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Robust Deformable and Occluded Object

Tracking With Dynamic Graph
Zhaowei Cai, Longyin Wen, Zhen Lei, Member, IEEE, Nuno Vasconcelos, Senior Member, IEEE,

and Stan Z. Li, Fellow, IEEE

Abstract— While some efforts have been paid to handle
deformation and occlusion in visual tracking, they are still great
challenges. In this paper, a dynamic graph-based tracker (DGT)
is proposed to address these two challenges in a unified frame-
work. In the dynamic target graph, nodes are the target local
parts encoding appearance information, and edges are the
interactions between nodes encoding inner geometric structure
information. This graph representation provides much more
information for tracking in the presence of deformation and
occlusion. The target tracking is then formulated as tracking
this dynamic undirected graph, which is also a matching prob-
lem between the target graph and the candidate graph. The
local parts within the candidate graph are separated from the
background with Markov random field, and spectral clustering
is used to solve the graph matching. The final target state
is determined through a weighted voting procedure according
to the reliability of part correspondence, and refined with
recourse to a foreground/background segmentation. An effective
online updating mechanism is proposed to update the model,
allowing DGT to robustly adapt to variations of target structure.
Experimental results show improved performance over several
state-of-the-art trackers, in various challenging scenarios.

Index Terms— Visual tracking, dynamic graph, graph
matching, deformation, occlusion.

I. INTRODUCTION

V
ISUAL tracking is an important problem in computer

vision, with applications in video surveillance, human-

computer interaction, behavior analysis, etc. The development

of a robust visual tracking algorithm is difficult due to

challenges such as shape deformation, occlusion, and appear-

ance variability. In particular, challenging deformation and
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occlusion are ubiquitous in tracking problems. While many

trackers [2], [15], [29] have considered occlusion, only a

few works [20], [40] have addressed the problem of shape

deformation. In this paper, we approach the two challenges in

a unified framework, dynamic graph based tracking, because

graph representation intuitively owns the power to recognize

the geometric deformable target, and to accurately localize the

occluded target with the other unoccluded parts of the target.

Recent trackers achieve high tracking accuracy and robust-

ness mainly through three aspects: feature, appearance model

and structure information. Features commonly used with dif-

ferent properties include pixel values [23], color [2], [8],

[30], [40], and texture descriptors [3], [14]. The appear-

ance model is used to characterize the target, such as color

distribution [8], [30], subspaces [23], [42], Support Vector

Machine [37], Boosting [3], [14], [19] and sparse repre-

sentation [24], [29], [45]. Finally, an increasing number of

trackers capture the structure information [2], [16], [20], [36],

[41], [43], similar to the popular approaches in object

detection [12], recognition [31], etc. The inner structure can

be particularly useful for tracking when deformation and

occlusion are prevalent.

In this paper, we design a dynamic graph based

tracker (DGT), which exploits the inner geometric struc-

ture information of the target. This structure information is

generated by oversegmenting the target into several parts

(superpixels) and then modeling the interactions between

neighboring parts. Both the appearances of local parts and their

relations are incorporated into a dynamic undirected graph.

The tracking problem is then posed as the tracking of this

undirected graph, which is also a matching problem between

the target graph G(V , E) and the candidate graph G′(V ′, E ′).
The candidate target parts are obtained, at the beginning

of every tracking step, by foreground/background separation,

using Markov Random Field. The undirected candidate graph

is then assembled with these obtained candidate parts and their

geometric interactions. At the step of graph matching, motion,

appearance and geometric constraints are exploited to produce

a less-noisy and more discriminative graph affinity matrix.

The optimal matching from candidate graph to target graph

is interpreted as finding the main cluster from the affinity

matrix, using spectral technique [22]. The location of the

target is determined by a voting process, where successfully

matched parts vote for a particular location with strength

proportional to the reliability of their correspondence. Finally,

the target location and scale are adjusted with recourse to a

foreground/background segmentation.
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The main contributions of this work are as follows1:

• We represent the target as a graph and formulate track-

ing as graph matching problem, between a candidate

graph and the target graph. This graph representation

has advantage of jointly accounting for deformation and

occlusion.

• The geometric structure information is exploited through-

out the proposed target representation, selection of candi-

date parts, graph matching and target location processes.

The geometric structure provides additional useful infor-

mation besides appearance for visual tracking.

• We construct the affinity matrix for matching based

on motion, appearance and geometric constraints,

which efficiently suppress the noise and decreases the

complexity.

The remainder of the paper is organized as follows.

