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Robust Deep Learning-Based Diagnosis of
Mixed Faults in Rotating Machinery

Siyuan Chen, Yuquan Meng, Haichuan Tang , Yin Tian, Niao He , and Chenhui Shao

Abstract—Fault diagnosis for rolling elements in rotat-
ing machinery persistently receives high research interest
due to the said machinery’s prevalence in a broad range
of applications. State-of-the-art methods in such setups
focus on effective identification of faults that usually in-
volve a single component while rejecting noise from lim-
ited sources. This article studies the data-based diagnosis
of mixed faults coming from multiple components with an
emphasis on model robustness against a wide spectrum of
external perturbation. A dataset is collected on a rotor and
bearing system by varying the levels and types of faults
in both the rotor and bearing, which results in 48 machine
health conditions. A duplet classifier is developed by com-
bining two 1-D convolutional neural networks (CNNs) that
are responsible for the diagnosis of the rotor and bearing
faults, respectively. Experimental results show that the pro-
posed classifier can reliably identify the onset and nature
of mixed faults. In addition, one-vs-all classifiers are built
using the features generated by the developed 1-D CNNs
as predictors to recognize previously unlearned fault types.
The effectiveness of such classifiers is demonstrated using
data collected from four new fault types. Finally, the robust-
ness and ability to reject external perturbation of the duplet
classification model are analyzed using kernel density es-
timation. The code for the proposed classifiers is available
at https://github.com/siyuanc2/machine-fault-diag.

Index Terms—Condition monitoring, convolutional neu-
ral network (CNN), deep learning, fault diagnosis, Ker-
nel density estimation (KDE), model robustness, rotating
machinery, rotor and bearing systems.

I. INTRODUCTION

R
OTATING machinery is an integral component in a broad

range of applications, including motors, gearboxes, and
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generators. Ensuring optimal operating conditions for these

components is essential for safety, efficiency, economy, and

comfort considerations. Although sophisticated maintenance

strategies exist for maintaining safe operation of many aforesaid

applications, it is desirable to incorporate real-time, predictive

monitoring methods to detect the onset, duration, possible cause

of mechanical faults and perform countermeasures as fast as

possible.

Detection of rotating machinery faults is most commonly

performed by analyzing vibration signals [1], [2], as most

mechanical faults, including eccentric rotor, bearing fault, and

misalignment, result in an imbalance in the rotating element that

materializes as shock response in the measured vibration signals.

In many cases, the informative fault signal component may well

be buried in the noise signal [3] and additional measures are

required to extract useful information from the noisy source

signal.

Popular signal processing techniques, ranging from time-

domain statistical figures to frequency-domain methods like fast

Fourier transform (FFT) [4], discrete wavelet transform [5], and

higher-order spectrum [6], have been applied to the monitoring

of mechanical faults in various rolling machinery with satisfac-

tory performance. In many cases, the abovementioned methods

are developed for a specific physical setup and do not give

further insight into the root cause of the problem. During the

last decade, there has been a rising interest in model-based fault

detection techniques [7]. Maki and Loparo [8] applied feed-

forward neural networks to a plant model and demonstrated the

model’s ability to operate on generic industrial process records.

Frank and Köppen-Seliger [9] evaluated the features generated

by neural networks using fuzzy logic. Bachschmid et al. [10]

studied model-based diagnosis of multiple present faults by the

means of least-square fitting in the frequency domain. Wang

et al. [11] developed a novel variational mode decomposition

method based on particle swarm optimization.

More recent works improve the performance of machinery

fault diagnosis systems in the form of expert systems engineered

with or without domain knowledge. Zhou et al. [12] examined

a rule-based expert system for rotor machinery fault diagnosis

that operates on a fault pattern library constructed with various

hand-engineered features including common rotor fault patterns,

root mean square values, peak-to-peak values, and FFT re-

sponses. Recent implementations of expert systems make use of

Bayesian networks [13], support vector machines [14], random

forest classifiers [15], and deep belief networks that operate

on images converted from vibration signals [16] requiring less
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domain knowledge specific to the physical setup. Sun et al. [17]

introduced kernel sparse locally linear embedding that reduces

data dimensionality by mapping the data to a low-dimensional

manifold.

