
Robust Defenses for Cross-Site Request Forgery

Adam Barth
Stanford University

abarth@cs.stanford.edu

Collin Jackson
Stanford University

collinj@cs.stanford.edu

John C. Mitchell
Stanford University

mitchell@cs.stanford.edu

ABSTRACT

Cross-Site Request Forgery (CSRF) is a widely exploited
web site vulnerability. In this paper, we present a new vari-
ation on CSRF attacks, login CSRF, in which the attacker
forges a cross-site request to the login form, logging the vic-
tim into the honest web site as the attacker. The severity
of a login CSRF vulnerability varies by site, but it can be
as severe as a cross-site scripting vulnerability. We detail
three major CSRF defense techniques and find shortcomings
with each technique. Although the HTTP Referer header
could provide an effective defense, our experimental obser-
vation of 283,945 advertisement impressions indicates that
the header is widely blocked at the network layer due to pri-
vacy concerns. Our observations do suggest, however, that
the header can be used today as a reliable CSRF defense
over HTTPS, making it particularly well-suited for defend-
ing against login CSRF. For the long term, we propose that
browsers implement the Origin header, which provides the
security benefits of the Referer header while responding to
privacy concerns.

Categories and Subject Descriptors

K.6.5 [Management of Computing and Information
Systems]: Security and Protection

General Terms

Security, Design, Experimentation

Keywords

Cross-Site Request Forgery, Web Application Firewall, HTTP
Referer Header, Same-Origin Policy

1. INTRODUCTION
Cross-Site Request Forgery (CSRF) is among the twenty

most-exploited security vulnerabilities of 2007 [10], along
with Cross-Site Scripting (XSS) and SQL Injection. In con-
trast to cross-site scripting, which has received a great deal

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’08, October 27–31, 2008, Alexandria, Virginia, USA.
Copyright 2008 ACM 978-1-59593-810-7/08/10 ...$5.00.

of attention [14], and the effective mitigation of SQL injec-
tion through parameterized SQL queries [8], cross-site re-
quest forgery has received comparatively little attention. In
a CSRF attack, a malicious site instructs a victim’s browser
to send a request to an honest site, as if the request were
part of the victim’s interaction with the honest site, lever-
aging the victim’s network connectivity and the browser’s
state, such as cookies, to disrupt the integrity of the vic-
tim’s session with the honest site.

For example, in late 2007 [42], Gmail had a CSRF vul-
nerability. When a Gmail user visited a malicious site, the
malicious site could generate a request to Gmail that Gmail
treated as part of its ongoing session with the victim. In
November 2007, a web attacker exploited this CSRF vul-
nerability to inject an email filter into David Airey’s Gmail
account [1].1 This filter forwarded all of David Airey’s email
to the attacker’s email address, which allowed the attacker to
assume control of davidairey.com because Airey’s domain
registrar used email authentication, leading to significant in-
convenience and financial loss.

In this paper, we examine the scope and diversity of CSRF
vulnerabilities, study existing defenses, and describe incre-
mental and new defenses based on headers and web appli-
cation firewall rules. We introduce login cross-site request
forgery attacks, which are currently widely possible, dam-
aging, and under-appreciated. In login CSRF, an attacker
uses the victim’s browser to forge a cross-site request to the
honest site’s login URL, supplying the attacker’s user name
and password. A vulnerable site will interpret this request
and log the victim into the site as the attacker. Many web
sites, including Yahoo, PayPal, and Google, are vulnerable
to login CSRF. The impact of login CSRF attacks vary by
site, ranging from allowing the attacker to mount XSS at-
tacks on Google to allowing the attacker to obtain sensitive
financial information from PayPal.

There are three widely used techniques for defending against
CSRF attacks: validating a secret request token, validating
the HTTP Referer header, and validating custom headers
attached to XMLHttpRequests. None of these techniques
are satisfactory, for a variety of reasons.

1. The most popular CSRF defense is to include a secret
token with each request and to validate that the re-
ceived token is correctly bound to the user’s session,
preventing CSRF by forcing the attacker to guess the
session’s token. There are a number of variations on
this approach, each fraught with pitfalls, and even sites

1David Airey later repudiated this incident [2].

that implement the technique correctly often overlook
their login requests because login request lack a session
to which to bind the token.

2. The simplest CSRF defense is to validate the HTTP
Referer header, preventing CSRF by accepting re-
quests only from trusted sources. While effective in
principle, this technique must deal with requests that
lack a Referer header entirely. Sites can either pro-
cess these requests or block them. If a site processes
requests that lack a Referer header, the defense is inef-
fective because the Referer header can be suppressed
by an attacker. If the site refuses to process these re-
quests, our experimental measurements indicate that
the site will exclude an appreciable fraction of users.

3. XMLHttpRequest’s popularity has increased recently
with more sites implementing AJAX interfaces. Sites
can defend against CSRF by setting a custom header
via XMLHttpRequest and validating that the header
is present before processing state-modifying requests.
Although effective, this defense requires sites to make
all state-modifying requests via XMLHttpRequest, a
requirement that prevents many natural site designs.

Referer validation is an appealing CSRF defense, but the
technique is hampered by the widespread suppression of the
Referer header. To evaluate this defense, we conducted an
experiment to determine how frequently, and under what
circumstances, Referer header is blocked. We placed adver-
tisements on two different advertising networks that caused
283,945 browsers displaying the advertisements to issue net-
work requests to servers in our laboratory. Our results show
that although the Referer header is suppressed often over
HTTP, the header is rarely suppressed over HTTPS, let-
ting current sites prevent CSRF by using HTTPS and strict
Referer validation.

To create a robust CSRF defense, we propose that browsers
include an“Origin”header with POST requests. This header
provides the security benefits of the Referer header while
addressing the privacy concerns that have lead to the wide-
spread suppression of the Referer header. The Origin header
lets sites defend against CSRF by deploying a few simple web
application firewall rules. This mechanism also protects lo-
gin forms without requiring additional effort from the site’s
developers.

Although CSRF defenses are necessary to protect session
integrity, other session integrity attacks are possible, even
against sites without XSS or CSRF vulnerabilities. We de-
scribe other attacks on session initialization in which the
user becomes authenticated to the honest site as the at-
tacker. Although similar to login CSRF, these attacks do
not require CSRF vulnerabilities. We describe session ini-
tialization vulnerabilities in OpenID [13], PHP cookieless
session management [37], and HTTPS Secure cookies [40].
For each vulnerability, we propose an improved session man-
agement protocol to prevent attacks on session initialization.

Contributions. Our main contributions include:

1. An explanation of the CSRF threat model, including
often-overlooked variations based on network connec-
tivity and login CSRF. We demonstrate the severity
of login CSRF vulnerabilities by describing the conse-
quences of the vulnerability for a small sample of the
many widely used web sites that are vulnerable.

2. A study of current browser behavior, including exper-
imental measurement of Referer header suppression
based on 283,945 advertising impression on two adver-
tisement networks. Based on our experimental data,
we propose a refinement to Referer validation: employ
HTTPS and strict Referer validation. This technique
is secure because browsers ensure the integrity of the
Referer header and is compatible with 99.9% of the
web users we observed in our experiment.

3. A proposal for an Origin header that contains only the
the scheme, host, and port parts of the referring URL,
addressing the privacy concerns of the Referer header
while containing the information necessary for CSRF
defense. For browsers, we have implemented this pro-
posal as a 466-line extension to Firefox and as a eight-
line patch to WebKit. For sites, we have implemented
Origin validation in three lines of ModSecurity, a web
application firewall for Apache.

