
Chapter 2
Robust Decision Making (RDM)

R. J. Lempert

Abstract

• The quest for predictions—and a reliance on the analytical methods that require
them—can prove counter-productive and sometimes dangerous in a fast-changing
world.

• Robust DecisionMaking (RDM) is a set of concepts, processes, and enabling tools
that use computation, not to make better predictions, but to yield better decisions
under conditions of deep uncertainty.

• RDM combines Decision Analysis, Assumption-Based Planning, scenarios, and
Exploratory Modeling to stress test strategies over myriad plausible paths into the
future, and then to identify policy-relevant scenarios and robust adaptive strategies.

• RDMembeds analytic tools in a decision support process called “deliberation with
analysis” that promotes learning and consensus-building among stakeholders.

• The chapter demonstrates an RDM approach to identifying a robust mix of policy
instruments—carbon taxes and technology subsidies—for reducing greenhouse
gas emissions. The example also highlightsRDM’s approach to adaptive strategies,
agent-based modeling, and complex systems.

• Frontiers for RDM development include expanding the capabilities of multi-
objective RDM (MORDM),more extensive evaluation of the impact and effective-
ness of RDM-based decision support systems, and using RDM’s ability to reflect
multiple world views and ethical frameworks to help improve the way organiza-
tions use and communicate analytics for wicked problems.
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2.1 Introduction

Toward the end of the Cold War, in the early 1980s, the RAND Corporation invested
much effort toward using computer combat simulation models to inform national
security decisions regarding weapons procurement and strategy. Designed to pre-
dict the course of future military conflicts, these models were obviously imperfect.
Everyone recognized the aphorisms about the military’s propensity to plan for the
last as opposed to the next war. But growing computational capabilities offered new
opportunities to simulate complex military campaigns with unprecedented levels of
fidelity and realism. The efforts to harness these capabilities provided a focal point
for a growing debate on the value of using newly powerful but clearly imperfect
analytic tools to inform real and consequential decisions.

The 1982 Falklands/Malvinas war provided a crystalizing moment. Argentine
forces landed on the islands in early April and a British task force set sail a few days
later for the two-month voyage to the South Atlantic. At that point, all knew the
order of battle for the coming conflict. At RAND, those who distrusted the combat
simulations used the opportunity to confront the model advocates, challenging them
to predict how the conflict would unfold. Two months would provide ample time to
conduct the analysis. But the advocates demurred. The models, they claimed, despite
all their fidelity and realism, existed to provide “insight” not predictions. The skeptics
wondered about the utility of insights gleaned from models whose predictions could
not be trusted.

Decisionmakers often seek predictions about the future to inform policy choices.
This seems natural because prediction is the bedrock of science, enabling researchers
to test their hypotheses and demonstrate understanding of complicated systems.Deci-
sionmakers also find predictions attractive because, when good ones are available,
they unquestionably provide valuable input toward better choices. Society’s vast
enterprise in the physical, biological, and social sciences continually improves its
predictive capabilities in order to test and refine scientific hypotheses. Recent ana-
lytic innovations, such as big data and machine learning, enhance decision-relevant
predictive capabilities. New processes, such as crowd sourcing, prediction markets,
and super-forecasting (Tetlock and Gardner 2016), provide new and more reliable
means to aggregate human judgments into probabilistic forecasts.

But, as argued throughout this book, the quest for predictions—and a reliance
upon analytic methods that require them—can prove counter-productive and some-
times dangerous in a fast-changing, complexworld. Prediction-focused analysis risks
over-confidence in organizations’ decisionmaking and in their internal and external
communications (Sarewitz and Pielke 2000). Prediction-focused policy debates can
also fall victim to the strategic uses of uncertainty. Opponents may attack a proposed
policy by casting doubt on the predictions used to justify it, rather than engaging with
the merits of the policy itself, knowing that the policy may be more sound than the
predictions (Herrick and Sarewitz 2000; Rayner 2000; Lempert and Popper 2005;
Weaver et al. 2013).



2 Robust Decision Making (RDM) 25

A reliance on prediction can also skew the framing of a decision challenge. Pres-
ident Eisenhower (reportedly) advised “if a problem cannot be solved, enlarge it.”
But science often reduces uncertainty by narrowing its focus, prioritizing questions
that can be resolved by prediction, not necessarily on the most decision-relevant
inquiries. So-called wicked problems (Rittel and Webber 1973) present this contrast
most starkly. In addition to their irreducible uncertainty and nonlinear dynamics,
wicked problems are not well-bounded, are framed differently by various stake-
holders, and are not well-understood until after formulation of a solution. Using
predictions to adjudicate such problems skews attention toward the proverbial lamp
post, not the true location of the keys to a policy solution.

This chapter describes Robust Decision Making (RDM), a set of concepts, pro-
cesses, and enabling tools designed to re-imagine the role of quantitative models and
data in informing decisions when prediction is perilous (Lempert et al. 2003, 2006).
Rather than regarding models as tools for prediction and the subsequent prescriptive
ranking of decision options, models and data become vehicles for systematically
exploring the consequences of assumptions; expanding the range of futures con-
sidered; crafting promising new responses to dangers and opportunities; and sifting
through a multiplicity of scenarios, options, objectives, and problem framings to
identify the most important tradeoffs confronting decisionmakers. That is, rather
than making better predictions, quantitative models and data can be used to inform
better decisions (Popper et al. 2005).

RDM rests on a simple concept (Lempert et al. 2013a). Rather than using com-
puter models and data as predictive tools, the approach runs models myriad times
to stress test proposed decisions against a wide range of plausible futures. Analysts
then use visualization and statistical analysis of the resulting large database of model
runs to help decisionmakers identify the key features that distinguish those futures
in which their plans meet and miss their goals. This information helps decisionmak-
ers identify, frame, evaluate, modify, and choose robust strategies—ones that meet
multiple objectives over many scenarios.

RDM provides decision support under conditions of deep uncertainty. As
described in Sect. 2.2, RDM builds on strong foundations of relevant theory and
practice to provide an operational and newly capable synthesis through the use of
today’s burgeoning information technology. Themost commonly used analyticmeth-
ods for predictive decision and risk analysis have their roots in the 1950s and 1960s,
when relative computational poverty made a virtue of analytics recommending a sin-
gle best answer based on a single best-estimate prediction. Today’s ubiquitous and
inexpensive computation enables analytics better suited to more complex problems,
many of them “wicked” and thus poorly served by the approximation that there exists
such an optimal solution.

The British won the Falklands/Malvinas war, but lost a vessel to an unexpectedly
effective anti-ship missile attack and sank an Argentine ship under disputed con-
ditions. From an RDM perspective, the model skeptics at RAND asked the wrong
question. Rather than judge the combat simulations by how well they could generate
an accurate probability density function, the question should have been—can these
quantitative models, and the processes for using them, help the British make better
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decisions regarding what forces were appropriate to bring and how they ought to
be employed. While useful, even models that produced a perfect probability density
function for precisely selected outcomes would not prove sufficient to answer such
questions. Nor are they necessary.1

2.2 RDM Foundations

How can quantitative, evidence-based analysis best inform our choices in today’s
fast-paced and turbulent times? RDM and the other DMDU methods in this book
aim to answer this question. In particular, RDMdoes so by providing a new synthesis
of four key concepts: DecisionAnalysis, Assumption-Based Planning, scenarios, and
Exploratory Modeling.