With the vast success of neural networks in tasks including

image classification and semantic segmentation, many recent

works focus on applying state-of-the-art neural network archi-

tectures on signal fault diagnosis [18]. Zhao et al. [19] applied a

number of advanced neural network architectures including fire-

fly artificial neural network, particle swarm optimization neural

network, and genetic artificial neural network, and achieved

diagnosis accuracy of more than 98% on rotor fault types.

Additional works explored the effectiveness of generalized de-

modulation transform in adapting to varying speed of the rotating

element [20]. Wang et al. [21] tackled the same problem by intro-

ducing multiscale analysis windows from sensor signals. Most

recent works that employ neural networks for fault detections

focus on the general applicability of data-driven models over a

wide range of data or usage scenarios [22] and the ability of per-

forming transfer learning based on existing models [23]. Others

explore ensemble learning [24] and stacked sparse denoising

autoencoders [25] for bearing fault detection, obtaining salient

performance in their respective tasks.

At least two research gaps exist in the fault diagnosis of

rotating machinery. First, the aforementioned methods only con-

sidered faults of one component, whereas in real applications it is

possible that mixed faults in multiple components factor in the

measured signals. Moreover, whereas many works introduced

measures to passively reject noise and nonrelated factors such

as varying rotational speeds [20], [21], none of the reviewed

works actively evaluated the robustness of proposed methods

by testing them against strategically introduced interference or

perturbation signals. A robust model must reject a broader range

of noise originated from external sources like signal acquisition

process and varying operating conditions of the machinery, and it

is not to be assumed that no noise or perturbation is deliberately

introduced to disable the system. Such is especially true for

data-based models that operate more or less in a black-box

fashion, as it has been proven that most deep learning models are

vulnerable to external attacks [26]. It is also possible to strate-

gically engineer inputs to mislead the neural networks [26]. On

this front, it is necessary to evaluate the effect of perturbation, at

least those of a normally distributed nature, on the safety-critical

fault diagnosis models.

This article seeks to explore these areas by introducing a 1-D

CNN architecture for fault diagnosis under multiple mixed com-

ponent faults on a rotor/bearing fault simulator setup. A duplet

classification model is developed by combining two 1-D CNN

models, each independently responsible for identifying faults

from the bearing and the rotor. Experimental results suggest that

the duplet classifier can reliably identify each known component

fault cause with a combined accuracy of 95.93%. Using the

features generated by CNN models as predictors, linear models

are developed to distinguish unknown fault types from known

ones. The effectiveness of these models is demonstrated experi-

mentally. Additionally, we employ kernel density estimation to

investigate the probability distribution of the vibration signals

Fig. 1. Overall structure of the proposed rotor and bearing system fault
identification model. Inference is performed by evaluating preprocessed
data with the two independent fault diagnosis models before the decision
is drawn.

and examine the robustness of the proposed model, conclud-

ing that the rotor fault detection model is more robust against

Gaussian noise than its rotor fault detecting counterpart.

The rest of this article is organized as follows. In Section II, the

proposed 1-D CNN architecture is introduced along with details

on the collection and processing of the experimental data. In

Section III, the model performance on the dataset with mixed

faults is examined. In Section IV, we propose an approach to

recognize unknown mechanical faults and recognize robustness

of the proposed classifiers against external purturbation in the

form of Gaussian noise. Finally, Section V concludes this article.

II. METHODOLOGY

Though CNN allows for the learning of fault patterns with-

out extensive domain knowledge, examining the nature of the

fault is beneficial for gaining insight and further improving

the model performance. In this section, we first present the

proposed architecture of the 1-D CNN that is used to analyze

the vibration signals. The data acquisition process, experimental

setup, and data preprocessing are then detailed. Fig. 1 illustrates

the proposed processing flow.