4. A study of related session initialization vulnerabilities
and defenses for OpenID, PHP cookieless sessions, and
HTTPS cookies. We implement our cookie defense as
a 202-line extension to Firefox.

Organization. The remainder of the paper is organized as
follows. Section 2 reviews the threat model. Section 3 pro-
vides examples of login CSRF. Section 4 analyzes existing
defenses using experimental data. Section 5 proposes the
Origin header as a defense mechanism. Section 6 general-
izes login CSRF to other session initialization vulnerabilities.
Section 7 describes related work. Section 8 concludes.

2. CSRF DEFINED
In a cross-site request forgery (CSRF) attack, the attacker

disrupts the integrity of the user’s session with a web site
by injecting network requests via the user’s browser. The
browser’s security policy allows web sites to send HTTP
requests to any network address. This policy allows an at-
tacker that controls content rendered by the browser to use
resources not otherwise under his or her control:

1. Network Connectivity. For example, if the user
is behind a firewall, the attacker is able to leverage
the user’s browser to send network requests to other
machines behind the firewall that might not be directly
reachable from the attacker’s machine. Even if the user
is not behind a firewall, the requests carry the user’s
IP address and might confuse services relying on IP
address authentication [36].

2. Read Browser State. Requests sent via the browser’s
network stack typically include browser state, such
as cookies, client certificates, or basic authentication
headers. Sites that rely on this authentication state
might be confused by these requests.

3. Write Browser State. When the attacker causes the
browser to issue a network request, the browser also
parses and acts on the response. For example, if the
response contains a Set-Cookie header, the browser
will modify its cookie store. These modifications can
lead to subtle attacks, which we describe in Section 3.

In-Scope Threats. We consider three different threat mod-
els, varying by attacker capability:

• Forum Poster. Many web sites, such as forums, let
users to supply limited kinds of content. For exam-
ple, sites often permit users to submit passive content,
such as images or hyperlinks. If an attacker chooses the
“image’s” URL maliciously, the network request might
lead to a CSRF attack. The forum poster can issue re-
quests from the honest site’s origin, but these requests
cannot have custom HTTP headers and must use the
HTTP“GET”method. Although the HTTP specifica-
tion [6] requires GET requests to be free of side effects,
some sites do not comply with this requirement.

• Web Attacker. A web attacker is a malicious prin-
cipal who owns a domain name, e.g. attacker.com,
has a valid HTTPS certificate for attacker.com, and
operates a web server. These capabilities can all be
obtained for $10. If the user visits attacker.com, the
attacker can mount a CSRF attack by instructing the
user’s browser to issue cross-site requests using both
the GET and POST methods.

• Network Attacker. A active network attacker is
a malicious principal who controls the user’s network
connection. For example, an“evil twin”wireless router
or a compromised DNS server can be exploited by
an attacker to control the user’s network connection.
These attacks require more resources than web attacks,
but we consider this threat in-scope for HTTPS sites
because HTTPS is designed to protect against active
network attacks.

Out-of-Scope Threats. There are a number of related
threat models we do not consider in this paper. CSRF de-
fenses are complementary to defenses against these threats.

• Cross-site Scripting (XSS). If the attacker is able
to inject script into a site’s security origin, the attacker
can disrupt both the integrity and confidentiality of
the user’s session with the site. Some XSS attacks
involve network requests, for example to transfer the
user’s bank balance to the attacker, but CSRF defenses
do not attempt to guard against these attacks. To be
secure, a site must implement XSS and CSRF defenses.

• Malware. If the attacker is able to run malicious
software on the user’s machine, the attacker can com-
promise the user’s browser and inject script into the
honest web site’s security origin. Browser-based de-
fenses are helpless against such an attacker because
the malware attacker can replace the browser with a
browser of malicious design.

• DNS Rebinding. Like CSRF, DNS rebinding [25]
can be used to obtain network connectivity to a server
of an attacker’s choice using the browser’s IP address.
Web servers that are behind firewalls or that use the IP
address of the browser to make policy decisions require
DNS rebinding defenses. Although DNS rebinding at-
tacks often have a similar purpose to CSRF attacks,
they require different defenses. A simple DNS rebind-
ing defense is to validate the Host header of HTTP
requests to ensure that it contains an expected value.

An alternative DNS rebinding defense is to filter DNS
traffic, preventing external DNS names from resolving
to private IP addresses.

• Certificate Errors. If the user is willing to click
through HTTPS certificate errors, much of the pro-
tection afforded by HTTPS against network attackers
evaporates. A number of researchers [38, 31, 24] have
addressed this threat model, but, in this paper, we
assume users do not click through certificate errors.

• Phishing. Phishing attacks [12] occur when an at-
tacker’s web site solicits authentication credentials from
the user. Phishing attacks can be very effective be-
cause users find it difficult to distinguish the real site
from a fake web site [11].

• User Tracking. Cross-site requests can be used by
cooperating web sites to build a combined profile of
a user’s browsing activities. Most browsers include
third-party cookie blocking features that are designed
to discourage such tracking, but these features can be
circumvented [26].

3. LOGIN CSRF
Most discussions of cross-site request forgery focus on re-

quests that mutate server-side state, either by leveraging
browser’s network connectivity or by leveraging the browser’s
state. CSRF attacks that mutate browser state have re-
ceived less attention even though these attacks also disrupt
the integrity of the user’s session with honest sites. In a login
CSRF attack, the attacker forges a login request to an hon-
est site using the attacker’s user name and password at that
site. If the forgery succeeds, the honest server responds with
a Set-Cookie header that instructs the browser to mutate
its state by storing a session cookie, logging the user into
the honest site as the attacker. This session cookie is used
to bind subsequent requests to the user’s session and hence
to the attacker’s authentication credentials. Login CSRF
attacks can have serious consequences, depending on other
site behavior:

Search History. Many search engines, including Yahoo! and
Google, allow their users to opt-in to saving their search
history and provide an interface for a user to review his or
her personal search history. Search queries contain sensitive
details about the user’s interests and activities [41, 4] and
could be used by an attacker to embarrass the user, to steal
the user’s identity, or to spy on the user. An attacker can
spy on a user’s search history by logging the user into the
search engine as the attacker; see Figure 1. The user’s search
queries are then stored in the attacker’s search history, and
the attacker can retrieve the queries by logging into his or
her own account.

PayPal. PayPal lets its users transfer funds to each other.
To fund a PayPal account, users enroll their credit card or
their bank account. A web attacker can use login CSRF to
mount the following attack:

1. The victim visits a malicious merchant’s site and chooses
to pay using PayPal.

2. As usual, victim is redirected to PayPal and logs into
his or her account.

Figure 1: Event trace diagram for a login CSRF attack. The victim visits the attacker’s site, and the attacker
forges a cross-site request to Google’s login form, causing the victim to be logged into Google as the attacker.
Later, the victim makes a web search, which is logged in the attacker’s search history.

3. The merchant silently logs the victim into his or her
PayPal account.

4. To fund her purchase, the victim enrolls his or her
credit card, but the credit card has actually been added
to the merchant’s PayPal account.

iGoogle. Using iGoogle, users can customize their Google
homepage by including gadgets. For usability, some gadgets
are “inline,” meaning they run in the security context of
iGoogle. Before adding such gadgets, users are asked to
make a trust decision, but in a login CSRF attack, a web
attacker makes the trust decision on behalf of the user:

1. Using his or her own browser, the attacker authors an
inline iGoogle gadget (containing a malicious script)
and adds it to his or her own personalized home page.