Section II reviews related works. Section III discusses the

target representation by an undirected graph and the formu-

lation of tracking as graph matching. In details, Section IV

describes the procedure of constructing the candidate graph,

local parts correspondence with spectral matching is discussed

in Section V, Section VI describes the target location strategy

and Section VII the online updating. Experimental results

and discussions are presented in Section VIII, and some

conclusions in Section IX.

II. RELATED WORKS

Most tracking approaches represent the target as a bounding

box template. An incremental subspace is modeled in [23]

to represent the target, which shows robustness against illu-

mination variations. Some trackers [14], [37] employ binary

classifier (e.g. SVM or Boosting) to model the difference

between target and background. To enhance robustness,

[21] decomposes a tracker into several small trackers,

[42] proposes a combination of temporal and spatial context

information, [28] relies on saliency, and [18] introduces a

detector in the tracking process. None of these methods

consider either deformation or occlusion.

Some other methods have made an effort to address occlu-

sion. Adam et al. [2] have shown that evenly segmenting

the target into horizontal and vertical patches can improve

robustness to partial occlusion. [24], [29], [45] used a sparse

representation to reconstruct the target from a set of appear-

ance features. This is relatively insensitive to occlusion since

they use a large set of trivial templates. [3] adopted a mul-

tiple instance learning strategy to minimise the effects of

occlusion during the learning of a target/background classifier.

Grabner et al. [15] introduced context information to overcome

wholly occlusion problem, and the results seem pretty good.

Nevertheless, these methods ignore the deformation problem.

Part-based model is a sensible solution to deformation chal-

lenge. Several strategies have been proposed to generate local

parts in visual tracking: equal division [2], [7], [42], manual

partition [34], oversegmentation [16], [32], [40], [41], kernel

displacement [44], key-point [20], [36], etc. These methods

1Part of this work was presented in [6].

have different merits and limitations. For example, although

the target is represented as manually located parts in [34],

only limited structure information is captured and the relation

between local parts does not evolve over time. The strat-

egy in [2] lacks adaptivity needed to handle large structure

deformation. [20], [36] generate local parts with the help of

key-point mechanism. This improves robustness to scale and

rotation. On the other hand, the parts (superpixels) generated

by oversegmentation in [16], [32], [40], and [41] enables

a richer characterization of the target, allowing finer part

discrimination. Finally, the parts (attentional regions) selected

by kernel displacement in [44] are psychologically meaningful,

sensitive to motion and reliable for tracking.

The representation of the target from the local parts is a

critical issue for part-based tracking. In [40], the target is

represented as a collection of individual parts. It is assumed

that there is no dependence between parts, nor any dependence

between parts and target. This is computationally efficient but

results in the lack of any structural constraints. Another com-

putationally feasible representation is the star model, which

encodes dependence between parts and the target center, but

no inter-part dependence. Although this model has been shown

effective for tracking [2], [20], [34], [41], [43], [44], these

trackers only utilize limited geometric structure information.

Besides, the connections between target center and parts are

usually rigid, reducing the flexibility against deformation.

To address this problem, the star model in [12] assigns costs

on the geometric connections, allowing real deformation.

To sufficiently exploit the inner geometric structure infor-

mation for visual tracking, undirected graph is an appropri-

ate choice [16], [36]. Tang et al. [36] introduced attributed

relational feature graph (ARG) into tracking, whose nodes

represent appearance descriptors of parts while edges account

for part relationships. The optimal state is found in a

probabilistic framework, and graph matching optimized by

Markov Random Field is used to compute the likelihood of

sample targets. An alternative ARG tracker has been proposed

by Graciano et al. [16]. The recognition is performed by

inexact graph matching, which consists of finding an approx-

imate homomorphism between ARGs derived from an input

video and a model image. Like these approaches, the proposed

dynamic graph tracker represents the target as an undirected

graph, and formulate tracking as graph matching. However, we

exploit graph representation to jointly account for deformation

and occlusion challenges. Moveover, our tracker performs

very well in long-term sequences and adapts to large target

structure variations because of the effective online learning

strategies.

Video segmentation [17] also relates to our work, since

the separation of candidate target parts from background in

our tracker is accomplished by segmentation in terms of

superpixel. Segmentation is widely used in tasks such as

detection [13], recognition [38] and tracking [26], [32], [40],

because segmentation can 1) introduce prior for searching,

2) obtain semantic region and 3) extract edge information.

Since, in our work, the goal of segmentation is simply

to produce candidate parts, not solve the tracking prob-

lem itself, we choose to use simple segmentation methods.
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Fig. 1. The framework illustration of our tracker. (a) is the target initialization, (b) the target graph, (c) the superpixel oversegmentation in the tracking
window, (d) the segmented candidate local parts and the candidate graph, (e) the correspondence results, and (f) the illustration of our weighted voting, where
green circle is the voted center for single correspondence and the magenta cross is the final voted center. The bigger the green circle is, the more reliable the
correspondence is. The numbers in (e) and (f) correspond to the node indices in (b).