A. 1-D CNN

As a nonsupervised feature selection method, deep learning

has been widely applied in the field of mechanical fault diagno-

sis [27], [28]. In many cases, due to limited data availability and

the characteristics of input signals, it is not feasible to apply deep

networks and models frequently settle at local optima [19]. In-

spired by demonstrated success of CNN in many image-related

tasks, some recent efforts sought to operate CNN on vibration

signals and FFT responses visualized as images [29]. However,

this formulation might prevent the CNN to properly extract

desired features from the input. For instance, the conversion

of time-domain or frequency-domain profiles into 2-D images

makes it necessary to divide a continuous signal into fixed-length

segments so that the information can be represented as 2-D

arrays. The 2-D filters then consider values across rows that

are not adjacent to each other in time or frequency domain. As

a result, the 2-D CNN might learn periodic features that are not

present in the input signal, but are solely a result of reshaping

signal to fit in input dimensions.

Instead of applying 2-D filters to 1-D signal of interest,

we employed 1-D convolution layers for the proposed neural

network architecture. As is suggested by the name, this operation



CHEN et al.: ROBUST DEEP LEARNING-BASED DIAGNOSIS OF MIXED FAULTS IN ROTATING MACHINERY 2169

TABLE I
1-D CNN STRUCTURE FOR THE BEARING FAULT DIAGNOSIS

TABLE II
1-D CNN STRUCTURE FOR THE ROTOR FAULT DIAGNOSIS

utilizes 1-D convolution kernels. Given an n× 1 vector input

x and an m× 1 convolution kernel w, the ith element of the

convolution output (x ∗ w) can be expressed as follows:

(x ∗ w)i =

m
∑

j=1

wjx(i−j+m/2). (1)

Readers are referred to classic references for details on more

commonly used CNN structures, including but are not limited

to, ReLu activation layers [30] and batch normalization [31].

We hereby propose the use of 1-D CNN with filter dimensions

3 × 1 and 5 × 1. In this way, the 1-D convolution kernels will

only operate on contiguous information in time or frequency

domain. Considering that traces of fault in different components

of the system may not necessarily be related to each other, we

employ separate models each responsible to identify possible

faults in one component. In this case, one model is dedicated to

the detection of rotor faults and the other to bearing faults.

Based on the assumption that bearing fault state can be in-

dependent from that of the rotor’s, joint fault diagnosis can be

performed by simply bundling the two aforementioned models

in parallel as a duplet classifier. Specifically, an m-class bearing

state classifier and an n-class classifier can be combined to

output in m× n result space with a look-up table. It is demon-

strated below that in this layout, relatively simple two-layer or

three-layer 1-D CNN architectures are capable of identifying

the presence of various mechanical faults from the input signal.

As a comparison, we have also trained a separate m× n-class

classifier. Details on the model architecture are presented in

Tables I and II.

B. Data

A machine fault dataset was used to verify the effectiveness

of the proposed CNN architectures and the duplet classifier. The

dataset was collected on a specialized machinery fault simulator

(MFS) manufactured by Spectra Quest, Inc. [32], as shown in

Fig 2. The particular model used in this article, named MFS-LT,

Fig. 2. MFS-LT MFS [32] used for data collection. Motor (A), bearings
(B), rotor A (C), and rotor B (D) are labeled.

is equipped with two rotor disks and a shaft powered by an

electric motor. The setup can perform controlled simulations on

various mechanical fault conditions associated with rotor and

bearing.

Unlike a few existing works such as [13] and [19] that study

the identification of only rotor faults, we designed various com-

binations of both rotor and bearing faults, i.e., mixed faults,

which resulted in a much more challenging diagnosis task.

Details of the faults considered are provided below.

Rotor Faults: The MFS has two rotors where unbalanced rotor

conditions can be simulated by attaching additional standard

weights to the rotor plates. For simplicity, the left and right rotors

are referred to as rotor A and rotor B, respectively. We simulated

five fault conditions indicated by the location and number of

additional weights installed to the two rotor elements, described

as follows:

1) Normal condition: No additional weights were installed

on either of the rotors. By including additional normal

states to the collected data, it is desired to confirm that

apart from classifying the various error states, the diag-

nosis model can also reliably distinguish any fault states

from the normal state.