2. The attacker logs the victim into Google as the at-
tacker and opens a frame to iGoogle.

3. Google believes the victim to be the attacker and serves
the attacker’s gadget to the victim, letting the attacker
to run script in the https://www.google.com origin.

4. The attacker can now either (a) create a fake login
page at the correct URL, (b) steal the user’s autocom-
pleted password, or (c) wait for the user to log in using
another window and read document.cookie.

We disclosed this vulnerability to Google, and they have
mitigated the vulnerability in two ways. First, they have
deprecated the use of inline gadgets. Developers cannot cre-
ate new inline gadgets, and only a few of the most popu-
lar inline gadgets are still allowed [22]. Second, they have
deployed the secret token validation defense against login
CSRF (discussed below), but the defense is deployed only
in logging mode. We expect Google to begin denying login
CSRF attempts once they have fully tested their defense.

4. EXISTING CSRF DEFENSES
There are three mechanisms a site can use to defend it-

self against cross-site request forgery attacks: validating a
secret token, validating the HTTP Referer header, and in-
cluding additional headers with XMLHttpRequest. All of
these mechanisms are in use on the web today, but none of
them are entirely satisfactory.

4.1 Secret Validation Token
One approach to defending against CSRF attacks is to

send additional information in each HTTP request that can
be used to determine whether the request came from an
authorized source. This “validation token” should be hard
to guess for attacker who does not already have access to
the user’s account. If a request is missing a validation token
or the token does not match the expected value, the server
should reject the request.

Secret validation tokens can defend against login CSRF,
but developers often forget to implement the defense be-
cause, before login, there is no session to which to bind
the CSRF token. To use secret validation tokens to pro-
tect against login CSRF, the site must first create a “pre-
session,” implement token-based CSRF protection, and then
transition to a real session after successful authentication.

Token Designs. There are a number techniques for gener-
ating and validating tokens:

• Session Identifier. The browser’s cookie store is de-
signed to prevent unrelated domains from gaining ac-
cess to each other’s cookies. One common design is to
use the user’s session identifier as the secret validation
token. On every request, the server validates that the
token matches the user’s session identifier. An attacker
who can guess the validation token can already access
the user’s account. One disadvantage of this technique
is that, occasionally, users reveal the contents of web

pages they view to third parties, for example via email
or uploading the web page to a browser vendor’s bug
tracking database. If the page contains the user’s ses-
sion identifier in the form of a CSRF token, anyone
who reads the contents of the page can impersonate
the user to the web site until the session expires.

• Session-Independent Nonce. Instead of using the
user’s session identifier, the server can generate a ran-
dom nonce and store it as a cookie when the user first
visits the site. On every request, the server validates
that the token matches the value stored in the cookie.
For example, the widely used Trac issue tracking sys-
tem [49] implements this technique. This approach
fails to protect against active network attackers, even
if the entire web application is hosted over HTTPS,
because an active network attacker can overwrite the
session-independent nonce (see Section 6.2) with his
or her own CSRF token value and proceed to forge a
cross-site request with a matching token.

• Session-Dependent Nonce. An refinement of the
nonce technique is to store state on the server that
binds the user’s CSRF token value to the user’s session
identifier. On every request, the server validates that
the supplied CSRF token is associated with the user’s
session identifier. This approach is used by CSRFx [19],
CSRFGuard [48], and NoForge [30] but has the disad-
vantage that the site must maintain a large state table
in order to validate the tokens.

• HMAC of Session Identifier. Instead of using server-
side state to bind the CSRF token to the session iden-
tifier, the site can use cryptography to bind the two
values. For example, the Ruby on Rails [46] web appli-
cation framework implements this technique and uses
the HMAC of the session identifier as a CSRF token.
As long as all the site’s servers share the HMAC key,
each server can validate that the CSRF token is cor-
rectly bound to the session identifier. Properties of
HMAC ensure that an attacker who learns a user’s
CSRF token cannot infer the user’s session identifier.

Given sufficient engineering resources, a web site can use
the HMAC technique to defend itself against CSRF attacks.
However, many web sites and CSRF defense frameworks
(such as NoForge [30], CSRFx [19] and CSRFGuard [48]),
fail to implement the secret token defense correctly. One
common mistake is to leak the CSRF token during cross-
site requests. For example, if the honest site appends the
CSRF token to hyperlinks another sites, that site gains the
ability to forge cross-site requests against the honest site.

Case Study: NoForge. NoForge [30] implements CSRF
defense using secret validation token bound to the session
identifier using server-side state. Instead of modifying the
web application to handle the CSRF token, NoForge parses
the site’s HTML as it is serialized onto the network and
appends the CSRF token to all hyperlinks and form submis-
sions. This technique is not robust for three reasons:

1. HTML dynamically created in the browser will not
be re-written to include the CSRF token. Some sites
create most of their HTML on the client. For example,
Gmail, Flickr, and Digg all use JavaScript to create
forms that require CSRF protection.

2. NoForge does not discriminate between hyperlinks back
to the web application and hyperlinks to other web
sites. If the web application links to another site, the
remote site will receive a copy of the user’s CSRF to-
ken. For example, if phpBB [44] adopted NoForge,
forum posters would receive a copy of the user’s CSRF
token if the user clicked a link in their post. Even
if NoForge discriminated between same-site and cross-
site hyperlinks, the HTTP Referer header would leak
the user’s CSRF token.

3. NoForge does not defend against login CSRF because
it only validates the CSRF token if the user already
has a session identifier. Although this oversight is re-
pairable, it demonstrates the complexity of implement-
ing secret token validation correctly.

Although each is repairable, these vulnerabilities illustrate
the complexity of implementing the secret validation tech-
nique correctly. CSRFx and CSRFGuard, as well as many
web sites, contain similar issues.

4.2 The Referer Header
In many cases, when the browser issues an HTTP request,

it includes a Referer header that indicates which URL ini-
tiated the request. The Referer header, if present, distin-
guishes a same-site request from a cross-site request because
the header contains the URL of the site making the request.
A site can defend itself against cross-site request forgery at-
tacks by checking whether the request in question was issued
by the site itself.

Unfortunately, the Referer contains sensitive information
that impinges on the privacy of web users [18]. For exam-
ple, the Referer header reveals the contents of the search
query that lead the user to visit a particular site. Although
this information is useful to web site owner, who can use
the information to optimize their search engine rankings,
this information disclosure leads some users to feel their pri-
vacy has been violated. Additionally, many organizations
are concerned [28] that confidential information about their
corporate intranets might leak to external web sites via the
Referer header.

Bugs. Historically, browsers and have contained vulnerabil-
ities that let malicious web sites spoof value of the Referer

header, especially in conjunction with proxy servers. Dis-
cussions of Referer spoofing often cite [32] as evidence that
browsers permit the Referer header to spoofed. Mozilla
has patched the Referer spoofing vulnerabilities in Fire-
fox 1.0.7 [15]. Internet Explorer currently contains known
Referer spoofing vulnerabilities [47], but these vulnerabili-
ties affect only XMLHttpRequest and can be used only to
spoof Referers directly back to the attacker’s own site.

Strictness. If a site elects to use the Referer header to de-
fend against CSRF attacks, the site’s developers must decide
whether implement lenient or strict Referer validation.