Rough segmentation at the level of superpixel is enough

because the correspondence of local parts is more important.

III. TRACKING WITH GRAPH REPRESENTATION

The goal of visual tracking is to sequentially identify the

location of the target in a set of video frames. As illustrated

in Fig. 1(a), the target is represented as a set of local parts

{Ti}nP

i=1, obtained by [1]. Part Ti is characterized by a feature fi ,

a location li , and its offset Ri = lc − li to the target center lc.

A popular way to track the individual local parts is within

Maximum a Posterior (MAP) estimation. Instead, we view the

tracking of individual local parts as a matching problem here,

after obtaining the set of candidate local parts {Ti′}
nQ

i ′=1
from

current frame with some operators, such as oversegmenta-

tion [1] and SIFT [25]. The local part Ti is successfully tracked

as Ti ′ when the correspondence cii ′ = (Ti , Ti ′ ) between them

is true. It is common to represent the correspondence by an

assignment matrix Z ∈ {0, 1}nP ×nQ , where zii ′ = 1 means Ti

corresponds to Ti ′ , otherwise, zii ′ = 0. The assignment matrix

Z is reshaped into a row assignment vector z ∈ {0, 1}nP nQ .

Then, the optimal correspondence result will be obtained by

finding z∗ that maximizes a score function S(z):

z∗ = arg max
z

S(z) (1)

s.t . Z1nQ×1 ≤ 1nP ×1, ZT 1nP ×1 ≤ 1nQ×1

where 1n×1 denotes all-ones column vector with size n.

The optimization constrains guarantee a one-to-one matching

between {Ti}nP

i=1 and {Ti′}
nQ

i ′=1
.

For unary appearance information only, we construct the

unary affinity matrix A0 ∈ R
nP ×nQ between {Ti}nP

i=1 and

{Ti′}
nQ

i ′=1
. Each entry in A0 indicates the appearance similarity

between two local parts:

aii ′ = �1(ci,i ′ ) = �1(Ti , Ti ′ ) (2)

Then, the score function is

S(z) = zT a (3)

where a ∈ R
nP nQ is a column-wise vectorized replica of A0.

Although the tracking result can be obtained through (1) with

unary appearance information only, the result is not robust

because unary appearance information is not reliable enough,

especially for color histogram based local parts. Therefore, we

integrate the pairwise mutual relation between local parts, and

then construct the affinity matrix A ∈ R
nP nQ×nP nQ :

A = A1 + A2 (4)

where A1 ∈ R
nP nQ×nP nQ is a diagonal matrix whose diagonal

vector is a in (3), and A2 ∈ R
nP nQ×nP nQ is the pairwise

affinity matrix. Each entry in A2 indicates the relation between

two correspondences:

a
î, ĵ

= a(i−1)nQ+i ′,( j−1)nQ+ j ′

= �2(cii ′ , c j j ′) = �2(Ti , Ti ′ , T j , T j ′) (5)

Then, the score function in (3) is reformulated as

S(z) = zT Az (6)

The optimization of the above score function is a conventional

graph matching problem between the target graph G(V , E)

whose vertices set is {Ti}nP

i=1 , Fig. 1(b), and the candidate

graph G′(V ′, E ′) whose vertices set is {Ti′}
nQ

i ′=1
, Fig. 1(d). After

the optimal correspondences being determined, the optimal

tracking results of the target parts are achieved.

Based on the above discussion, we view part-based object

tracking as graph matching problem. In this framework, the

appearance and inner structure of the target can be well

integrated. Instead of representing the target as the collection

of local parts or star model, we represent the target as an

undirected graph, as shown in Fig. 1(b). Given the target graph

G(V , E) and the candidate graph G′(V ′, E ′), our goal is to find

the optimal correspondence between them, and to determine

the optimal target state based on the correspondence results,

as shown in Fig. 1(e) and (f).

IV. CANDIDATE GRAPH CONSTRUCTION

Given the current frame, a candidate graph is needed to be

constructed to match the target graph. The simplest way is

to connect all of the parts in the tracking window Fig. 1(c)

without any pre-processing. However, a lot of noise will be

introduced and the complexity will be exponentially high in

that way. Therefore, we rely on a pre-processing strategy to

construct a less-noisy candidate graph.
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A. Candidate Local Parts Collection

In this work, we use superpixels as parts. A set of parts

{Tp} is first extracted from the current frame using Simple

Linear Iterative Clustering (SLIC) [1], as shown in Fig.1(c).