Decision Analysis

A large body of empirical research makes clear that people, acting as individuals
or in groups, often make better decisions when using well-structured decision aids.
The discipline of Decision Analysis (DA) comprises the theory, methodology, and
practice that inform the design and use of such aids. RDM represents one type of
quantitative DA method, drawing, for instance, on the field’s decision structuring
frameworks, a consequentialist orientation in which alternative actions are evaluated
in each of several alternative future states of the world, a focus on identifying trade-
offs among alternative decision options, and tools for comparing decision outcomes
addressing multiple objectives.

As one key contribution, DA and related fields help answer the crucial question:
What constitutes a good decision? No universal criterion exists. Seemingly reason-
able decisions can turn out badly, but seemingly unreasonable decisions can turn out
well. Good decisions tend to emerge from a process in which people are explicit
about their goals, use the best available evidence to understand the potential conse-
quences of their actions, carefully consider the tradeoffs, contemplate the decision

1As suggested by the Falklands/Malvinas story, RDM had its origins in debates within the RAND
Corporation on how best to use models, typically of social interaction or military combat, that could
not be validated in the sameway asmodels of less complex decision spaces, or for which probability
distribution functions could not be applied with confidence (Hodges 1991; Bankes 1993). The first
published examples of the approach that became RDM include: Lempert et al. (1996); Rydell et al.
(1997);Brooks et al. (1999). TheThirdAssessment report of the Intergovernmental Panel onClimate
Change (IPCC 2001, Sect. 10.1.4.4) describes such work under the label “computational, multi-
scenario approaches.” In the 1990s, Evolving Logic (http://www.evolvinglogic.com) developed the
first software dedicated to a DMDU methodology—the Computer-Assisted Reasoning® system
(CARs™) (Bankes et al. 2001), to support a methodology called Robust Adaptive Planning (RAP).
Parallel work at RAND adopted the term Robust Decision Making (RDM) (Lempert et al. 2003).
See Light (2005) for a history of approaches to robust and adaptive planning at RAND.

http://www.evolvinglogic.com
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from a wide range of views and vantages, and follow agreed-upon rules and norms
that enhance the legitimacy of the process for all those concerned2 (Jones et al. 2014).

While broad in principle, in practice the DA community often seeks to inform
good decisions using an expected utility framework for characterizing uncertainty
and comparing decision options (Morgan and Henrion 1990). This expected utility
framework characterizes uncertainty with a single joint probability distribution over
future states of the world. Such distributions often reflect Bayesian (i.e., subjective)
rather than frequentist probability judgments. The framework then uses optimality
criteria to rank alternative options. RDM, in contrast, regards uncertainties as deep
and thus either eschews probabilities or uses sets of alternative distributions drawing
on the concepts of imprecise probabilities (Walley 1991). RDMuses decision criteria
based on robustness rather than optimality.

DA based on expected utility can be usefully termed “agree-on-assumptions”
(Kalra et al. 2014) or “predict-then-act” (Lempert et al. 2004) approaches, because
they begin by seeking agreement regarding the likelihood of future states of the world
and then use this agreement to provide a prescriptive ranking of policy alternatives.
In contrast, RDM and many of the approaches described in this book follow an
“agree-on-decisions” approach, which inverts these steps.3 They begin with one or
more strategies under consideration, use models and data to stress test the strategies
over a wide range of plausible paths into the future, and then use the information in
the resulting database of runs to characterize vulnerabilities of the proposed strate-
gies and to identify and evaluate potential response to those vulnerabilities. Such
approaches seek to expand the range of futures and alternatives considered and,
rather than provide a prescriptive ranking of options, often seek to illuminate trade-
offs among not-unreasonable choices. As summarized by Helgeson (2018), agree-
on-assumptions approaches generally focus on identifying a normative best choice
among a fixed menu of decision alternatives, while agree-on-decision approaches
focus on supporting the search for an appropriate framing of complex decisions.

Assumption-Based Planning

As part of an “agree-on-decisions” approach, RDM draws on the related concepts
of stress testing and red teaming. The former, which derives from engineering and
finance (Borio et al. 2014), subjects a system to deliberately intense testing to deter-
mine its breaking points. The latter, often associated with best practice in US and
other militaries’ planning (Zenko 2015), involves forming an independent group to
identify means to defeat an organization’s plans. Both stress testing and red teaming
aim to reduce the deleterious effects of over-confidence in existing systems and plans
by improving understanding of how and why they may fail (Lempert 2007).

2These attributes follow from a broadly consequentialist, as opposed to rule-based (deontological)
view of decisionmaking (March 1994).
3The DMDU literature often uses different names to describe this inverted analytic process, includ-
ing “backwards analysis” (Lempert et al. 2013a), “bottom up” (Ghile et al. 2014), “context first”
(Ranger et al. 2010), and “assess risk of policy” (Lempert et al. 2004; Carter et al. 2007; Dessai and
Hulme 2007).
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In particular, RDMdraws on a specific form of this concept, a methodology called
Assumption-Based Planning (ABP) (Dewar et al. 1993, 2002). Originally developed
to help the US Army adjust its plans in the aftermath of the Cold War, ABP begins
with a written version of an organization’s plans and then identifies load-bearing
assumptions—that is, the explicit and implicit assumptions made while developing
that plan that, if wrong, would cause the plan to fail. Planners can then judge which
of these load-bearing assumptions are also vulnerable—that is, could potentially fail
during the lifetime of the plan.

ABP links the identification of vulnerable, load-bearing assumptions to a simple
framework for adaptive planning that is often used in RDM analyses. Essential com-
ponents of an adaptive strategy include a planned sequence of actions, the potential
to gain new information that might signal a need to change this planned sequence,
and actions to be taken in response to this new information, i.e., contingent actions
(Walker et al. 2001). After identifying the vulnerable, load-bearing assumptions,
ABP considers shaping actions (those designed to make the assumptions less likely
to fail), hedging actions (those that can be taken if assumptions begin to fail), and
signposts (trends and events to monitor in order to detect whether any assumptions
are failing).

Scenarios

RDM draws from scenario analysis the concept of a multiplicity of plausible futures
as a means to characterize and communicate deep uncertainty (Lempert et al. 2003).
Scenarios represent internally consistent descriptions of future events that often come
in sets of two or more. Most simply, scenarios are projected futures that claim less
confidence than probabilistic forecasts. More generally, a set of scenarios often seeks
to represent different ways of looking at the world without an explicit ranking of
relative likelihood (Wack 1985).