• In lenient Referer validation, the site blocks requests
whose Referer header has an incorrect value. If a re-
quests lacks the header, the site accepts the request.
Although widely implemented, lenient Referer valida-
tion is easily circumvented because a web attacker can
cause the browser to suppress the Referer header [27].
For example, requests issued from ftp and data URLs
do not carry Referer headers.

• In strict Referer validation, the site also blocks re-
quests that lack a Referer header. Blocking requests
that lack a Referer header protects against malicious
Referer suppression but incurs a compatibility penalty
as some browsers and network configurations suppress
the Referer header for legitimate requests. The mag-
nitude of this compatibility penalty is an empirical
question, which we investigate in Section 4.2.1.

Case Study: Facebook. Throughout the majority of its
site, Facebook uses secret token validation to protect against
CSRF. Facebook’s login form, however, uses lenient Referer
validation to defend against CSRF attacks. This approach
to login CSRF protection is ineffective against web attackers.
For example, a web attacker can redirect the user from http:

//attacker.com/ to ftp://attacker.com/index.html and
then issue a cross-site login request to Facebook. Because
it originates from an ftp URL, none of the major browsers
send a Referer header.

4.2.1 Experiment

To evaluate the compatibility of strict Referer validation,
we conducted an experiment to measure how often, and un-
der which circumstances, the Referer header is suppressed
during legitimate requests.

Design. Advertisement networks provide a convenient plat-
form for measuring browser and network characteristics [25].
To assess how often the Referer header is suppressed, we
purchased 283,945 advertisement impressions from 163,767
unique IP addresses using two advertisement networks from
5 April 2008 to 8 April 2008. On Ad Network A, we pur-
chased banner advertisements by bidding $0.50 per thou-
sand impressions for the keywords “Firefox,” “Game,” “In-
ternet Explorer,” “Video,” and “YouTube.” On Ad Net-
work B, we purchased interstitial advertisements by bidding
$5 per thousand impressions for the keywords “Ballet,”“Fi-
nance,”“Flowers,”“Food,” and “Gardening.” We spent $100
on each ad network, obtaining 241,483 impressions (146,310
unique IP addresses) on Ad Network A and 42,406 impres-
sions (18,314 unique IP addresses) on Ad Network B.

The advertisement was served from two machines in our
laboratory. The servers used two domain names purchased
through separate registrars. When displayed, the advertise-
ment generates a unique identifier that accompanies all sub-
sequent requests generated by the impression and randomly
chooses one of the two machines to be the primary server.
The primary server sends the client HTML that issues a
sequence of GET and POST requests to our servers, both
over HTTP and HTTPS. The requests are generated pro-
grammatically by submitting forms, requesting images, and
issuing XMLHttpRequests. The requests are generated in a
random order and occur automatically without involving the
user. When permitted by the browser security policy, the
advertisement generates both same-domain requests to the
primary server and cross-domain requests to the secondary
server. Each server cost $400, each domain name cost $7,
and each 90-day domain-validated HTTPS certificate was
obtained for free from a legitimate certificate authority.

Upon receiving network requests, the servers logged a
number of request parameters, including the Referer header,
the User-Agent header, the date, the client’s class C net-
work, and the session identifier. Using JavaScript, the servers
recorded the value of document.referrer DOM API as well.

The servers did not log the client’s IP address. To count
unique IP addresses, the servers instead logged the HMAC
of the client’s IP address using a randomly generated key,
which was discarded. None of the information recorded by
the servers is sufficient to individually identify the viewer of
the advertisement.

Ethics. The experimental design complied with the terms
of service of both advertisement networks. The actions taken
by the experiment are routine for web advertisements, which
typically request additional resources from advertisers, in-
cluding images, audio, and video. While the number of
HTTP requests generated by our advertisement is likely
greater than a typical advertisement, the bandwidth required
to run our advertisement is significantly smaller than a typ-
ical video advertisement. The servers logged only informa-
tion that is typically logged by advertisers when their ad-
vertisements are displayed. By not recording the client’s
IP address, our servers actually recorded significantly less
information than is recorded by commercial advertisers.

Results. Our observations are summarized in Figure 2 and
Figure 3. We observe the following results at the 95% con-
fidence level:

• Over HTTP, the Referer header is suppressed more
often for cross-domain requests than for same-domain
requests, both for POST (chi-square = 2130, p-value
< 0.001) and for GET (chi-square = 2175, p-value <

0.001) requests.

• The Referer header is suppressed more often for HTTP
requests than HTTPS requests for cross-domain POST
(chi-square = 6754, p-value < 0.001), for cross-domain
GET (chi-square = 6940, p-value < 0.001), for same-
domain POST (chi-square = 2286, p-value < 0.001),
and for same-domain GET (chi-square = 2377, p-value
< 0.001) requests.

• Over HTTP, the Referer header is suppressed more of-
ten than the document.referrer value for cross-domain
POST (chi-square = 3096, p-value < 0.001), for cross-
domain GET (chi-square = 3146, p-value < 0.001),
for same-domain POST (chi-square = 786, p-value <

0.001), and for same-domain GET (chi-square = 754,
p-value < 0.001) requests.

• The Referer header is suppressed more often on Ad
Network B than on Ad Nework A for all types of re-
quest, including HTTP cross-domain POST (chi-square
= 3060, p-value < 0.001), HTTP same-domain POST
(chi-square = 6537, p-value < 0.001), HTTPS cross-
domain POST (chi-square = 49.13, p-value < 0.001),
and HTTPS same-domain POST (chi-square = 44.52,
p-value < 0.001) requests.

• We also measured suppression of the custom headers
X-Requested-By (see Section 4.3) and Origin (see Sec-
tion 5). X-Requested-By was suppressed for 0.029–
0.047% of HTTP POST requests, for 0.084–0.112%
of HTTP GET requests, for 0.008–0.018% of HTTPS
POST requests, and for 0.009–0.020% of HTTPS GET
requests. Origin was suppressed for the same requests.

Discussion. There are two strong pieces of evidence that
the Referer header is usually suppressed in the network and
not in the browser.

0% 2% 4% 6% 8% 10% 12%

h�ps://x → h�ps://x POST

h�ps://x → h�ps://x GET

h�ps://x → h�ps://y POST

h�ps://x → h�ps://y GET

h�p://x → h�p://x POST

h�p://x → h�p://x GET

h�p://x → h�p://y POST

h�p://x → h�p://y GET

Ad Network A

Ad Network B

Figure 2: Requests with a Missing or Incorrect Referer Header (283,945 observations). The “x” and “y”
represent the domain names of the primary and secondary web servers, respectively.

1. The Referer header is suppressed more often for HTTP
requests than for HTTPS requests because network
proxies are able to remove the header from HTTP traf-
fic but are unable to tamper with HTTPS traffic. In
some corporate networks, a network proxy serves as
the HTTPS endpoint and can alter HTTPS requests,
but this configuration is fairly rare.

2. Browsers that suppress the Referer header also sup-
press the document.referrer value, but when Referer

is suppressed in the network, the document.referrer

value is not suppressed. If the Referer header were
suppressed in the browser, the browser would also sup-
press the value of document.referrer, but we observed
that the document.referrer is suppressed less often
than the Referer header.