2) One weight on rotor A, one weight on rotor B, aligned

(A1B1A): In this configuration, each rotor was fitted with

an weight and the two weights were aligned to the same

angular position.

3) One weight on rotor A, one weight on rotor B, opposite

(A1B1O): Each rotor was fitted with a weight in opposite

angular positions relative to the shaft.

4) Two weights on rotor A, adjacent (A2A): Two weights

were installed on rotor A as close as possible. It is ex-

pected that this configuration will yield a similar vibration

profile with configuration “A1B1A.”

5) Two weights on rotor A, opposite (A2O): Two weights

were installed on rotor A in positions symmetric about

the shaft. It is expected that this configuration will yield

a similar vibration profile with configuration “A1B1O”
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and should generally result in lower magnitudes than the

“A1B1A” and “A2A” configurations.

6) Three weights on rotor A, adjacent (A3A): Three weights

were installed on rotor A as close to each other as possible.

It is expected that this configuration will yield a similar

vibration profile with configurations “A1B1A” and “A2A”

but with higher magnitude.

Four additional fault states for the rotor are also simulated but

are excluded from the following training process.

1) One weight on rotor A, large eccentricity (A1-L): Only

one weight was installed on rotor A, with its location as far

from the shaft as possible to create maximum unbalanced

condition.

2) One weight on rotor A, small eccentricity (A1-S): Similar

to “A1-L,” only that the weight was installed close to the

shaft for a less unbalanced condition.

3) One weight on rotor B, large eccentricity (B1-L).

4) One weight on rotor B, small eccentricity (B1-S).

These additional fault states are excluded from train-

ing data and are used exclusively for evaluating model ro-

bustness against unknown fault types, as later explained in

Section IV.

Bearing Faults: The two rotors on the MFS are installed

on a shaft by rigid connection, which is then mounted on the

test bed with two bearings. The MFS provides a few bearings

with mechanical faults, which help to simulate various bearing

fault conditions along with rotor fault conditions. In this work,

seven bearing conditions along with a normal bearing condition

were simulated. Details of the simulated bearing conditions are

provided as follows:

1) Normal condition: No mechanical fault associated with

bearings is present. This state is to be used with various

fault states of the rotor to verify the model’s ability to

identify the presence of multiple faulty components in

the input signal.

2) Bearing ball wear: Four levels of wearing in the bearing’s

rolling element: slight, light, moderate, and severe, have

been simulated on the test bed. The wearing levels are

referred to as level 1–4 correspondingly.

3) Inner/outer race: Damage to the inner and outer race of

the bearing.

4) Mixed: Combined bearing ball wear and damage to inner

and outer race.

The abovementioned eight classes of bearing and six classes

of rotor mechanical faults yield a combined 48-class dataset,

with the detailed labeling scheme presented in Table III.

The dataset consists of two channels collected from sensors

installed on the MFS test bed. Channel 1 is pulse width mod-

ulation (PWM) signal collected from a tachometer from which

the rotating speed of the shaft can be determined. Channel 2 is

collected from an accelerometer installed on the far end of the

shaft to depict lateral vibrations.

All data were collected with a sampling rate of 1.28 kHz. A

total of 82 h worth of data was collected, resulting in a dataset

encompassing 48 health conditions, including one normal state

and 47 mechanical fault combinations between rotor and bearing

faults. The dataset were collected in equal portions of five speed

TABLE III
LABELING SCHEME FOR THE 48-CLASS DATASET

setting: 12 Hz, 14 Hz, 16 Hz, 18 Hz, and 20 Hz to account for

variations resulted from different rotational speeds of the shaft.

Although the dataset was collected in five levels of rotating

speed, the data were processed into a single rotating speed,

10 Hz, by linear interpolation. This conversion is meant to

adapt the model to different operating conditions and has been

empirically proved to improve the model’s performance in

Section III.