Scenarios are often developed and used in deliberative processes with stake-
holders. Deemphasizing probabilistic ranking—focusing on a sense of possibility,
rather than probability—helps stakeholders expand the range of futures they con-
sider, allowing them to contemplate their choices from a wider range of views and
vantages, thus helping participants consider uncomfortable or unexpected futures
(Schoemaker 1993; Gong et al. 2017). The sense of possibility rather than probabil-
ity can also help scenarios to communicate a wide range of futures to audiences not
necessarily eager to have their vantage expanded. By representing different visions
of the future without privileging among them, scenarios can offer a comfortable
entry into an analysis. Each person can find an initially resonant scenario before
contemplating ones that they find more dissonant.

RDM draws from scenario analysis the concept of organizing information about
the future into a small number of distinct cases that help people engage with, explore,
and communicate deep uncertainty. In particular, the Intuitive Logics school of sce-
nario analysis (Schwartz 1996) uses qualitative methods to craft a small number
of scenarios, distinguished by a small number of key uncertain determinants that
differentiate alternative decision-relevant paths into the future. As described below,
RDM uses quantitative “Scenario Discovery” algorithms to pursue the same ends.
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The resulting scenarios summarize the results of the ABP-style stress tests and can
link to the development of adaptive strategies (Groves and Lempert 2007; Groves
et al. 2014). Note thatwhile the scenario literature traditionally distinguishes between
probabilistic and non-probabilistic treatments, RDM often employs a third alterna-
tive—entertaining multiple views about the likelihood of the scenarios.

The scenario literature also describes a process for seeking robust strategies that
include choosing a set of scenarios that include the most important uncertainties
facing the users and then identifying strategies that perform well across all of them
(van der Heijden 1996). This process provides an animating idea for RDM.

Exploratory Modeling

RDM integrates these concepts—DA, ABP, and scenarios—through Exploratory
Modeling (EM). Bankes (1993) encapsulated the 1980s RAND debates on useful
and predictive models by dividing computer simulations into two types: (1) consol-
idative models, which gather all known facts together into a single package that, once
validated, can serve as a surrogate for the real world, and (2) exploratory models,
which map a wide range of assumptions onto their consequences without privileging
one set of assumptions over another. Exploratory models are useful when no single
model can be validated because of missing data, inadequate or competing theories,
or an irreducibly uncertain future.

Running a model many times is not profound. But as perhaps its key insight, EM
notes that when used with an appropriate experimental design—that is, appropriate
questions and a well-chosen set of cases designed to address those questions—the
large database of results generated fromnon-predictive, exploratorymodels canprove
surprisingly useful toward informing policy choices. Bankes describes several types
of questions one may address with EM, including hypothesis generation, reasoning
from special cases, and assessing properties of the entire ensemble (Weaver et al.
2013 and Box 2.1). RDM uses them all, but focuses in particular on robustness as a
property of the entire ensemble. That is, identifying and evaluating robust strategies
become key questions one can inform with EM.

EM provides RDM with a quantitative framework for stress testing and scenario
analysis. While consolidative models most usefully support deductive reasoning,
exploratory models serve best to support inductive reasoning—an iterative cycle of
question and response. As described in the process section below (Sect. 2.3), RDM
also aims to support a decision-analytic human-machine collaboration that draws
upon what each partner does best.

RDM also exploits another EM advantage: the focus on the simple computa-
tional task of running models numerous times in the forward direction. This facili-
tates exploration of futures and strategies by reducing the requirements for analytic
tractability on the models used in the analysis, relative to approaches that rely on
optimization or Dynamic Programming. In addition, EM enables truly global sen-
sitivity explorations, since it privileges no base case or single future as an anchor
point.
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Box 2.1: Key Elements of RDM
RDMmeets its goals by proceeding in multiple iterations, as humans and com-
puters alternatively test each other’s conclusions about futures and strategies.
Four key elements govern these interactions (Lempert et al. 2003):
• Consider a multiplicity of plausible futures. The ensemble of futures should
be as diverse as possible to adequately stress test proposed policies. The
ensemble can also facilitate group processes by including futures that cor-
respond to different groups’ worldviews.

• Seek robust, rather than optimal strategies. Robust strategies perform well,
compared to the alternatives, over a wide range of plausible futures.

• Employ adaptive strategies to achieve robustness. Adaptive strategies are
designed to evolve over time in response to new information. Generally, such
strategies reflect decisionmaking rules and in practice are often organized
around near-term actions, signposts to monitor, and contingency actions to
take in response to those signposts.

• Use the computer to facilitate human deliberation over explorations, options,
and tradeoffs, not as a device for recommending a particular ordering of
strategies.

2.3 RDM Process

RDM explicitly follows a learning process called “deliberation with analysis” in
which parties to a decision deliberate on their objectives and options; analysts gener-
ate decision-relevant information using systemmodels; and the parties to the decision
revisit their objectives, options, and problem framing influenced by this quantita-
tive information (NRC 2009). Among learning processes, deliberation with analysis
provesmost appropriate for situationswith diverse decisionmakerswho face a chang-
ing decision environment andwhose goals can evolve as they collaborate with others.
Deliberation with analysis also supports continuous learning based on indicators and
monitoring (NRC 2009, p. 74), a process important to the literature on adaptive
policymaking (Swanson and Bhadwal 2009; Walker et al. 2010).

Step 1 As shown in Fig. 2.1, the RDM process starts with a decision framing
exercise in which stakeholders define the key factors in the analysis: the decision-
makers’ objectives and criteria; the alternative actions they can take to pursue those
objectives; the uncertainties that may affect the connection between actions and con-
sequences; and the relationships, often instantiated in computer simulation models,
between actions, uncertainties, and objectives. This information is often organized
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Fig. 2.1 Steps in an RDM
analysis. Source Lempert
et al. (2013a), with earlier
versions in Lempert and
Groves (2010); Lempert and
Kalra (2011)

Decision-
Relevant 
Scenarios

1) Decision
Framing

2) Evaluate 
Strategy 

Across Futures

3) Vulnerability
Analysis

4) Tradeoff
Analysis

Robust 
Strategies

5) New 
Futures and 
Strategies

in a 2 × 2 matrix called “XLRM” (Lempert et al. 2003), for exogenous uncertainties
(X), policy levers (L), relationships (R), and measures of performance (M).4

Step 2As an “agree-on-decision” approach, RDM next uses simulation models to
evaluate proposed strategies in each of many plausible paths into the future, which
generate a large database of simulation model results. The proposed strategies can
derive from a variety of sources. In some cases, an RDManalysis might start with one
or more specific strategies drawn from the relevant public debate. For instance, an
RDM analysis for a water agency might begin with that agency’s proposed plan for
meeting its supply requirements (Groves et al. 2014) or water quality requirements
(Fischbach et al. 2015). In other cases, optimization routines for one ormore expected
futures or decision criteriamight yield the initial proposed strategies (Hall et al. 2012).
Additionally, an analysis might begin with a wide span of simple strategies covering
the logical spectrum and then refine, select, and modify to yield a small group of
more sophisticated alternatives (Popper et al. 2009). Often, such as in the example
in Sect. 2.5, an application uses a combination of these approaches.