In fact, most observations of the document.referrer value
being suppressed are explainable by two facts about spe-
cific browsers: the PlayStation 3 browser does not support
document.referer and Opera suppresses document.referrer
(but not the Referer header) for cross-site HTTPS requests.
The higher percentage of Referer suppression for XML-
HttpRequest is due to a bug in Firefox 1.0 and 1.5. These
observations indicates that extremely few browsers are con-
figured to block referrers.

There is also evidence that the Referer header is sup-
pressed due to privacy concerns. The user’s privacy is de-
graded to a greater extent when the browser sends a Referer

header from one site to another because the second site
learns about the user’s activities on the first site. By con-
trast, sending a Referer header back to the same site does
not incur much privacy cost because the site can easily cor-
relate multiple requests from the same user using cookies.
We observed more Referer blocking for cross-site requests
than for same-site requests, suggesting that the entity sup-
pressing the header is cognizant of the differential privacy
impact of these types of requests.

Conclusions. We draw two main conclusions:

1. CSRF Defense over HTTPS. The Referer header
can be used as a CSRF defense for HTTPS requests.

In order to use the Referer header as a CSRF de-
fense, a site must reject requests that omit the header
because an attacker can cause the browser to sup-
press the header. Over HTTP, sites cannot afford
to block requests that lack a Referer header because
they would cease to be compatible with the sizable
percentage (roughly 3–11%) of users. Over HTTPS,
however, strict Referer validation is feasible because
only a tiny percentage (0.05–0.22%) of browsers sup-
press the header. In particular, strict Referer valida-
tion is well-suited for preventing login CSRF because
login requests are typically issued over HTTPS.

2. Privacy Matters. Strict Referer validation is an
appealing CSRF defense because the defense is simple
to implement. Unfortunately, the poor privacy prop-
erties of the Referer header hamper attempts to use
the header for security over HTTP. New browser se-
curity features, including new CSRF defense mecha-
nisms, must address privacy concerns in order to be
effective in large-scale deployments.

4.3 Custom HTTP Headers
Custom HTTP headers can be used to prevent CSRF be-

cause the browser prevents sites from sending custom HTTP
headers to another site but allows sites to send custom HTTP
headers to themselves using XMLHttpRequest. For exam-
ple, the prototype.js JavaScript library [45] uses this ap-
proach and attaches the X-Requested-By header with the
value XMLHttpRequest. Google Web Toolkit also recom-
mends [16] that web developers defend against CSRF attacks
by attaching a X-XSRF-Cookie header to XMLHttpRequets
that contains a cookie value. The cookie value is not actu-
ally required to prevent CSRF attacks: the mere presence
of the header is sufficient.

To use custom headers as a CSRF defense, a site must
issue all state-modifying requests using XMLHttpRequest,
attach the custom header (e.g., X-Requested-By), and re-
ject all state-modifying requests that are not accompanied
by the header. For example, to defend against login CSRF,
the site must send the user’s authentication credentials to

0% 1% 2% 3% 4%

h�ps://x → h�ps://x

h�ps://x → h�ps://y

h�p://x → h�ps://x

h�p://x → h�ps://y

h�p://x → h�p://x

h�p://x → h�p://y

h�ps://x → h�p://x

h�ps://x → h�p://y

Image
Form
document.referrer

XMLH�pRequest

99.5%

99.7%

Opera

Firefox 1.x

Firefox 1.x

PS

PS

PS

PS

PS

PS

Figure 3: Requests with a Missing or Incorrect Referer Header on Ad Network A (241,483 observations). Opera
blocks cross-site document.referrer for HTTPS. Firefox 1.0 and 1.5 do not send Referer for XMLHttpRequest
due to a bug. The PlayStation 3 (denoted PS) does not support document.referrer.

the server via XMLHttpRequest. In our experiment, the
X-Requested-By header is correctly delivered to servers ap-
proximately 99.90–99.99% of the time, suggesting that this
technique works for a large percentage of users.

5. PROPOSAL: ORIGIN HEADER
To prevent CSRF attacks, we propose modifying browsers

to send a Origin header with POST requests that identifies
the origin that initiated the request. If the browser cannot
determine the origin, the browser sends the value null.

Privacy. The Origin header improves on the Referer header
by respecting the user’s privacy:

1. The Origin header includes only the information re-
quired to identify the principal that initiated the re-
quest (typically the scheme, host, and port of the ac-
tive document’s URL). In particular, the Origin header
does not contain the path or query portions of the URL
included in the Referer header that invade privacy
without providing additional security.

2. The Origin header is sent only for POST requests,
whereas the Referer header is sent for all requests.
Simply following a hyperlink (e.g., from a list of search
results or from a corporate intranet) does not send the
Origin header, preventing the majority of accidental
leakage of sensitive information.

By responding to privacy concerns, the Origin header will
likely not be widely suppressed.

Server Behavior. To use the Origin header as a CSRF
defense, sites should behave as follows:

1. All state-modifying requests, including login requests,
must be sent using the POST method [6]. In particu-
lar, state-modifying GET requests must be blocked in
order to address the forum poster threat model.

2. If the Origin header is present, the server must reject
any requests whose Origin header contains an unde-
sired value (including null). For example, a site could
reject all requests whose Origin indicated the request
was initiated from another site.

Security Analysis. Although the Origin header has a
simple design, the use of the header as a CSRF defense has
a number of subtleties.

• Rollback and Suppression. Because a supporting
browser will always include the Origin header when
making POST requests, sites can detect that a re-
quest was initiated by a supporting browser by ob-
serving the presence of the header. This design pre-
vents an attacker from making a supporting browser
appear to be a non-supporting browser. Unlike the
Referer header, which is absent when suppressed by
the browser, the Origin header takes on the value null
when suppressed by the browser.

• DNS Rebinding. In existing browsers, The Origin

header can be spoofed for same-site XMLHttpRequests.
Sites that rely only on network connectivity for au-
thentication should use one of the DNS rebinding de-
fenses in Section 2, such as validating the Host header.
This requirement is complementary to CSRF protec-
tion and also applies to all the other existing CSRF
defenses described in Section 4.

• Plug-ins. If a site opts into cross-site HTTP requests
via crossdomain.xml, an attacker can use Flash Player
to set the Origin header in cross-site requests. Opting
into cross-site HTTP requests also defeats secret to-
ken validation CSRF defenses because the tokens leak
during cross-site HTTP requests. To prevent these
(and other) attacks, sites should not opt into cross-
site HTTP requests from untrusted origins.

Adoption. The Origin header is similar to four other pro-
posals that identify the initiator of a request. The Origin

header improves and unifies these proposals and has been
adopted by several working groups.

• Cross-Site XMLHttpRequest. The proposed stan-
dard for cross-site XMLHttpRequest [50] included a
Access-Control-Origin header to identify the origin
issuing the request. This header is sent for all HTTP
methods, but it is sent only for XMLHttpRequests.
Our specification for the Origin header is modeled off
this header. The working group accepted our proposal
to rename the header to Origin.

• XDomainRequest. The XDomainRequest API [39]
in Internet Explorer 8 Beta 1 sends cross-site HTTP re-
quests that omit the path and query from the Referer

header. This truncated Referer header identifies the
origin of the request. Our experimental results sug-
gest that the Referer header is frequently blocked
by the network, whereas the Origin header is rarely
blocked. Microsoft has announced that it will adopt
our suggestion and rename XDomainRequest’s trun-
cated Referer header to Origin.