C. Unknown Fault Classification

In real life, the fault types of a rotor and bearing system can

easily exceed the aforementioned 47 types. To identify faults

unknown to the dataset’s 48 classes, an unknown fault classifier

based on the duplet 1-D CNNs will be developed in Section IV.

In essence, if all the unknown faults can be grouped into a single

class known as the unknown fault, the problem can be formu-

lated as developing a classifier for 49 fault condition classes.

However, it is impossible to naïvely train a neural network for

the newly added class, as unknown fault conditions will not

appear in a dataset. A more realistic way is to develop a classifier

that determines whether the input data corresponds to a fault

condition known to us. To achieve this, 48 one-vs-all classifiers

are proposed in Section IV. Such one-vs-all discriminant can be

formulated as follows:

fi(x) =

{

1 if x ∈ Xi

0 otherwise
(2)

where x is a signal to be classified; Xi is a collection of possible

signals from a known machine condition i (or class i in general

terms).

Then unknown fault classifier is shown as follows:

F (x) = ∨48
i=1fi(x). (3)

Such a classifier outputs 1 if the input signal belongs to a known

class and 0 otherwise.

III. EXPERIMENTAL RESULTS

In this section, we present the performance of the proposed

1-D CNN architecture on the custom dataset. To demonstrate

the effectiveness of data interpolation and separated training of

bearing and rotor fault classifiers, we trained both separated and

48-class models and compare their performance on the test set.

The best models for bearing and rotor fault diagnosis were then

assembled to form a duplet classifier, while decision fusion is

made by the look-up table provided in Table III. Additionally,
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TABLE IV
BEST MODEL PERFORMANCE ON EACH VARIETY OF THE DATASET

TABLE V
CONFUSION MATRIX OF THE BEARING CNN MODEL

TABLE VI
CONFUSION MATRIX OF THE ROTOR CNN MODEL

the performance of the models on both interpolated and noninter-

polated data are compared. The results are presented in Table IV.

There models were trained using an 80-10-10 train-validation-

test split.

Overall, one can conclude that the 1-D CNN architecture

yields desirable performance on the dataset as it can classify the

rotor and bearing fault states with relatively simple two-layer and

three-layer structures. With carefully chosen hyperparameters

including dropout rate, learning rate decay, and proper weight

initialization, the rotor and bearing fault condition models

achieve testing accuracies of up to 97.0% and 98.90%, respec-

tively. Combining these models, and the bearing-rotor duplet

classification model yields 95.93% accuracy on the test dataset,

which consistently outperforms the 48-class model trained for

comparison. One can also conclude that converting the rotating

machinery data into uniform operating speed is a beneficial

measure, as interpolating accelerometer data according to the

rotational speed results in consistent performance improvements

across all model types shown in Table IV.

Failure Cases Analysis: Though both the bearing and rotor

CNN models in the duplet achieved high accuracy on the test

set, fail cases are highly concentrated in certain fault types and

prompts future improvement. Here, we examine the frequent

fail cases faced by the duplet model performance of the duplet

classifier on the test set is shown by confusion matrices presented

in Tables V and VI.

TABLE VII
FAILURE CASES THAT OCCURRED FOR MORE THAN TEN TIMES IN ROTOR

CONDITION TEST DATASET

The accuracy of the bearing fault classifier reached 98.9%,

almost all the test data were classified correctly. For the rotor

fault classifier, however, the errors are particularly concentrated

in a certain number of positions. Summarizing all errors that

occur for more than ten times yields Table VII .

Further inspection of Table VII suggests that the rotor CNN

model is most prune to the following two kinds of errors.

1) Confusion between states “Normal,” “A2O,” and

“A1B1O;”

2) Confusion between states “A1B1A,” “A2A,” and “A3A.”

We believe that the performance of the unbalanced rotor state

classifier may have been impacted by insufficient information

from the signal. Namely, the accelerometer was installed at the

end of the shaft and recorded only lateral acceleration only.