Step 3 Analysts and decisionmakers next use visualization and data analytics on
these databases to explore for and characterize vulnerabilities. Commonly, RDM
analyses use statistical Scenario Discovery (SD) algorithms (see below) to identify
and display for users the key factors that best distinguish futures in which proposed
strategies meet or miss their goals. These clusters of futures are usefully considered
policy-relevant scenarios that illuminate the vulnerabilities of the proposed policies.
Because these scenarios are clearly, reproducibly, and unambiguously linked to a
policy stress test, they can avoid the problems of bias and arbitrariness that sometimes
afflict more qualitative scenario exercises (Lempert 2013; Parker et al. 2015).

Step 4 Analysts and decisionmakers may use these scenarios to display and eval-
uate the tradeoffs among strategies. For instance, one can plot the performance of
one or more strategies as a function of the likelihood of the policy-relevant scenarios

4Chapter 1 (see Fig. 1.2) uses the acronym XPROW for external forces, policies, relationships,
outcomes, and weights.
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Deliberation with Analysis Human Machine Collaboration

Fig. 2.2 Two views of RDM as a deliberative process. Source for right panel, Lempert et al. (2003)

(e.g., see Fig. 2.2) to suggest the judgments about the future implied by choosing
one strategy over another. Other analyses plot multi-objective tradeoff curves—for
instance comparing reliability and cost (Groves et al. 2012)—for each of the policy-
relevant scenarios to help decisionmakers decide how to best balance among their
competing objectives.

Step 5 Analysts and decisionmakers could then use the scenarios and tradeoff
analyses to identify and evaluate potentially more robust strategies—ones that pro-
vide better tradeoffs than the existing alternatives. These new alternatives gener-
ally incorporate additional policy levers, often the components of adaptive decision
strategies: short-term actions, signposts, and contingent actions to be taken if the pre-
designated signpost signals are observed. In some analyses, such adaptive strategies
are crafted using expert judgment (e.g., see Lempert et al. 1996, 2000, 2003; Popper
et al. 2009; Lempert and Groves 2010). In other analyses, optimization algorithms
may help suggest the best combination of near-term actions, contingent actions, and
signposts for the new adaptive strategies (Lempert et al. 2006; Lempert and Collins
2007; Kasprzyk et al. 2013; Herman et al. 2014). (This RDM step provides a natural
point of connection with the Dynamic Adaptive Policy Pathways (DAPP) methods
in Chaps. 4 and 9.)

RDM uses both absolute and relative performance measures to compare strate-
gies in the vulnerability and tradeoff analyses. Absolute performance measures are
useful when decisionmakers are focused on one or more outcomes, such as profit,
energy produced, or lives saved. Absolute performance measures are also useful
when decisionmakers are focused on some invariant standard—for instance, a regu-
latory requirement on reliability or environmental quality, a required threshold for an
economic rate of return, or a requirement that benefits exceed costs. Relative perfor-
mancemeasures are often useful when uncertainties create awide range of outcomes,
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so decisionmakers seek strategies that perform well compared to alternatives over a
wide range of futures. RDM often uses regret to represent relative performance.

At each of the RDM steps, information produced may suggest a re-framing of the
decision challenge. The process produces key deliverables including (1) the scenarios
that illuminate the vulnerabilities of the strategies, and (2) potential robust strategies
and the tradeoffs among them.

The left panel of Fig. 2.2 shows the RDM steps in support of a process of delib-
eration with analysis. Stakeholders begin by deliberating over the initial decision
framing. In the vulnerability and tradeoff analysis steps, stakeholders and analysts
produce decision-relevant information products. Using these products, stakeholders
deliberate over the choice of a robust strategy or return to problem framing, for
instance seeking new alternatives or stress testing a proposed strategy over a wider
range of futures. In practice, the process often moves back and forth between prob-
lem framing, generating the scenarios that illuminate vulnerabilities, identifying new
alternatives based on those scenarios, and conducting a tradeoff analysis among the
alternatives.

People teamingwith computers—each doingwhat they do best—aremore capable
than computers or people alone.5 RDMuses EM to support deliberationwith analysis
in a process of human/machine collaboration (Lempert et al. 2003). As shown in
the right panel of Fig. 2.2, people use their creativity and understanding to pose
questions or suggest solutions—for instance candidate robust strategies. Computers
consider numerous combinations of strategies and futures to help users address their
questions, search for initially unwelcome counter-examples to proposed solutions,
and help people find new candidate robust strategies to propose (Lempert et al. 2002;
Lempert and Popper 2005).

TheRDMsteps and deliberative processes are consistentwith others in theDMDU
literature. For instance, Multi-Objective RDM (MORDM) offers a similar iterative
process but with the major advance of more articulation of the step of generating
alternative strategies (Kasprzyk et al. 2013). The DAPP process (see Chaps. 4 and
9), also similarly, emphasizes monitoring and policy adjustment (Haasnoot et al.
2013). Among related literatures, many-objective visual analytics uses interactive
visualizations to support problem framing and re-framing (Kollat and Reed 2007;
Woodruff and Reed 2013), often with a posteriori elicitation of preferences (Maass
et al. 1962; Cohon and Marks 1975).

Overall, the RDMprocess aims to provide quantitative decision support that helps
meet the criteria for good decisions even in the presence of deep uncertainty and
the other attributes of wicked problems. The process encourages participants to be
explicit about their goals and consider the most important tradeoffs. The process
uses scenario concepts linked to the idea of policy stress tests, along with computer-
assisted exploration, to encourage and facilitate consideration of the decision from
a wide range of views. It helps recognize the legitimacy of different interests, val-
ues, and expectations about the future by using models as exploratory, rather than

5For example, Thompson (2013) notes that competent chess players teamed with computers can
defeat both grand masters without computers and computers without human assistants.
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predictive, tools within an evidence-based, multi-scenario, multi-objective decision-
making process.

Box 2.2: What is a Robust Strategy?
A robust strategy is one that performs well, compared to the alternatives, over
a wide range of plausible futures (Rosenhead et al. 1972; Lempert et al. 2003).
Other definitions exist, including trading some optimal performance for less
sensitivity to assumptions (Lempert and Collins 2007) and keeping options
open (Rosenhead 1990). Choosing a specific quantitative criterion to judge
robustness can, however, prove complicated because many robustness criteria
exist, and in some cases they can yield a different ordering of strategies (Giu-
liani and Castelletti 2016). No robustness criterion is best in all circumstances
and, as befits a decision support methodology designed to facilitate problem
framing, RDM often includes the choice of a robustness criterion as part of its
problem-framing step.

RDM and other deliberative “agree-on-decision” DMDU methods gen-
erally draw robustness criteria from the normative, “agree-on-assumptions”
decision-analytic literature. This literature identifies four traditional criteria
—called Wald, Hurwicz, Savage, and Laplace—for ranking choices without
well-defined probability distributions over future states of the world (Luce
and Raiffa 1957; Schneller and Sphicas 1983). These criteria envision a set
of future states of the world f j and a set of strategies si , each with a known
utility, ui j , in each state of the world. If the probability of each future, p j , were
known, the best strategy would be that which yielded the maximum expected
utility, Maxi

∑
j p j ui j . Lacking such probabilities, Wald selects the strategy

that gives the best worse case, MaxiMin j
(
ui j

)
, and Savage’s mini-max regret

selects the strategy with the least regret, that is, which deviates least from the
best one could choose with perfect information, MiniMax j

[
Maxi

(
ui j

) − ui j
]
.