• JSONRequest. The JSONRequest API for cross-
site HTTP requests [7] included a Domain header that
identifies the host name of the requester. The Origin

improves on the Domain header by including the re-
quester’s scheme and port. The JSONRequest spec-
ification editor accepted our proposal to replace the
Domain header with the Origin header in order to de-
fend against active network attackers.

• Cross-Document Messaging. The HTML 5 spec-
ification proposes a new browser API for authenti-
cated client-side communication between HTML docu-
ments [20]. Each message is accompanied by an origin

property that cannot be overwritten. The process for
validating this property is the same as the process for
validating the Origin header, except that the valida-
tion occurs on the client rather than on the server.

Implementation. We implemented both the browser and
server components of the Origin header CSRF defense. On
the browser side, we implemented the Origin header in a
eight-line patch to WebKit, the open source component of
Safari, and in a 466 line extension to Firefox. On the server
side, we used the Origin header to implement a web appli-
cation firewall for CSRF in three lines of ModSecurity, a web
application firewall language for Apache; see Figure 4. These
rules validate that, for POST requests, the Host header and
the Origin header contain an acceptable values. These rules
implement CSRF protection without modification to the site
itself, provided GET requests are free of side effects (and
that browsers implement the Origin header).

6. SESSION INITIALIZATION
Login CSRF is one example of a more general class of

vulnerabilities in session initialization. After initializing a
session, the web server typically associates a user identity
with some form a session identifier. There are two types of
session initialization vulnerabilities, one in which the server

associates the honest user’s identity with the newly initial-
ized session and another in which the server associates the
attacker’s identity with the session.

• Authenticated as User. In some cases, the attacker
can force the site to use a predictable session identi-
fier for a new session. These vulnerabilities are often
referred to as session fixation vulnerabilities (see, for
example, [52]). After the user supplies their authenti-
cation credentials to the honest site, the site associates
the user’s authorization with the predictable session
identifier. The attacker can then access the honest
site direct using the session identifier and can act as
the user.

• Authenticated as Attacker. Alternately, the at-
tacker cause the honest site to begin a new session with
the user’s browser but force the session to be associated
with the attacker’s authorization. (Section 3 contains
examples of how this vulnerability can be exploited.)
The simplest form of this type of session initialization
vulnerability is login CSRF, but there are other ways
to force the user’s browser to participate in a session
associated with the attacker.

There are two common approaches to mounting an attack on
session initialization: HTTP requests and cookie overwrit-
ing. In the HTTP requests approach, a web attacker causes
the user’s browser to issue HTTP requests to the honest site
and confuse the site into incorrectly initializing a session. In
the cookie overwriting approach, a network attacker uses a
design flaw in Secure cookies to overwrite HTTPS cookies
from an unauthenticated HTTP connection.

6.1 HTTP Requests

OpenID. The OpenID protocol [13], used by many web
sites including LiveJournal, Movable Type, and Wordpress,
recommends that sites include a self-signed nonce to protect
against reply attacks, but does not suggest (nor do sites
implement) a mechanism to bind the OpenID session to
the user’s browser, letting a web attacker force the user’s
browser to initialize a session authenticated as the attacker:

1. Using his or her own machine, the web attacker visits
the Relying Party (such as Blogger) and begins the au-
thentication process with the Identity Provider (such
as Yahoo!).

2. In the final step of the OpenID protocol, the Iden-
tity Provider redirects the attacker’s browser to the
“return_to” URL of the Relying Party.

3. Instead of following the redirect, the attacker directs
the user’s browser to the return_to URL.

4. The Relying Party completes the OpenID protocol and
stores a session cookie in the user’s browser.

5. The user is now logged in as the attacker.

The specification states “the return_to URL MAY be used
as a mechanism for the Relying Party to attach context
about the authentication request to the authentication re-
sponse,” but this behavior is neither required nor imple-
mented by LiveJournal, Movable Type, or Wordpress.

SecRule REQUEST_HEADERS:Host !^www\.example\.com(:\d+)?$ deny,status:403

SecRule REQUEST_METHOD ^POST$ chain,deny,status:403

SecRule REQUEST_HEADERS:Origin !^(https?://www\.example\.com(:\d+)?)?$

Figure 4: ModSecurity rules needed to implement CSRF protection using the Origin header.

To defend against these attacks, the Relying Party should
generate a fresh nonce at the start of the protocol, store the
nonce in the browser’s cookie store and include the nonce in
the return_to parameter of the OpenID protocol. Upon re-
ceiving a positive identity assertion from the user’s Identity
Provider, the Replying Party should validate that the nonce
included in the return_to URL matches the nonce stored
the cookie store. This defense is similar to the secret token
validation technique and ensures that the OpenID protocol
session completes on the same browser as it began.

PHP Cookieless Authentication. PHP cookieless au-
thentication [37] is used by sites like Hushmail to avoid leav-
ing cookies on the user’s machine. Cookieless authentication
stores the user’s session identifier in a query parameter in-
stead. This technique fails to bind the session to the user’s
browser, letting a web attacker force the user’s browser to
initialize a session authenticated as the attacker:

1. Using his or her own machine, the web attacker logs
into the honest web site.

2. The web attacker redirects the user’s browser to the
URL currently displayed in the attacker’s location bar.
(Recall that the web attacker can navigate any top-
level frame in the user’s browser [5].)

3. Because this URL contains the attacker’s session iden-
tifier, the user is now logged in as the attacker.

To prevent this session initialization attack without cookies,
a site must use some other mechanism to bind to the ses-
sion identifier to the user’s browsers. For example, the site
could maintain a long-lived frame that contains the session
identifier token. This frame binds the session to the user’s
browser by storing the session identifier in memory.

Sites that use PHP cookieless authentication often contain
a session initialization vulnerability that lets a web attacker
impersonate an honest user:

1. Using his or her own machine, the web attacker visits
the honest web site’s login page.

2. The web attacker redirects the user’s browser to the
URL currently displayed in the attacker’s location bar.
(Recall that the web attacker can navigate any top-
level frame in the user’s browser [5].)

3. The user read the location bar, accurately determines
that displayed URL corresponds to the honest site, and
logs into the site.

4. Because the URL supplied by the attacker contains
the attacker’s session identifier, the attacker’s session
is now authenticated as the user.

This session fixation vulnerability has a number of standard
defenses [9]. For example, the site can regenerate the session
identifier after the user logs in.

6.2 Cookie Overwriting

Vulnerability. A server can include the Secure flag in the
Set-Cookie header to instruct the browser that the cookie
should be sent only over HTTPS connections. All modern
browsers respect this attribute, and it is commonly used to
protect sessions at high-security sites. However, the Secure

flag does not offer any integrity protection [40, 35, 34] in the
cross-scheme threat model. An active network attacker can
supply a Set-Cookie header over a HTTP connection to the
same host name as the site and install either a Secure or a
non-Secure cookie of the same name. When the browser
sends the cookie back to the site over HTTPS, the site has
no mechanism for determining whether the cookie has been
overwritten by the attacker. If the Secure cookie contains
the user’s session identifier, the attacker can mount an at-
tack on session initialization simply by overwriting the user’s
session identifier with his or her own session identifier.

Most often, this attack can be used to force the user’s
browser to initialize a session authenticated as the attacker.
There is little sites can do to protect themselves from this at-
tack because they require the browser to provide client-side
storage with integrity against network attackers. However,
some proposed browser features, such as localStorage [21],
provide the needed integrity to work around the deficiencies
of the Cookie header. Alternately, if a site maintains its
application-layer authentication session independently of its
cookie-based HTTP-layer session, a network attacker can
overwrite the user’s session cookie prior to authentication
and act as the user after the use authenticates to the site.