A rough foreground/background separation is then used as

the pre-processing strategy to collect candidate target parts

from {Tp}. This is based on a Markov Random Field (MRF)

energy function:

E(B) =
∑

p∈S

Dp(bp) +
∑

p,q∈N

Vp,q(bp, bq) (7)

where B = {bp|bp ∈ {0, 1}, p ∈ S} is the labeling of

superpixels set {Tp}, bp an indicator function for part Tp

(bp = 1 if Tp belongs to foreground and bp = 0 otherwise),

Dp(bp) a unary potential associated with superpixel Tp, and

Vp,q(bp, bq) a pairwise potential for interacting superpixels Tp

and Tq. S is the set of superpixels in the tracking window, and

N the set of pairs of interacting superpixels with shared edges

(red lines in Fig. 1(c)). The minimization of (7) can be found

with several algorithms [35], and Graph Cut [5] is used here

because its high running efficiency fits in tracking problem.

In (7), the unary potential Dp(bp) is a weighted combination

Dp(bp) = αD
g
p(bp) + Dd

p(bp) (8)

of a generative color histogram potential D
g
p(bp) and a dis-

criminant SVM classifier potential Dd
p(bp). α = 0.1 is a

constant to balance the influences of the two potential terms.

The generative potential is of the form

D
g
p(bp) =

⎧
⎨
⎩

− 1
Np

∑Np

i=1 log P(Ci|Hb) bp = 1

− 1
Np

∑Np

i=1 log P(Ci|Hf ) bp = 0
(9)

where H f and Hb are normalized RGB color histograms of

the target and the background, respectively, Ci is the RGB

value of pixel i, and Np the number of pixels in superpixel Tp .

P(Ci |H) is the probability of Ci within histogram H. The

discriminant potential is the classification score of an online

SVM [4] classifier trained from RGB color features extracted

from the target and the background superpixels,

Dd
p(bp) =

⎧
⎪⎪⎨
⎪⎪⎩

λŷ( f p) ŷ( f p) ≥ 0, bp = 1

1 − λŷ( f p) ŷ( f p) ≥ 0, bp = 0

ŷ( fp) ŷ( f p) < 0, bp = 1

1 − ŷ( f p) ŷ( f p) < 0, bp = 0

(10)

where ŷ(fp) = w · �( f p) + b is the SVM discriminant, and

fp is the color feature of Tp. λ = 15 is a constant that

strengthens the influence of SVM classifier when it classifies

Tp as foreground, because we want to keep true foreground

superpixels as many as possible. Vp,q(bp, bq) captures the

discontinuity between two neighboring superpixels which is

viewed as smoothness term:

Vp,q(bp, bq) = exp
{
−D( f p, fq )

}
(11)

where D(, ) is the X 2 distance between color features through-

out this paper. It encourages the target to be a collec-

tion of connected parts of similar appearance, as shown in

Fig. 1(d). Finally, the candidate part set is collected, {Ti′}
nQ

i ′=1
=

{Tp|bp = 1}.

B. Graph Construction

There are mainly three popular methods for graph con-

struction: the ε-neighborhood graph, the k-nearest neighbor

graph, and the fully connected graph [39]. Given the candidate

part set {Ti′}
nQ

i ′=1
, we adopt the method of ε-neighborhood

to construct the candidate graph G′(V ′, E ′), whose vertices

set V ′ and edges set E′ are

V ′ = {Ti′}
nQ

i ′=1

E′ = {ei ′ j ′|dist (Ti ′ , T j ′) ≤ ε} (12)

where dist (, ) is the geometric distance between two local

parts, and ε = rθd . θd = 2 is the constant, and r =√
W · H/Ns is the approximate diameter of superpixels

throughout this paper, W and H are the width and height of

the tracking window respectively and Ns is the number of

superpixels in the tracking window. The resulting candidate

graph is illustrated in Fig. 1(d). It could be noted that ε is fixed,

in which case the graph inconsistency may arise when the

target undergoes large scale variation. Since the target graph

keeps updating, the problem could be effectively overcome.

V. LOCAL PARTS CORRESPONDENCE WITH

SPECTRAL MATCHING

The core component of the proposed part-based tracker

is the determination of part correspondences across frames.

A good correspondence result prevents our tracker from being

dominated by segmentation. Even when the output of the

foreground/backbround separation step contains some noise,

the local parts correspondence step still can determine the most

similar subgraph to the target graph, and the noisy parts have

small influence on the final target location.