Both Wald and Savage are conservative in that they attempt to avoid worst
cases. In contrast, Hurwicz interpolates between selecting the strategy with
the best case and the best worst case, Maxi

[
αMax j

(
ui j

)
+ (1 − α)Min j

(
ui j

)]
,

where α represents a level of confidence. Laplace’s criterion of insufficient
reason assumes equal weighting over all the futures and then selects the strat-
egy that maximizes expected utility. Starr (1962) subsequently proposed the
domain criterion, which selects the strategy that has highest utility in the most
futures.

The domain criterion comes closest to the idea of performing well over a
wide range of futures and can also facilitate tradeoff analyses using scenario-
themed visualizations. RDM analyses commonly use some form of the domain
criterion, although RDM (see Table 7.2 in Cervigni et al. 2015) and other
robustness approaches (e.g., Hansen and Sargent 2008) have also employed
Savage’s mini-max regret. Traditionally, the domain criterion uses an absolute
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performance measure (e.g., the utility ui j , or a benefit–cost ratio (Lempert
2014)), as its argument. RDM often extends the criterion by also using as
arguments relative performance measures, e.g., the regret Maxi

(
ui j

) − ui j , or
satisficing criteria for both absolute and relative performance measures. For
instance, employed with a regret measure and satisficing criterion, the domain
criterion might select the strategy that has a regret below some threshold value
over the widest range of futures (Lempert and Collins 2007). In contrast to a
strict application of Savage’s mini-max regret, such a criterion would retain
the comparative quality of the regret measure without undue attention to worst
cases.

RDM also uses the domain criterion over the space of probabilities rather
than the space of futures; that is, the analysis considers a set of plausible
probability distributions over the futures (Walley 1991), and the domain cri-
terion selects the strategy with the highest expected utility or expected regret
over the largest number of distributions in the set (see, e.g., Fig. 2.3 in this
chapter). RDM often uses the domain criterion, or other robustness decision
criteria, to focus on tradeoffs rather than on a normative ranking of strategies.
For instance, Lempert and Collins (2007) employ a definition of robustness as
trading some optimal performance for less sensitivity to assumptions, which it
implements with a domain criterion using expected regret as its argument. The
study displays the choice of a robust strategy as a function of the confidence
one places in the best-estimate distribution. The Combined Strategy discussed
in Sect. 2.5.3 is robust by both a domain criterion and by mini-max regret.

2.4 Tools

The concepts underlying RDM—scenario thinking, robustness decision criteria,
stress testing proposed plans, and the use of exploratory models—have long pedi-
grees. But over the last decade, new computer and analytic capabilities have made
it possible to combine them in practical decision analyses. In particular, RDM often
relies on Scenario Discovery and visualization, robust multi-objective optimization,
integrated packages for EM, and high-performance computing.

SD algorithms often implement the RDM vulnerability analysis step (Step 3) in
Fig. 2.1. SD begins with a large database of runs in which each model run repre-
sents the performance of a strategy in one future. The SD cluster-finding algorithms
then offer concise descriptions of those combinations of future conditions that best
distinguish the cases in which the implementation plan does or does not meet its
goals. The requisite classification algorithms—often Patient Rule Induction Method
(PRIM) (Friedman and Fisher 1999) or Classification and Regression Tree (CART)
(Breiman et al. 1984), combined with a principal component analysis (Dalal et al.
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2013)—seek to balance between the competing goals of simplicity and accuracy in
order to describe sets of strategy-stressing futures as concise, understandable, and
decision-relevant scenarios (Groves and Lempert 2007; Bryant and Lempert 2010).
Software to implement the PRIM algorithm is available, both in stand-alone rou-
tines6 and embedded in the EM software packages described below. Overall, SD
replicates analytically the ideas of qualitative Intuitive Logics scenario analysis and
provides information products that can prove compelling in stakeholder deliberations
(Lempert 2013). RDM analyses also use computer visualization of the database of
runs to support the vulnerability and tradeoff analyses. Tableau, a commercially
available platform, has proven particularly useful in much RDM work (Groves et al.
2013; Cervigni et al. 2015).

The “new futures and strategies” step (Step 5) can employ a variety of methods.
While some RDM analyses use only expert judgment to craft responses to potential
vulnerabilities (e.g., Lempert and Groves 2010), many applications use some multi-
objective robust optimization tool. Some such applications have used constrained
optimization to trace out a range of potentially robust solutions, both in single objec-
tive (Lempert and Collins 2007) and multi-objective (Groves et al. 2012) cases. The
latter instance involved a planning tool that allowed analysts to trace the Pareto
optimal tradeoff curves in each scenario for any two objectives using constrained
optimizations over the other objectives (Groves et al. 2012), and has been widely
used. Other applications, such as the Colorado Basin Supply and Demand Study
(Groves et al. 2013; also see Chap. 7), run large portfolio optimizations for many
futures; identify the individual actions that occur in the optimal set for most, some,
and few of the futures; and use this information to craft adaptive strategies that begin
with the actions that occur in most of the futures’ optimal sets, and implement the
others depending on which future comes to pass (Groves et al. 2013; Bloom 2015).
MORDM tools provide a more general solution, using evolutionary algorithms to
identify the regions of a Pareto surface over many objectives that are most robust
to uncertainty (Kasprzyk et al. 2013). MORDM has been used to identify adaptive
strategies modeled as controllers in the control theory sense (Quinn et al. 2017),
through a process called direct policy search.

While many RDM analyses use stand-alone software to generate and analyze
large numbers of model runs, several integrated EM packages exist that can greatly
facilitate such analysis. These packages generally consider a simulation model as
a mapping of inputs to outputs and then provide connectivity between the model
and various analysis and visualization tools. For instance, EM packages allow the
user to specify an experimental design over the inputs; run the resulting cases on
one or more processors; store the results in a database; use a variety of visualization
routines to examine the data; run SD and other statistical algorithms on the data; and
use robust optimization routines to identify new, potentially more robust strategies.
While they require study and practice to use, EM software can make it much eas-
ier to move seamlessly through the steps of an RDM analysis. Computer-Assisted
Reasoning system (CARs) was the earliest such software package (Bankes et al.

6https://cran.r-project.org/web/packages/sdtoolkit/index.html.

https://cran.r-project.org/web/packages/sdtoolkit/index.html
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2001). More recently, new open-source platforms have become available, such as
the Exploratory Modeling and Analysis Workbench,7 Open MORDM (Hadka et al.
2015), and Rhodium.8

While many RDM analyses may be conveniently run on a laptop or desktop com-
puter (e.g., Lempert et al. 2013b), recent studies have also used high-performance
computation—either large-scale cluster computing (Zeff et al. 2014; Groves et al.
2016) or cloud-based computer services (Isley 2014; Cervigni et al. 2015)—to
quickly and inexpensively conduct a very large number of runs.