Security professionals have known for a number of years
that an active network attacker can overwrite Secure cook-
ies [29], but the browser vendors have been unable to find
a deployable defense. The vendors have considered prevent-
ing HTTP requests from overwriting Secure cookies, but
this defense cannot be deployed“without breaking standards
and existing web apps” [29]. Worse, this defense does not
actually provide cookie integrity because the Cookie header
provides no way to distinguish a Secure cookie from a non-
Secure cookie under either the de facto or the proposed
cookie standards [40, 35, 34].

Defense. To provide integrity without modifying the Cookie
header (and thereby maintain backwards compatibility), we
propose browsers report the integrity state of cookies using
a Cookie-Integrity header in HTTPS requests:

Cookie: SID=DQAAAHQA...; pref=ac81a9...; TM=1203...

Cookie-Integrity: 0, 2

The header identifies the index of the cookies in the re-
quest’s Cookie header that were set using HTTPS. If none
of the cookies in the request were set over HTTPS, the
Cookie-Integrity contains the value none. This header’s
integrity protection is complementary to the confidential-
ity provided by Set-Cookie’s Secure flag and is backwards-
compatible because servers ignore unrecognized headers. Be-
low are several design decisions:

• Bandwidth. Adding bytes to every HTTP request
increases the latency of all web traffic. To save band-
width, we include only the index of the cookies as they
appear in the Cookie header. Another proposal for
changing the behavior of cookies [43] includes a redun-
dant copy of the Cookie header named Cookie2.

• Multiplicity. If the current host sets a cookie with
the same name as a domain cookie, the Cookie header
can contain two cookies with the same name. Were the
Cookie integrity header to designate cookies by name,
this case could cause confusion. Designating cookies
by index avoids this difficulty.

• Rollback. Always including the Cookie-Integrity

header for HTTPS requests prevents a rollback attack.
If the header were absent when none of the cookies
had integrity, the server would be unable to distinguish
between a request in which none of the cookies had
integrity from a request issued by a down-level client
that did not support the Cookie-Integrity header.

• Sibling Domains. Consider a deployment in which a
registry-controlled domain, such as example.com, con-
tains a trusted and untrusted subdomain, www.example.
com and users.example.com, respectively. By setting
a domain cookie for .example.com, the untrusted do-
main can inject cookies into the trusted domain’s Cookie
header. The Cookie-Integrity header does not de-
fend against this attack, but an extension of the header
could by including the origin of each cookie (at the cost
of bandwidth and complexity).

We implemented the Cookie-Integrity header as a Fire-
fox extension with 202 lines of JavaScript. The extension
augments the cookie store to include an Integrity flag that
records which cookies were set using HTTPS.

7. RELATED WORK
Our analysis of the main existing CSRF defenses is pro-

vided in Section 4. In this section, we describe a few other
CSRF mitigations.

RequestRodeo. RequestRodeo [27] is a client-side CSRF
mitigation that strips implicit authorization information,
such as the Cookie header, from outgoing cross-site HTTP
requests. It aims to prevent CSRF by preventing the site
from associating cross-site requests with existing user ses-
sions. RequestRodeo is unable to prevent login cross-site
request forgery because the forged login request does not
require implicit authorization information to be used in an
attack. The authors of RequestRodeo conceptualize CSRF
as “Session Riding” and missed login CSRF because there is
no “session to ride”when forging a login request across sites.
Another limitation of RequestRodeo is that it breaks exist-
ing web site functionality because it cannot automatically
distinguish legitimate cross-site requests from attacks.

CAPTCHAs. Another proposal [3] for mitigating CSRF is
to require the user to solve a CAPTCHA [51] before allow-
ing an important request to proceed. Although CAPTCHAs
have many other applications, they offer few advantages over
secret validation tokens as a CSRF defense. If it is known
to the attacker which CAPTCHA is displayed, then the at-
tacker can manually solve CAPTCHAs and attack one user

per CAPTCHA solved, which is expensive but probably still
cost-effective. If the decision of which CAPTCHA to display
is a session-dependent secret, then this information could be
used as a session-dependent secret validation token without
burdening the user with the task of solving a CAPTCHA.

8. CONCLUSIONS AND ADVICE
Cross-site request forgery is a widely exploited vulner-

ability in web sites. Many web sites that have repaired
their CSRF vulnerabilities contain login CSRF vulnerabili-
ties that let an attacker force a user to authenticate as the
attacker. Based on our analysis and experiments, we recom-
mend different CSRF defenses for different use cases.

• Login CSRF. We recommend strict Referer valida-
tion to protect against login CSRF because login forms
typically submit over HTTPS, where the Referer header
is reliably present for legitimate requests. If a login re-
quest lacks a Referer header, the site should reject the
request to defend against malicious suppression.

• HTTPS. For sites exclusively served over HTTPS,
such as banking sites, we recommend strict Referer

validation to protect against CSRF. Sites should white-
list specific “landing” pages, such as the home page,
that accept cross-site requests.

• Third-party Content. Sites that incorporate third-
party content, such as images and hyperlinks, should
use a framework, such as Ruby-on-Rails, that imple-
ments secret token validation correctly. If such a frame-
work is unavailable, sites should spend the engineer-
ing effort to implement secret token validation and use
HMAC to bind the token to the user’s session.

In the long term, our proposed Origin header improves on
Referer header by eliminating the privacy concerns that
lead to Referer blocking, and eliminates the need for secret
token defenses, allowing sites to protect both HTTPS and
non-HTTPS requests without having to worry about keeping
secret tokens from leaking.

Future Work. To use the Origin header as a CSRF de-
fense, sites must take care not to perform side-effecting op-
erations in response to GET requests. Although required
by the HTTP specification, many sites do not adhere to this
discipline. Techniques for enforcing this discipline are an
important area of future work.

A variant on CSRF involves a web attacker embedding a
frame to an honest site and tricking the user into clicking
a button inside the frame [17]. Although this attack is not
technically a CSRF attack by our definition, the attack is
similar to CSRF in that an attacker causes the user’s browser
to issue a network request to an honest web site. The tra-
ditional defense for this attack is frame busting [33], but
this defense is problematic because it relies on JavaScript,
which might be disabled by the user or suppressed by the
attacker [23]. Another approach to preventing this attack
is to extend the Origin header to report the active frame’s
ancestors in the frame hierarchy, allowing the honest site to
reject requests that originate from within frames controlled
by the attacker.

9. REFERENCES

[1] David Airey. Google’s Gmail security failure leaves my
business sabotaged, December 2007. http://www.
davidairey.co.uk/google-gmail-security-hijack/.

[2] David Airey. An informal chat with Google, March
2008. http://www.davidairey.com/
google-site-links-gmail-hack-search-penalty/.

[3] Robert Auger. The cross-site request forgery
(CSRF/XSRF) FAQ, 2007. http:
//www.cgisecurity.com/articles/csrf-faq.shtml.

[4] Michael Barbaro and Tom Zeller Jr. A face is exposed
for AOL searcher no. 4417749. The New York Times,
August 2006. http://www.nytimes.com/2006/08/09/
technology/09aol.htm.

[5] Adam Barth, Collin Jackson, and John C. Mitchell.
Securing frame communication in browsers. In In
Proceedings of the 17th USENIX Security Symposium
(USENIX Security 2008), July 2008.