A. Affinity Matrix Construction

As discussed in Section III, the affinity matrix A consists

of two parts: the unary appearance affinity matrix A1 and the

pairwise relation affinity matrix A2. The unary affinity in (2)

encodes vertex-to-vertex appearance similarity:

�1(cii ′ ) = �1(Ti , Ti ′ ) = exp
{

− 1

ε2
1

(D( fi , fi ′ ))
2
}

(13)

where ε1 = 1/
√

2 is the Gaussian kernel bandwidth. The pair-

wise affinity in (5) encodes edge-to-edge geometric relation:

�2(cii ′ , c j j ′) = �2(Ti , Ti ′ , T j , T j ′)

= exp
{

− 1

ε2
2

||(li − l j ) − (li ′ − l j ′)||22
}

(14)

where ε2 = r/
√

2 is the Gaussian kernel bandwidth and li the

location of part Ti . �1 indicates how well an individual assign-

ment cii ′ is matched, and �2 denotes how well the two geo-

metrically pairwise assignments cii ′ and c j j ′ are compatible.

Color appearance information encoded in �1 is usually weak,

especially for superpixels. However, the geometric information

encoded in �2 provides much more complementary infor-

mation besides appearance for graph matching, as shown in

Fig. 3. Also note that although �2 does not encourage large

scaling and rotation, it is elastic on the geometric relation,
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Fig. 2. The construction of the affinity matrix with noisy input. (a) is the two graphs that are needed to be matched, 123-1′2′3′ is the correct matching, and the
color represents appearance. (b) is the affinity matrix built by 5-nearest neighbor way and (c) built by combing 5-nearest neighbor way and 0.3-neighborhood
way. The red borders represent right correspondences, and the green borders represent the selected correspondences by spectral matching. The rightmost
column of (b) and (c) is the spectral matching probability. The affinity matrix in (c) is of lower complexity and more resistance to noise than the one in (b).
The spectral matching result in (b) is wrong, but it is correct in (c).

Fig. 3. (a) is matching results of A optimized by spectral technique, and
(b) the matching results of A1 optimized by greedy strategy, where red lines
mean good correspondences and yellow lines represent bad ons.

enabling the model to tolerate scaling and rotation to some

degree.

The dimension of A is n P nQ × n PnQ , which means any

vertex in G(V , E) can be potentially matched to any vertex

in G′(V ′, E ′), and vice versa. However, the overwhelming

number of potential assignments is unreasonable in matching

task [10]. To reduce complexity, we need to prune A.

Similar to the graph construction methods in Section IV-B,

there are also three main ways to select potential assign-

ments for single vertex: the ε-neighborhood way, the

k-nearest neighbor way, and the fully connected way. But at

this time the neighborhood measure is the feature distance

instead of the geometric distance. The first two choices will

shrink the size of A, but the last one not. The ε-neighborhood

way will select many potential assignments for parts whose

appearance is not discriminative, and only a few ones for

discriminative parts. This may make the probability of the

undiscriminative correspondence larger over that of the dis-

criminative correspondence in matching process. The main

alternative in the literature, k-nearest neighbor, is also found

to have problems: the requirement that every vertex has k

potential assignments leads to the selection of many potential

assignments that are clearly impossible. To overcome the

problems of these two strategies, we combine them. Besides,

we introduce movement constraints. Only if Ti ′ and Ti obey

the motion constraint, will they potentially be matched, which

is ||li − li ′ ||2 ≤ rδ, where δ = 3 is a constant. With the intro-

duction of motion constraint, graph matching fits into tracking

better.

Based on the above discussion, the potential assignments

set Fi for every single local part is

Fi =
{

cii ′ |i ′ ∈ N i
k , �1(Ti , Ti ′ ) ≥ η, ||li − li ′ ||2 ≤ rδ

}
(15)

where N i
k is the k-nearest neighborhood of part Ti in feature

space, k = 5 and η = 0.3. As displayed in Fig. 2(c), with

this strategy, a discriminative and less-noisy affinity matrix

with dimension d =
∑nP

i=1 |Fi | is constructed, and our tracker

will be protected from drifting across structurally similar

distracters, as happens in Fig. 2(b).

After obtaining the whole potential assignment set {Fi}nP

i=1,

we need to fill in the non-diagonal entries in the affinity

matrix A ∈ R
d×d . Usually, A is sparse because only the

assignments that are compatible with each other will support

each other during the matching process. At first, the pairwise

affinity �2(cii ′ , c j j ′) is computed with (14) if there exists

edges ei j and ei ′ j ′ . However, this constraint is too weak such

that many incompatible assignments will support each other

too. For example, 16′ and 24′ in Fig. 2(a) are two obvious

incorrect assignments, but they still support each other in

the affinity matrix in Fig. 2(b). While a single inappropriate

support will not corrupt the affinity matrix, their existence does

matter if there exist too many of them. Therefore, another two

constraints (from distance and intersection angle) are adopted

here to filter out those noisy entries:

||(li − l j ) − (li ′ − l j ′)||2 < rθdist

arccos
(li − l j ) · (li ′ − l j ′)

||(li − l j )||2||(li ′ − l j ′)||2
< πθangle (16)

where θdist = 2 and θangle = 5
8

in our experiments.