2.5 Example: Carrots and Sticks for New Technology

An early RDM application provides an ideal example of the approach, the types
of tools used, and how EM can draw together concepts from decision analysis,
scenarios, and ABP. The example, called “carrots and sticks for new technology,”
focused on determining the most robust combination of two policy instruments—-
carbon prices and technology subsidies—to reduce climate-altering greenhouse gas
emissions (Robalino and Lempert 2000; Lempert 2002). We describe this study
using the generic DMDU framework presented in Sect. 1.5 (the major subheadings
below) linked to the relevant RDM steps shown in Fig. 2.1.

2.5.1 Frame the Analysis

Formulate Question (RDM Step 1)

It is well-understood that an economically ideal greenhouse gas emission reduc-
tion policy should include an economy-wide carbon price implemented through
mechanisms such as a carbon tax or a cap-and-trade system. This early RDM study
addressed the question of whether and under what conditions technology incen-
tives, such as technology-specific tax credits or subsidies, also prove necessary and
important as part of a greenhouse gas reduction strategy. Many national and regional
jurisdictions worldwide employ such incentives in their climate policies because
they prove politically popular and have a compelling logic, if for no other rea-
son than significant technology innovation will prove crucial to limiting climate
change. But technology incentives have a mixed record of success (Cohen and Noll
2002), and sometimes link to larger debates about the appropriate role of government
(Wolf 1993). Standard economic analysis proves a poor platform to adjudicate such
questions, because the extent to which technology incentives prove economically

7http://simulation.tbm.tudelft.nl/ema-workbench/contents.html.
8https://github.com/Project-Platypus/Rhodium/wiki/Philosophy.

https://doi.org/10.1007/978-3-030-05252-2_1
http://simulation.tbm.tudelft.nl/ema-workbench/contents.html
https://github.com/Project-Platypus/Rhodium/wiki/Philosophy
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important may depend on coordination failures that occur in the presence of increas-
ing returns to scale, imperfect information, and heterogeneous preferences—deeply
uncertain factors not well-represented in standard economic models. Addressing the
technology incentive question with RDM thus proved useful due to this deep uncer-
tainty and because people’s views on technology incentives can be strongly affected
by their worldviews.

Identify Alternatives (RDM Step 1)

The study was organized as a head-to-head comparison between strategies incorpo-
rating two types of “policy instruments” or “actions”: an economy-wide carbon tax
and a technology price subsidy for low-carbon-emitting technologies.We considered
four combinations: (1) neither taxes nor subsidies (No Action), (2) tax only (Taxes
Only), (3) subsidies only (Subsidies Only), and (4) a combination of both taxes and
subsidies (Combined). As described below, both the tax and subsidy were configured
as adaptive strategies designed to evolve over time in response to new information.

Specify Objectives (RDM Step 1)

This study compared the strategies using two output measures: the present value of
global economic output (pvGDP) and the mid-twenty-first-century level of green-
house gas emissions. We focused on pvGDP to facilitate comparison of this work
with other analyses in the climate change policy literature using more standard eco-
nomic formulations. As described below, we calculated the regret for each strategy
in each future and used a domain criterion for robustness (see Box 2.2), thus looking
for strategies with low regret over a wide range of plausible futures.

Specify System Structure (RDM Step 1)

To compare these adaptive strategies, we employed an agent-based model of tech-
nology diffusion, linked to a simplemacromodel of economic growth that focused on
the social and economic factors that influence how economic actors choose to adopt,
or not to adopt, new emission-reducing technologies. The agent-based representation
proved useful, because it conveniently represents key factors potentially important
to technology diffusion, such as the heterogeneity of technology preferences among
economic actors and the flows of imperfect information that influence their decisions.
Considering this tool as an exploratory, rather than predictive, model proved useful,
because it allowed the study to make concrete and specific comparisons of price- and
subsidy-based strategies even though, as described below, available theory and data
allowed the model’s key outputs to vary by over an order of magnitude.

The model was rooted in the microeconomic understanding of the process of
technology diffusion (Davies 1979). Each agent in our model represents a producer
of a composite good, aggregated as total GDP, using energy as one key input. Each
period the agents may switch their choice of energy-generation technology, choosing
among high-, medium-, or low-emitting options. Agents choose technology to max-
imize their economic utility. The agents estimate utility based on their expectations
regarding each technology’s cost and performance. Costs may or may not decline
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significantly due to increasing returns to scale as more agents choose to adopt. The
agents have imperfect information and current and future technology cost and per-
formance, but can gain information based on their own experience, if any, and by
querying other agents who have used the technology. Thus, the model’s technology
diffusion rates depend reflexively on themselves, since by adopting a technology each
agent generates new information that may influence the adoption decisions of other
potential users. The model also used simple, standard, but deeply uncertain relation-
ships from the literature on the connections between greenhouse gas emissions and
the economic impacts due to climate change (Nordhaus 1994).

2.5.2 Perform Exploratory Uncertainty Analysis

Specify Uncertainties or Disagreements (RDM Step 2)

The agent-based model had thirty input parameters representing the deeply uncertain
factors, including the macroeconomic effects of potentially distortionary taxes and
subsidies on economic growth, the microeconomic preferences that agents use to
make technology adoption decisions, the future cost and performance of high- (e.g.,
coal), low- (e.g., gas), and non-emitting (e.g., solar) technologies, the way infor-
mation about new technologies flows through agent networks, and the impacts of
climate change.

We employed three sources of information to constrain our EM. First, the agent-
based model embodied the theoretical economic understanding of technology dif-
fusion. Second, we drew plausible ranges for each individual parameter using esti-
mates from themicroeconomics literature. Third, we required themodel to reproduce
macroeconomic data regarding the last fifty years of economic growth and market
shares for different types of energy technology. We also constrained future technol-
ogy diffusion rates in the model to be no faster than the fastest such rates observed
in the past.

Consistent with these constraints, the model nonetheless was able to generate a
vast range of plausible futures. To choose a representative sample of futures from this
vast set, the study launched a genetic algorithm over the model inputs, searching for
the most diverse set of model inputs consistent with the theoretical, macroeconomic,
and microeconomic constraints (Miller 1998). This process yielded an ensemble of
1,611 plausible futures, with each future characterized by a specific set of values for
each of the thirty uncertain model input parameters. Each member of the ensemble
reproduced the observed history from 1950 to 2000, but differed by up to an order
of magnitude in projected mid-twenty-first-century emissions.

Evaluate Strategies Against Futures (RDM Step 2)

The study represented its carbon tax and technology subsidies as adaptive strategies
using a single set of parameters for each to describe their initial conditions, and how
they would evolve over time in response to new information.
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As with many carbon price proposals, the study’s carbon tax would start with
an initial price per ton of CO2 at time zero and rise at a fixed annual rate, subject
to two conditions meant to reflect political constraints. First, we assumed that the
government would not let the tax rise faster than the increase in the observed social
cost of carbon. Second, we assumed that if the economy dropped into recession
(defined as a global growth rate below some threshold), the government would drop
the carbon tax back to its original level. Three parameters defined the tax strategy: the
initial tax rate, the annual rate of increase, and the minimum threshold for economic
growth required not to repeal the tax.