[6] Tim Berners-Lee, Roy Fielding, and Henrik Frystyk.
Hypertext Transfer Protocol—HTTP/1.0. RFC 1945,
May 1996.

[7] Douglas Crockford. JSONRequest, 2006.
http://json.org/JSONRequest.html.

[8] Neil Daswani, Christoph Kern, and Anita Kesavan.
Foundations of Security: What Every Programmer
Needs to Know. Apress, 2007.

[9] Rogan Dawes. Session Fixation, 2008.
http://www.owasp.org/index.php/Session_

Fixation_Protection.

[10] Rohit Dhamankar et al. Sans top-20 security risks,
2007. http://www.sans.org/top20/2007/.

[11] Rachna Dhamija, J. D. Tygar, and Marti Hearst. Why
phishing works. In Proceedings of the Conference on
Human Factors in Computing Systems (CHI), 2006.

[12] E. W. Felten, D. Balfanz, D. Dean, and D. S. Wallach.
Web Spoofing: An Internet Con Game. In 20th
National Information Systems Security Conference,
October 1997.

[13] Brad Fitzpatrick, David Recordon, Dick Hardt,
Johnny Bufu, Josh Hoyt, et al. OpenID authentication
2.0, December 2007. http://openid.net/specs/
openid-authentication-2_0.html.

[14] Seth Fogie, Jeremiah Grossman, Robert Hansen,
Anton Rager, and Petko D. Petkov. XSS Attacks:
Cross Site Scripting Exploits and Defense. Syngress,
2007.

[15] Mozilla Foundation. Security advisory 2005-58,
September 2005. http://www.mozilla.org/security/
announce/2005/mfsa2005-58.html.

[16] Google. Security for GWT Applications. http:
//groups.google.com/group/Google-Web-Toolkit/

web/security-for-gwt-applications.

[17] Robert Hansen and Tom Stracener. Xploiting Google
gadgets: Gmalware and beyond, August 2008. Black
Hat briefing.

[18] Elliotte Rusty Harold. Privacy tip #3: Block Referer
headers in Firefox, October 2006.
http://cafe.elharo.com/privacy/privacy-tip-3

-block-referer-headers-in-firefox/.

[19] Mario Heiderich. CSRFx, 2007.
http://php-ids.org/category/csrfx/.

[20] Ian Hickson et al. Cross-document messaging.
http://www.w3.org/html/wg/html5/

#crossDocumentMessages.

[21] Ian Hickson et al. HTML 5 Working Draft. http:
//www.whatwg.org/specs/web-apps/current-work/.

[22] Dan Holevoet. Changes to inline gadgets, August
2008. http://igoogledeveloper.blogspot.com/
2008/08/changes-to-inlined-gadgets.html.

[23] Collin Jackson. Defeating frame busting techniques,
2005. http://crypto.stanford.edu/framebust/.

[24] Collin Jackson and Adam Barth. ForceHTTPS:
Protecting high-security web sites from network
attacks. In Proceedings of the 17th International
World Wide Web Conference (WWW), April 2008.

[25] Collin Jackson, Adam Barth, Andrew Bortz, Weidong
Shao, and Dan Boneh. Protecting browsers from DNS
rebinding attacks. In Proceedings of the 14th ACM
Conference on Computer and Communications
Security (CCS 2007), November 2007.

[26] Collin Jackson, Andrew Bortz, Dan Boneh, and
John C. Mitchell. Protecting browser state from web
privacy attacks. In Proceedings of the 15th
International World Wide Web Conference (WWW),
May 2006.

[27] Martin Johns and Justus Winter. RequestRodeo:
Client side protection against session riding. In
Proceedings of the OWASP Europe 2006 Conference,
May 2006.

[28] Aaron Johnson. The Referer header, intranets and
privacy, February 2007.
http://cephas.net/blog/2007/02/06/

the-referer-header-intranets-and-privacy/.

[29] Paul Johnston and Richard Moore. Multiple browser
cookie injection vulnerabilities, September 2004.
http://www.westpoint.ltd.uk/advisories/

wp-04-0001.txt.

[30] Nenad Jovanovic, Engin Kirda, and Christopher
Kruegel. Preventing cross site request forgery attacks.
In IEEE International Conference on Security and
Privacy in Communication Networks (SecureComm),
2006.

[31] Chris Karlof, Umesh Shankar, J. D. Tygar, and David
Wagner. Dynamic pharming attacks and locked
same-origin policies for web browsers. In Proceedings
of the 14th ACM Conference on Computer and
Communications Security (CCS 2007), November
2007.

[32] Amit Klein. Exploiting the XMLHttpRequest object
in IE—Referrer spoofing and a lot more. . . , September
2005. http:
//www.cgisecurity.com/lib/XmlHTTPRequest.shtml.

[33] Peter-Paul Koch. Frame busting.
http://www.quirksmode.org/js/framebust.html.

[34] David Kristol and Lou Montulli. HTTP State
Management Mechanism. RFC 2965, October 2000.

[35] David Kristol and Lou Montulli. HTTP State
Management Mechanism. RFC 2109, February 1997.

[36] V. T. Lam, Spiros Antonatos, P. Akritidis, and
Kostas G. Anagnostakis. Puppetnets: Misusing web
browsers as a distributed attack infrastructure. In
Proceedings of the 13th ACM Conference on Computer

and Communication Security (CCS), October 2006.

[37] PHP Manual. Session handling functions. http:
//www.phpbuilder.com/manual/en/ref.session.php.

[38] Chris Masone, Kwang-Hyun Baek, and Sean Smith.
WSKE: Web server key enabled cookies. In
Proceedings of Usable Security 2007 (USEC ’07).

[39] Microsoft. XDomainRequest object.
http://msdn2.microsoft.com/en-us/library/

cc288060(VS.85).aspx.

[40] Netscape. Persistent client state: HTTP cookies.
http:

//wp.netscape.com/newsref/std/cookie_spec.html.

[41] Greg Pass, Abdur Chowdhury, and Cayley Torgeson.
A picture of search. In InfoScale ’06: Proceedings of
the 1st International Conference on Scalable
Information Systems, 2006.

[42] Petko D. Petkov. Google Gmail e-mail hijack
technique, September 2007.
http://www.gnucitizen.org/blog/

google-gmail-e-mail-hijack-technique/.

[43] Yngve Pettersen. HTTP state management
mechanism v2. IETF Internet Draft, February 2008.
http://www.ietf.org/internet-drafts/

draft-pettersen-cookie-v2-02.txt.

[44] phpBB. http://phpbb.com/.

[45] Prototype JavaScript framework.
http://www.prototypejs.org/.

[46] Ruby on rails. http://www.rubyonrails.org/.

[47] Secunia. Microsoft Internet Explorer “XMLHTTP”
HTTP request injection, September 2005.
http://secunia.com/advisories/16942/.

[48] Eric Sheridan. OWASP CSRFGuard Project, 2008.
http://www.owasp.org/index.php/CSRF_Guard.

[49] Trac. http://trac.edgewall.org/.

[50] Anne van Kesteren et al. Access control for cross-site
requests. http://www.w3.org/TR/access-control/.

[51] Luis von Ahn, Nick Hopper Manuel Blum, and John
Langford. CAPTCHA: Using hard AI problems for
security. In Eurocrypt 2003.

[52] Weilin Zhong. Session Fixation, 2008. http:
//www.owasp.org/index.php/Session_Fixation.