In this case, the vibration signal for “Normal,” “A2O,” and

“A1B1O” states may appear analogous, because in all three

cases, the additional weights, if any, were installed in a sym-

metric manner across from the shaft, whereas in the cases of

“A1B1A,” “A2A,” and “A3A” all the additional weights were

arranged in a highly unbalanced manner. The performance of

the rotor CNN classifier could be improved if inputs from

additional sensors strategically placed throughout the test bed

were available.

IV. DISCUSSION

It has been demonstrated in former sections that the proposed

duplet classifier achieves salient performance for the task of

rotor and bearing fault diagnosis. However, the proposed model

is trained on a 48-class dataset, which effectively limits it to

operating on these known fault types, despite that it is possible to

encounter new fault types that were not presented in the training

dataset in real-world applications. Moreover, it is not verified

that the model will survive deliberately introduced external
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noise and perturbation. This section focuses on these topics

and discusses the possibility of detecting unknown faults and

rejection to normally distributed noise.

A. Robustness Against Unknown Fault Types

A model that can identify previously unseen faults is highly

desirable. Here, we integrate the 1-D CNNs with principal

component analysis (PCA) in an effort to recognize unknown

fault types.

1) Problem Formulation and Proposed Method: In order to

separate known and unknown fault types, we set out to train one-

vs-all classifiers fi for each known fault types i for i = 0, . . ., 47,

as shown by (2). The following procedure is applied to train a

one-vs-all classifier for class i.
1) Train the duplet classifier to classify all known fault types.

2) Feed data x, which belongs to class i, to the neural

network, and obtain the output from intermediate layers as

an embedded vector yb = Gb(x) where Gb is effectively

the output of the second last convolutional layer of the

bearing fault CNN model. yb has a length of 64 which

matches with the output size of the corresponding layer.

3) Perform PCA transformation and acquire the threshold

h
(j)
b,i , which defines a class-distinguishing hyperplane,

from PC scores with nearly zero PC coefficients (here,

they are the 5th PC to the 64th PC), i.e.,

|Pb,i(yb)|
(j) ≤ h

(j)
b,i , j = 5, . . ., 64 (4)

where Pb,i is the PCA transformation trained for class i,

h
(j)
b,i is the threshold such that 97% of jth PC score in

class i lies within a distance of h
(j)
b,i .

4) Repeat (2)–(3) for rotor CNN and acquire Pr,i and h
(j)
r,i .

In this fashion, the trained network is considered as a means of

feature extraction function g that nonlinearly transforms the data

from data space to a refined feature space. Given the fact that the

data in same class should have similar governing hyperparame-

ters, the PCA model effectively reveals those hyperparameters

and rank them in order. PC with a smaller coefficient means

the feature has less variance, hence a better approximation of

hyperparameters. To account for input noise and other possible

perturbations, the threshold �hi has been introduced, shown in

Fig. 3. In this article, fi is taken as

fi(x) = 1
|(Pl,i◦Gl)(x)|

(j)≤h
(j)
l,i

,j=5,...,64;l=b,r
(5)

where g gives the output of the second last convolutional layer

of the bearing/rotor fault CNN models. Due to the nature of

convolution kernels, a CNN is intrinsically invariant under input

translation. Therefore, fi is guaranteed to be invariant under

translation of input data in time. Repeat the procedure for 48

classes, namely, i = 0, . . ., 47, and we have acquired 48 one-

vs-all classifiers that will distinguish each of the 48 classes

with others. If all 48 one-vs-all classifiers output 0, the input

is considered to belong to an unknown class.

2) Prediction Algorithm: The following algorithm is pro-

posed to generate a label for an input data:

Fig. 3. PC scores of “Normal” state data by the PC transformation
trained from the same state. Threshold is determined by the PCs with
small variance.

TABLE VIII
CLASSIFICATION ACCURACY OF PROPOSED ALGORITHM

1) Feed the data into each one-vs-all classifier fi and obtain

their decisions (0 or 1).