The study’s technology subsidy reduces the cost to users of a technology to a
fixed percentage of its unsubsidized cost. The subsidy stays in effect until the pol-
icy either succeeds in launching the technology (defined as its market share rising
above some threshold value) or the policy fails (defined as the market share failing
to reach a minimum threshold after a certain number of years). Meeting either of
these conditions permanently terminates the subsidy. Four parameters defined the
subsidy strategy: the subsidy level, the market share defining success, the market
share defining failure, and the number of years before the subsidy can be judged a
failure.

The study chose a single set of parameter values to define the tax and subsidy
policies, each set chosen to optimize the pvGDP for the future represented by the
average value for each of the thirty model parameters. The results of the study were
relatively insensitive to this simplification.

We used the agent-based model to calculate the pvGDP and mid-century green-
house gas emissions for each strategy in each of the 1,611 plausible futures. This
ensemble of runsmade it immediately clear that the Taxes Only andCombined strate-
gies consistently perform better than the No Action and Subsidies Only strategies.
The remainder of the analysis thus focused on the first two.

2.5.3 Choose Initial Actions and Contingent Actions

Illustrate Tradeoffs (RDM Steps 3 and 4 )

Lacking (not-yet-developed) SD algorithms and faced with too many dimensions
of uncertainty for an exhaustive search, the study used importance sampling to find
the five uncertain input parameters most strongly correlated with mid-century GHG
emissions. Four of these key uncertainties related to the potential for coordination
failures to slow technology diffusion—the rate of cost reductions for non-emitting
technologies caused by increasing returns to scale, the rate at which agents learn from
one another about the performance of new technologies, the agents’ risk aversion, and
the agents’ price-performance preferences for new technologies—and one related to
the damages from climate change.

We then examined the regret in pvGDP across the cases for the Taxes Only and
Combined strategies as a function of all ten two-dimensional combinations of the
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five key uncertainties.9 Each visualization told a similar story—that the Combined
strategy cases had lower mean and variability in pvGDP regret than those for Taxes
Only except in the corner of the uncertainty space with low potential for coordination
failures and/or low impacts from climate change.

This analysis provides the study’s basic comparison among the strategies: Taxes
Only performs best when the potential for coordination failures and the impacts from
climate change are small, and Combined performs best otherwise. Both strategies
perform better than No Action or Subsidies Only.

Select and Plan for Adaptation (RDM Step 4)

To help decisionmakers understand the conditions under which the Taxes Only and
Combined strategies would each be favored over the other, we first collapsed the
ten visualizations into a single two-dimensional graph by combining all four key
uncertain parameters relating to potential coordination failures into a single variable.
Figure 2.3 shows the sets of expectations in which pvGDP for the Taxes Only strategy
exceeds that of Combined, and vice versa, as a function of the probability assigned
to high rather than low values of the four uncertain parameters related to potential
coordination failures, which we labeled “probability of a non-classical world,” and
“probability of high damages” due to climate change. The region dominated byCom-
bined is larger than that of Taxes Only for two reasons. First, Combined dominates
Taxes Only over larger regions of the state space. Second, in the regions of the uncer-
tainty space where Taxes Only is the better strategy, Combined’s regret is relatively
small, while in the regions whereCombined is better, Taxes Only’s regret is relatively
large. Existing scientific understanding proves insufficient to define with certainty
where the future lies in Fig. 2.3. Different parties to the decision may have different
views. But the boundary between the two regions is consistent with increasing returns
to scale much smaller than those observed for some energy technologies—such as
natural gas turbines, wind, and solar—and the middle of the figure is consistent
with relatively small levels of risk aversion, learning rates, and heterogeneity of
preferences compared to those seen in various literatures. These results suggest that
a combination of price instruments and technology subsidies may prove the most
robust strategy over a wide range of plausible futures.

Implementation, Monitoring, and Communication

This study addressed a high-level question of policy architecture—the best mix of
policy instruments for decarbonization. While the study did not provide detailed
implementation plans, it does suggest how a national or state/provincial government
might pursue the study’s recommendations. The study envisions policymakers choos-
ing a strategy which includes the rules by which the initial actions will be adapted
over time (Swanson et al. 2007). The carbon price, presumably set by the legislature,
would follow the social cost of carbon as periodically updated by executive agencies
(National Academies of Sciences 2016) whenever the economywas not in recession.

9Ten combinations because
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Fig. 2.3 Scenario map
comparing “Taxes Only” and
“Combined” strategies
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The legislature would also set the technology subsidy and terminate it when the sub-
sidized technologies either succeeded or failed based on market share data gathered
by executive agencies. The study did not examine pre-commitment issues—that is,
how the current legislature could ensure that future legislatures would in fact follow
the adaptive strategy. These interesting issues of political economy have, however,
been recently explored using RDM methods (Isley et al. 2015).

2.5.4 Iterate and Re-Examine (RDM Steps 2, 3, and 5)

The study’s results are based on an examination of only six of the 30 dimensions of
uncertainty in the model, representing a small subset of the full range of plausible
futures. As a key final step, we tested the policy recommendations by launching
a genetic search algorithm across the previously unexamined dimensions looking
for additional futures that would provide counter-examples to our conclusions. This
process represents the computer feedback loop in the right panel of Fig. 2.2. The
genetic algorithm ran for most of the time the authors spent writing their manuscript
and found no plausible counter-examples.

Overall, this study suggests that if decisionmakers hold even modest expecta-
tions that market imperfections are likely to inhibit the diffusion of new, emissions-
reducing technologies or that the impacts of climate change will turn out to be seri-
ous, then strategies combining both carbon taxes and technology incentives may be
a promising component of a robust strategy for reducing greenhouse gas emissions.
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2.6 Recent Advances and Future Challenges

The “carrots and sticks for new technology” example of Sect. 2.5 includes all the
steps of an RDM analysis shown in Fig. 2.1. It used optimization algorithms to define
its alternative, adaptive strategies, and generated its futures using genetic algorithms
to perform what has more recently been called scenario diversity analysis (Carlsen
et al. 2016a, b). The study employed the process of human-machine collaboration
shown in Fig. 2.2, in particular in the computer search for counter-examples to the
human-derived patterns that constitute its policy conclusions.

Since this early example, the methods and tools for MORDM analyses have
approached maturity, now reaching the point at which one can describe with some
specificity how to conduct multi-scenario, MORDM for many wicked problems. For
instance, a recent study, described in detail in Chap. 7, used RDMon a topic similar to
the “carrots and sticks” example—examining how international finance institutions
such as the Green Climate Fund (GCF) can best craft long-term investment strategies
to speed decarbonization in the face of deep technological and climate uncertainty
(Molina Perez 2016). This more recent study was made possible by powerful new
SD algorithms and visualization tools.

