p,∆) · (ln(∆)− ln(W (p))).

Thus, to get the maximum likelihood, for each p, we need
to select ∆ for which the expression ψ(p,∆) is the smallest
possible. We then select the parameters for which the resulting
minimum is the smallest possible, i.e., for which the following
expression is the smallest possible:

ψ(p) = min
∆

(K · ln(2W (p))+n(p,∆) · (ln(∆)− ln(W (p)))),

where W (p) = max
ℓ

|yℓ − f(p, xℓ)| and

n(p,∆) = #{k : |yk − f(p, xk)| ≤ ∆}.

Comment. To check how well our method works, we have
applied this idea to the situations when the values ∆yk
are distributed according to several reasonable distributions:
normal, heavy-tailed power law, etc.

In all these cases, we get 5-20% values classified as outliers.
This is in line with the usual case of normal distribution, where
5% of the values lie outside the 2σ interval and are, thus,
usually dismissed as outliers,

ACKNOWLEDGMENTS

This work was supported in part by the National Sci-
ence Foundation grants CAREER 0953339, HRD-0734825
and HRD-1242122 (Cyber-ShARE Center of Excellence) and
DUE-0926721, and by an award “UTEP and Prudential Actu-
arial Science Academy and Pipeline Initiative” from Prudential
Foundation. This research was performed during Anthony
Welte’s visit to the University of Texas at El Paso.

The authors are thankful to all the participants of the
Summer Workshop on Interval Methods SWIM’2016 (Lyon,
France, June 19–22, 2016) for valuable discussions.

REFERENCES

[1] J. Berger, Statistical Decision Theory and Bayesian Analysis, Springer
Verlag, New York, 1985.

[2] B. Chokr and V. Kreinovich, “Ho far are we from complete knowledge:
complexity of knowledge acquisition in Demster-Shafer approach”, In:
R. R. Yager, J. Kacprzyk, and M. Pedrizzi (eds.), Advances in the
Dempster-Shafer Theory of Evidence, Wiley, New York, 1994, pp. 555–
576.

[3] B. Desrochers, S. Lacroix, and L. Jailin, “Set-membership approach
to the kidnapped robot problem”, Proceedings of the 2015 IEEE/RSJ
International Conference on Intelligent Robots and Systems IROS’2015,
Hamburg, Germany, September 28 – October 2, 2015, pp. 3715–3720.

[4] V. Drevelle and P. Bonnifait, “A set-membership approach for high in-
tegrity height-added satellite positioning”, GPS Solutions, 2011, Vol. 15,
No. 4, pp. 357–368.

[5] L. Jaulin, “Reliable minimax parameter estimation”, Reliable Comput-
ing, 2001, Vol. 7, No. 3, pp. 231–246.

[6] L. Jaulin, M. Kiefer, O. Dicrit, and E. Walter, Applied Interval Analysis,
Springer, London, 2001.

[7] L. Jaulin and E. Walter, “Guaranteed robust nonlinear mimimax estima-
tion”, IEEE Transactions on Automatic Control, 2002, Vol. 47, No. 11,
pp. 1857–1864.

[8] E. T. Jaynes and G. L. Bretthorst, Probability Theory: The Logic of
Science, Cambridge University Press, Cambridge, UK, 2003.

[9] V. Kreinovich and S. Shary, “Interval Methods for Data Fitting under
Uncertainty: A Probabilistic Treatment”, Reliable Computing, 2016,
Vol. 23, pp. 105–141.

[10] H. Lahanier, E. Walter, and R. Gomeni, “OMNE: a new robust
membership-set estimator for the parameters of nonlinear modles”,
Journal of Pharmacokinetics and Biopharmacutics, 1987, Vol. 15, No. 2,
pp. 203–219.

[11] El L. Lehmann and G. Casella, Theory of Point Estimation, Springer,
New York, 2003.

[12] R. McKendall, Minimax Estimation of a Discrete Location Parameter
for a Continuous Distribution, PhD Dissertation, Systems Engineering,
University of Pennsylvania, Philadelphia, Pennsylvania, 1990; available
as Teachnical Report MS-CIS-90-28, Computer and Information Science
Department, University of Pennsylvania, 1990.

[13] R. McKendall and M. Mintz, “Robust sensor fusion with statistical
decision theory”, In: M. A. Abidi ad R. C. Gonzalez (eds.), Data
Fusion in Robotics and Machine Intelligence, Academic Press, Boston,
Massachusetts, 1992, pp. 211–244.

[14] R. B. Millar, Maximum Likelihood Estimation and Inference, Wiley,
Chichester, UK. 2011.

[15] R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction to Interval
Analysis, SIAM, Philadelphia, 2009.



[16] H. T. Nguyen, V. Kerinovich, B. Wu, and G. Xiang, Computring
Statistics under Intervala nd Fuzzy Uncertainty, Springer Verlag, Berlin,
2012.

[17] J. Nicola and L. Jaulin, “OMNE is a Maximum Likelihood estimator”,
Abstracts of the Summer Workshop on Interval Methods SWIM’2016,
Lyon, France, June 19–22, 2016.

[18] S. G. Rabinovich, Measurement Errors and Uncertainty: Theory and
Practice, Springer Verlag, Berlin, 2005.

[19] D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical
Procedures, Chapman and Hall/CRC, Boca Raton, Florida, 2011.

[20] A. B. Tsybakov, Introduction to Nonparametric Estimation, Springer,
New York, 2009.

[21] E. Walter and L. Pronzato, Identification of Parametric Models from
Experimental Data, Springer, London, 1997.

[22] G. A. Watson, “The minimax solution of an overdetermined system
of nonlinear equations”, IMA Journal of Applied Mathematics, 1979,
Vol. 23, No. 2, pp. 167–180.

[23] M. A. Wolfe, “On discrete mimimax problems in R using intervak
arithmetic”, Reliable Computing, 1999, Vol. 5, No. 4, pp. 371–383.


	Robust Data Processing in the Presence of Uncertainty and Outliers: Case of Localization Problems
	Recommended Citation

	tmp.1471530405.pdf.nFmQB