2) Examine the output from all 48 classifiers:

a) If at least one classifier outputs true (i.e., 1), then:

i) If classifier labelled “Normal” outputs false (0),

then feed the original data into the duplet CNN

model. Output the label with highest probability

excluding “Normal” class.

ii) Otherwise, feed the original data into the duplet

CNN model. Output the label with highest prob-

ability.

b) If none of the classifiers outputs true, then identify

the data as belonging to “Unknown Fault”.

Note that above algorithm will output one of the 48 known

state labels if the input data are recognized to belong to a known

fault condition. The lower bound of predicting the correct known

machine condition is given by

Pr(ĉf = k|k) ≥ 0.972 ×Pr(ĉCNN = k|k) (6)

where k is a class label of input data for one of the known

machine conditions, ĉCNN is the predicted label by the duplet

classifier, ĉf is the predicted label by the proposed algorithm

and 0.97 is the value chosen to determine the thresholds.

3) Performance Evaluation: To evaluate the performance of

the proposed hyperplane classifier, four data classes representing

new fault types are introduced with names “A1-L” “A1-S,”

“B1-L,” and “B1-S”, with detailed definitions available in Sec-

tion II.B. These four the 48 classes that were used to train the

original 1-D CNN models. Table VIII shows the classification
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Fig. 4. Performance of one-vs-all classifiers on all fault types. X-
axis represents 48 one-vs-all classifiers trained for each of the known
classes. Y-axis represents the fault type to be judged, including 48
known machine conditions and 4 unknown fault types.

accuracy of proposed algorithm against unknown data classes

and overall accuracy. The classifiers can identify unknown

classes with an overall accuracy of 88%, which is highly desir-

able and indicative that the proposed models are robust against

unknown fault types.

The classification accuracy of the one-vs-all classifiers and

proposed prediction algorithm is further visualized in Fig. 4

and Table VIII. One can observe that while the collection of

one-vs-all classifiers is robust against unknown fault types, it

achieves slightly lower performance than the duplet 1-D CNN

model on known machine conditions. There is a tradeoff between

recognizing unknown classes and maintaining high performance

for known machine conditions. However, equation (6) indicates

that the accuracy of the proposed model on known faults is

ensured by the duplet CNN model’s accuracy and the prede-

termined threshold and will not be significantly deteriorated by

the introduction of unknown fault detection.

In Fig. 4, diagonal entries of the confusion matrix represent

the accuracy of each one-vs-all classifier against their respective

known class. In this case, each entry has a value of 0.972, which

is dictated by the threshold predetermined during the training

process. At the same time, mis-classifications by individual

one-vs-all classifiers (off-diagonal entries) for known classes do

not have a decisive detrimental effect on the overall accuracy.

In fact, a lower accuracy of one-vs-all classifiers will increase

the overall accuracy, since for any known fault input, this will

make it more likely to be fed into the highly accurate duplet

CNN model that generates high-quality labels for known fault

types. On the other hand, all one-vs-all classifiers demonstrate

relatively high accuracy against unknown fault types, which

leads to high detection rate for unknown classes.

One may notice that a few areas of improvement exist for

the aforementioned collection of hyperplane classifiers. Firstly,

since the backbone bearing and rotor fault detection CNNs

provide embedding from data to feature space, the performance

of these CNNs greatly influence the performance of one-vs-all

classifiers. In this regard, improvements to the performance of

the backbone CNN are always desirable. Secondly, because there

is no guarantee that the learned embedding will convert data of

same classes into a high dimensional representation, replacing

the PCA method with a higher order, more expressive multivari-

ate polynomial that is aided by random sample consensus for

outlier rejection may bring significant improvement to model

performance.

B. Robustness Against Gaussian Noise

In this section, the robustness of the proposed 1-D CNN

classifiers against external noise and perturbation is assessed

by deliberately adding different levels of Gaussian noise to the

input signal, followed by analysis of the model robustness with

kernel density estimation (KDE).

Table IX summarizes the performance of the 1-D CNN models

after adding different levels of Gaussian noise to the raw signals.