It is reasonable to constrain the distance and rotation angle

changes here, since the task is tracking and the target graph

keeps updating sequentially. Most of the reasonable supporting

correspondence pairs will meet these constraints. With their

help, some inappropriate supports will be filtered out, the one

between 16′ and 24′ for instance. Fig. 2(c) illustrates how a

less-noisy affinity matrix is helpful for robust graph matching.

B. Spectral Matching

The optimization problem of (1) with the score function (6)

can be solved by various approaches, such as quadratic
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programming [27], spectral technique [9], [22], etc. In this

work, we adopt the spectral method, mostly for its reduced

complexity. It equates the graph matching solution to finding

the main cluster in the assignment graph. We start by consid-

ering the following program:

x∗ = arg max
x

xT Ax

xT x
s.t . xT x = 1 (17)

This optimization can be conventionally solved by eigenvector

technique by Raleigh’s ratio theorem, and x∗ is well known to

be the leading eigenvector of A. Since the unary and pairwise

affinity components of (13) and (14) are based on Gaussian

kernels, and the graph is undirected, guaranteeing that A is

symmetric and nonnegative, x∗ is known to exist and be

nonnegative, by Peron-Frobenius theorem [22].

x∗ ∈ R
d is a soft assignment vector, instead of the binary

assignment indicator vector z∗ ∈ R
d . Based on the discussions

in [10] and [22], every element in x∗ can be viewed as

the probability P(cii ′ ) of the corresponding assignment cii ′ .

But it does not lead the optimized results to be sparse and

binary due to the l2-norm constraint ||x||2 = 1. Therefore,

we need a discretization strategy to map x∗ into z∗. A simple

greedy approach is enough here, whose performance has been

demonstrated in [22]. Fig. 3 shows the matching performance

is dramatically improved by including pairwise geometric

relation besides unary appearance information.

VI. RELIABLE TARGET LOCATION

Given the part correspondence set C = {i i ′|zii ′ = 1}, it

remains to determine the location lc and scale s = (w, h) of

the target, where w is the target width and h its height. Every

single correspondence cii ′ can be seen as a single tracker, and

n successful correspondences mean n trackers. The target

center for cii ′ is

lii ′
c = li ′ + Ri ′ (18)

where the offset Ri ′ = Ri because Ti and Ti ′ are corresponding

parts. It must take into account that not all correspondence are

equally reliable, thus the goal of this section is to determine

the robust target state based on the correspondences, boost-

ing the reliable ones and suppressing the other noisy ones.

The reliability of the correspondence between Ti and Ti ′ is

measured with

ω′
ii ′ = �1(cii ′ )

( 1

|Ni |
∑

j j ′∈C| j∈Ni

�2(cii ′ , c j j ′)π j j ′

+ 1

|Ni ′ |
∑

j j ′∈C| j ′∈Ni′

�2(cii ′ , c j j ′)π j j ′
)

(19)

where j ∈ Ni means j is in the neighborhood of i and the

edge ei j exists. �1 and �2 represent unary and pairwise

information in (13) and (14), then the reliability is from the

views of appearance and structure. π j j ′ indicates how reliable

the correspondence c j j ′ is:

π j j ′ = �1(c j j ′)
( 1

|N j | − 1

∑

kk′∈C|k∈N j \i

�2(c j j ′, ckk′ )

+ 1

|N j ′ | − 1

∑

kk′∈C|k′∈N j ′\i ′
�2(c j j ′, ckk′ )

)
(20)

where N j \i is the set of neighbors of j other than i.

π j j ′ makes the estimation of ω′
ii ′ more robust. The location

of the target is then estimated through a weighted vote from

all correspondences, where the contribution of each correspon-

dence is proportional to its reliability,

lc =
∑

cii′

ωii ′ l
ii ′
c (21)

where ωii ′ = ω′
ii ′ /

∑
cii′

ω′
ii ′ is the normalized weight

of cii ′ . Since bad correspondences are usually incompatible

with their neighboring correspondences, they have low relia-

bility under (19) and thus small weights. As shown in Fig. 1(f)

and Fig. 5, this allows the reliable localization of the target in

the presence of correspondence noise.