Recent work for four North Carolina cities illustrates the power of MORDM, a
combination of RDM with new evolutionary algorithms for multi-objective robust
optimization (Herman et al. 2014, 2016; Zeff et al. 2014, 2016). The study helped the
neighboring cities of Raleigh, Durham, Chapel Hill, and Cary link their short-term
operational and long-term investment water plans by shifting the former from rule-
based procedures to new dynamic risk-of-failure triggers, and the latter from static to
adaptive policy pathways. The study also helped the four independent cities coordi-
nate their plans in the presence of different objectives and deep uncertainty. Linking
such MORDM with the Dynamic Adaptive Policy Pathways (DAPP) approach of
Chaps. 4 and 9 represents an exciting direction for the DMDU community.

Recent work for the US Bureau of Reclamation and the parties to the Colorado
Compact, also described in Chap. 7, showcases RDM’s ability to facilitate delibera-
tion with analysis, helping contesting parties to agree on the vulnerabilities they face
and adaptive strategies for addressing them (Groves et al. 2013; Bloom 2015).

Some important technical hurdles still remain before these capabilities fully
mature. First, an approach is needed that provides full Pareto satisficing surfaces.
Current MORDM analyses identify Pareto optimal surfaces for best-estimate cases
and measure the robustness of alternative strategies, represented by different regions
on the Pareto surface, to the deep uncertainties (Kasprzyk et al. 2013). In the future,
MORDM could produce sets of strategies chosen specifically because their perfor-
mance across multiple objectives was largely insensitive to the deep uncertainties.
Recent work has taken steps toward providing such Pareto satisficing surfaces (Wat-
son and Kasprzyk 2017), but more needs to be done. Furthermore, despite the avail-
ability of ubiquitous computation on the cloud, and through high-performance com-
putation facilities, it still remains difficult in many cases to conduct a full MORDM
analysis using realistic system models, which would require running many thou-
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sands of cases to perform the multi-objective robust optimization over each of many
thousands of scenarios. Research is needed on what we might call adaptive sampling
approaches to help navigate more efficiently through the set of needed runs. In addi-
tion, research could usefully provide guidance on when to use alternative robustness
criteria, as well as the conditions under which RDM’s iterative analytic process is
guaranteed to converge independent of the initial problem framing, or when path
dependence may lead analyses to different answers (Kwakkel et al. 2016).

Finally, the cost of developing the needed systemmodels often puts RDManalyses
out of reach for many decisionmakers. Research on “RDM-lite”—means to quickly
develop such models through approaches such as expert elicitation and participatory
modeling—could greatly increase the use of these methods (see, e.g., O’Mahony et.
al. 2018).

Evaluation plays a crucial role in the design and use of any successful decision
support system (NRC 2009; Pidgeon and Fischhoff 2011; Wong-Parodi et al. 2016).
Some evaluations of RDM tools, visualizations, and processes exist, both in the lab-
oratory (Budescu et al. 2013; Parker et al. 2015; Gong et al. 2017) and through field
experiments (Groves et al. 2008). Recent work has proposed frameworks for evalu-
ating the impacts of RDM-based decision support in urban environments (Knopman
and Lempert 2016). But much more such evaluation work is required to improve the
practical application of RDM decision support (Bartels et. al., forthcoming).

More broadly, as DMDU methods reach technical maturity, they offer the oppor-
tunity to reshape the relationship between quantitative decision analytics and the way
in which organizations use this information with their internal and external audiences
andprocesses. Thepotential for such reshapingpresents a richmenuof research needs
to understand the organizational, anthropological, political, and ethical implications.

As one example, the concept of risk governance embeds risk management, which
often has a narrow, more technocratic perspective, in a broader context that considers
institutions, rules conventions, processes, and mechanisms through which humans
acting as individuals and groups make choices affecting risk (Renn 2008). Recent
work has explored how to embed RDM methods and tools in a risk governance
framework (Knopman and Lempert 2016). For instance, RDM can help decision-
makers working within a multi-agent and multi-jurisdictional system organize their
strategies into “tiers of transformation,” which derives from the ideas of triple-loop
learning. Lower tiers represent actions the decisionmakers can address on their own,
while the outer tiers represent large-scale, transformative system changes that only
the decisionmakers can help to catalyze. Any understanding of how to implement
and use such capabilities, and the extent to which they would prove useful, remains
nascent.

Future work can also usefully situate the types of moral reasoning and social
choice embodied in alternative approaches to decision support. In his treatise, the
Idea of Justice, Amartya Sen (2009) describes two classes of moral reasoning—the
transcendental and the relational. The former, represented by Sen’s teacher John
Rawls (1971), seeks to inform ethical societal choices by first envisioning a common
vision of a perfectly just world. People can then use that vision to inform their near-
term choices. The latter, Sen’s preferred alternative, rests on the assumption that
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irreducible uncertainty about the consequences of our actions, and a diversity of
priorities, goals, and values, are fundamental attributes of our world. Thus, no such
transcendental vision of the type envisioned by Rawls is possible because the level of
agreement and commonality of values it presupposes does not, and should not, exist in
a diverse society in which people are free to pursue their lives according to their own,
often very different, visions ofwhat is good. In addition, Sen argues, even if a common
transcendental vision were possible, it would prove insufficient to inform near-term
choices, because human knowledge is too fallible and the uncertainties too deep to
chart an unambiguous path to the ideal. But humans can obtain sufficient knowledge
to craft near-term options and differentiate the better from the worse. Relational
reasoning thus involves an iterative process of debating, choosing, learning, and
revisiting choices, always trying to move in the direction of more justice in the face
of imperfect knowledge and conflicting goals.

“Agree-on-assumptions” approaches to decision support reflect transcendental
reasoning, while “agree-on-decisions” approaches reflect relational reasoning (Lem-
pert et al. 2013c). Sen emphasizes the importance of deliberation in a relational pro-
cess of social choice. His framework provides attributes for judging what constitutes
an ethical process of deliberationwith analysis. In particular, such deliberations work
best when they recognize the inescapable plurality of competing views; facilitate re-
examination and iterative assessments; demand clear explication of reasoning and
logic; and recognize an “open impartiality” that accepts the legitimacy and impor-
tance of the views of others, both inside and outside the community of interest to the
immediate policy discussion.

Recent work has pioneered methods for conducting ethical-epistemological anal-
ysis on the extent to which decision support products, methods, and systems meet
such ethical criteria (Tuana 2013; Bessette et al. 2017; Mayer et al. 2017), but much
more remains to be done. Today’s world presents numerous, complex decision chal-
lenges—from sustainability to national security—that require quantitative decision
support to successfully address. But “agree-on-assumptions” methods often lure
decisionmakers toward over-confidence and can make it difficult to engage and pro-
mote consensus among participants with diverse expectations and interests. Such
methods—built on the assumption that the decision analytics aim to provide a nor-
mative ranking of decision options—have their foundations in a time of computa-
tional poverty and rest on a narrow understanding of how quantitative information
can best inform decisions. Recent years have seen an explosion of computational
capabilities and a much richer understanding of effective decision support prod-
ucts and processes. RDM—a multi-objective, multi-scenario “agree-on-decision”
approach—exploits these new capabilities and understanding to facilitate delibera-
tive processes in which decisionmakers explore, frame, and reach consensus on the
“wicked” problems that today’s decisionmakers increasingly face.
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