Here, we denote the mean and standard deviation of raw data

as µ0, σ0, and the mean and standard deviation of the added

noise as µǫ, σǫ, respectively. Under relatively small noise lev-

els, e.g., σǫ/σ0 = 0.0001, the bearing classifier retains a high

accuracy (greater than 90%), while the accuracy of the rotor

classifier declines dramatically to between 45% and 50%. Under

σǫ/σ0 = 2 or high noise levels, the bearing classifier maintains

an accuracy of around 77%, while the rotor classifier achieves

only approximately 20% accuracy.

To explain these observations, the input data are characterized

using KDE. KDE is a statistical technique that calculates a

probability density function (PDF) with derivatives of all orders,

where a kernel function is employed to interpolate the distribu-

tion density [33]. A typical estimator is expressed as

f̃ =
1

nb

n
∑

i=1

K

(

x− xi

b

)

(7)

where b is predetermined bandwidth, n is the total number of

data points, xi is a data point, and K is the kernel function,

which can be uniform, Gaussian, Epanechnikov function, etc.

A preliminary analysis reveals that the temporal correlation

in the signals is weak. Therefore, we loosen the assumption

and assume that the signals are independent and identically

distributed random variables.

Fig. 5 shows the estimated PDFs of different fault types,

where the normal distribution is obtained based on the mean

and variance of the corresponding class. It can be concluded that

the distributions of rotor fault data can be well approximated by

normal distributions. Furthermore, it is revealed that rotor faults,

including A1B1A and A1B1O, do not alter the distribution

significantly, while bearing faults have a significant impact on

the distribution. Specifically, a higher bearing wear level leads

to increase in variance and deviation from the normal distribu-

tion. Bearing inner race fault data demonstrates a distribution

significantly different from the normal distribution. The same
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TABLE IX
CLASSIFICATION ACCURACY OF CNN CLASSIFIERS AFTER INTRODUCING GAUSSIAN NOISE TO RAW SIGNALS

Fig. 5. Comparison of PDFs that are estimated using KDE and normal distributions. (a) Rotor faults. (b) Bearing faults. (c) Mixed faults.

phenomenon occurs in mixed bearing fault type, where the

difference in distributions can be attributed to the bearing wear.

Since the bearing fault classes can be differentiated by ig-

noring the correlation between data points in different time, it

is reasonable to conclude the bearing fault classes are easier to

identify than rotor fault classes. By adding the Gaussian noise,

the difference between bearing fault classes is still significant

as seen in the corresponding PDF. Therefore, any classifier that

successfully captures the characteristics of signals from bearing

faults should be resilient to added Gaussian noise. However,

for rotor fault types, the distributions of the signals are largely

similar. To effectively identify each class, the classifier must

learn features that are more specific to the dataset, namely, the

correlation between data points must be accounted for. When

high levels of Gaussian noise is introduced to the input signals,

it may very likely alter the learned features, and consequently

impose a negative impact on the classification performance. In

conclusion, the rotor classifier is vulnerable to Gaussian noise.

V. CONCLUSION

A deep-learning-based approach was developed to diagnose

mixed faults from multiple components in rotating machinery.

A duplet classifier was established by assembling two 1-D CNN
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models that are responsible for classifying rotor and bearing fault

types, respectively. Experimental results show that the proposed

classifier can reliably identify the presence of 48 machine health

conditions that are combinations of eight bearing fault states and

six rotor fault states. Based on the developed 1-D CNN models,

one-vs-all classifiers were built to detect new, unlearned fault

types, and their effectiveness was experimentally demonstrated.

In addition, it was found that the bearing classifier is robust

to Gaussian noise but the rotor classifier is very sensitive to

Gaussian noise. A KDE-based analysis suggested that this is

due to the nature of the signal patterns. These findings indicated

that it is important to account for signal noises, which may

be introduced either unintentionally from the environment or

deliberately as a form of adversarial attacks, in the development

of safety-critical fault diagnosis methods.
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