This estimate of target location is then fine-tuned with

the foreground/background segmentation of the current frame,

discussed in Section IV. We fine-tune the target center with

a small perturbation µ and the target scale s, so that the

bounding box will cover as much foreground as possible. The

optimal scale s∗ and µ∗ are

(µ∗, s∗) = arg max
µ,s

{
γ · Nmat (lc + µ, s) + N pos(lc + µ, s)

− Nneg (lc + µ, s)
}

(22)

where Nmat (lc + µ, s), N pos(lc + µ, s) and Nneg(lc + µ, s)

are the numbers of 1) positive pixels within the matched

superpixels, 2) positive pixels outside the matched superpixels,

and 3) negative pixels, respectively, in the bounding box of

scale s and location lc + µ. γ = 3 is a constant that

emphasizes the influence of matched parts. Then the final tar-

get center and scale are, respectively, l∗c = lc + µ∗ and s∗.

VII. ONLINE UPDATE

Model update is an important component of any visual

tracking system, since the target frequently undergoes large

variations in appearance and structure. The proposed tracker

contains two modules that require online updates: the appear-

ance model (discriminative SVM classifier and generative

color histogram), and the dynamic target graph G(V , E).

The discriminative SVM classifier is updated with the online

SVM learning algorithm, LASVM, of [4]. The training samples

(the color features of superpixels) are collected periodically.

Those samples labeled as positive by graph cut segmenta-

tion in the target bounding box are trained as positive. The

remaining ones are considered as negative. To avoid tracking

drift problem caused by bad updating samples, samples are

collected from both the initial and current frames. The gener-

ative foreground/background RGB histograms are also updated
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Fig. 4. (a) and (b) show the node variations in the three states of sequence
bluecar and transformer, respectively. (c) and (d) are the illustrations of the
structure variation metric over time of sequence bluecar and transformer,
respectively. When y-coordinate is below 0, it means the target graph does
not update.

incrementally, using

H f = H
f

init + H
f

hist + H
f
curr

Hb = Hb
init + Hb

hist + Hb
curr (23)

where H
(·)
init , H

(·)
hist and H

(·)
curr are histograms derived from

the initial frame, all previous frames, and current frame,

respectively. This appearance updating mechanism not only

keeps the initial information but also adapts to appearance

variations.

To update the dynamic graph, we define three node states:

birth, stable and death. The definitions are as follows.

• birth: a node i (a candidate local part in the final target

bounding box) is in the birth state if 1) it cannot be

matched to any node of G(V , E), and 2) its geomet-

ric distance to any other node satisfies di, j > rθb,

∀ j ∈ G(V , E), where θb = 0.7. This distance constraint

prevents the updated G(V , E) from being too dense.

• stable: a node i is in the stable state if it successfully

matches some other node i′. A successful match occurs

when D( fi , fi ′ ) > θa and ||Ri − Ri ′ ||2 < rθr , where

θa = 0.4 and θr = 0.5.

• death: a node is in the death state if it has not been suc-

cessfully matched continuously for N f or more frames.

After the target bounding box is determined, death nodes

are deleted, stable nodes preserved, and birth nodes added

to the target graph G(V , E). New edges are then intro-

duced according to the geometric relations between nodes.

Fig. 4(a) and 4(b) show the variation of nodes in the three

states across two video sequences.

Model updates are conditioned on two constraints. The first,

which follows from (22), is that γ · Nmat (lc + µ∗, s∗) +
N pos(lc + µ∗, s∗) − Nneg (lc + µ∗, s∗) < θc. The second one

is that Nout < θs Nin , where Nin and Nout are the numbers

of candidate parts in and outside of the target bounding

box, respectively. θc and θs are manually set thresholds.

Algorithm 1 Proposed Tracking Algorithm

These conditions tend not to be met when the object under-

goes severe occlusion or there is substantial noise from the

background. In this case, no update takes place. Otherwise, as

shown in Fig. 4, the target is usually updated. This updating

mechanism enables the robust adaption of the target structure

over time, as illustrated in Fig. 5. The details of the proposed

tracker are described in Algorithm 1.

VIII. EXPERIMENTS

In this section, two experiments are performed. In the first

one (Section VIII-A), we design a metric for the degree

of structure variation of the target, based on the change

of the nodes in the dynamic target graph. In the second

(Section VIII-B, VIII-C and VIII-D), we evaluate the perfor-

mance of the proposed Dynamic Graph Tracker (DGT) and

compare it to state-of-the-art results.

A. Structure Variation Metric

To the best of our knowledge, no metric of geometric

structure variation of the target is available. This is because

the target is usually represented by a bounding box and the

bounding box cannot tell the geometric structure variation of

the target very well. On the contrary, the graph representation

enables a characterization of structure variation by counting

nodes (parts). Based on our observation, the change of the

nodes always coincides with the structure variation of the

target, so in particular we measure the amount of structure

variation of the target by

Mct = nt
a + nt

d

where nt
a and nt

d are the numbers of added and deleted nodes

at time t, as described in Section VII. This metric is evaluated

on bluecar and transformer sequences.

As shown in Fig. 4(c) and 4(d), the transformer object

undergoes large structure variation throughout the whole

sequence. Although there are some variations in the

first 30 frames, it is not drastic. However, from ♯030 to ♯095,

the structure changes severely. The transformation continues

between ♯095 and ♯105, but is again less severe. Finally there

is little variation in the last 15 frames. The sequence bluecar
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Fig. 5. The first row is the results of superpixel segmentation and the tracked target. The second row is the results of foreground/background separation
in which the numbers on the parts mean the indices of the corresponding nodes in the target graph. The third row is the dynamic target graph where the
numbers are the indices of nodes and the red line represents interaction between two neighboring nodes. The last row shows the weighted voting, where the
green square is the voted center of every single correspondence, the number indicates the reliability degree of correspondence from small to big, the blue
cross is the voted center without fine-tuning, and the yellow cross is the final target center with segmentation fine-tuning. The relative distance between the
voted centers in the last row is enlarged for clear display. The practical voted centers are much more compact. (a) Transformer. (b) Football.

TABLE I

COMPARISON OF ACEP CRITERIA

has milder structure variation than transformer. In fact, it

changes slightly in the first 270 frames. There is, however,

a sharp transformation at ♯280, followed by a period of little

transformation between ♯285 to ♯345, and a new drastic vari-

ation from ♯345 to ♯390. In the end, the bluecar goes through

a second period of no transformation. The joint observation of

the metric in Fig. 4 and the video sequences shows that this

metric can precisely capture the dynamic structure variation

of the target.

B. Experiment Setup

To evaluate the tracking performance, we use a set of

18 challenging video sequences, 14 from prior

works [17], [19]–[21], [32]–[34], [40], and the last 4 from our

own collection. Altogether, the challenges in these sequences

include structure deformation, severe occlusion, complex

background, large scale changes and abrupt movements. The

proposed DGT is compared to bounding box based trackers,

including MIL [3], IVT [23], TLD [18], ℓ1 [29], VTD [21]

and CT [45], and part based trackers, including Frag [2],

HABT [34], BHMC [20] and SPT [40], with the results

presented in Table I, and Table II. An illustration of the

results is also given in Fig. 7. More results and the code can

be found on our website.2

1) Implementation Details: Our tracker is implemented in

C++ code and runs at approximately 4-10 frames per second,

on a PC with 2.4 GHz CPU and 3 GB memory. For SLIC

algorithm [1], the compactness is set to 50. The number

2https://sites.google.com/site/zhaoweicai1989/
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TABLE II

COMPARISON OF SUCCESS RATE CRITERIA

of superpixels varies according to the initial size of the

target, ensuring the initial target includes approximately 15 to

30 superpixels. We usually set it between 200 to 500 in

our experiments. For updating, the LASVM is updated every

3 frames, the target color histograms and graph model are

updated every frame. N f is in the interval [2,5], depending

on the sequence, with lower values when the target structure

changes more quickly. The updating thresholds are chosen as

θc ∈ [0.5, 1.0] and θs ∈ [0.3, 0.6]. The local perturbation

of (22) is restricted to a window µ ∈ [−φ, φ] × [−φ, φ],
with φ equal to 4 or 8 in all experiments. φ could be slightly

increased when segmentation performs well. The parameters

of the other trackers are set to the default values suggested in

the original papers or codes. The best one of 5 runs is chosen

for comparison.

2) Evaluation Criteria: All trackers are evaluated under

two criteria: Average Center Error in Pixels (ACEP) and

Success Rate. Tracking is considered successful when it has

a Pascal score higher than 0.5. The Pascal score is defined

in the PASCAL VOC [11] as the overlap ratio between the

tracked bounding box Btr and ground truth bounding box Bgt :
area(Btr ∩Bgt )

area(Btr ∪Bgt )
. A lower ACEP and a higher Success Rate are

indicative of better tracking performance.

C. Qualitative Analysis

1) Effective Dynamic Graph Representation: As shown in

Fig. 5(a), the transformer undergoes large structure deforma-

tion, and it is not well captured by the traditional bounding

box based appearance representation. Differently, the dynamic

graph intuitively has the ability to represent the largely

deformable target. In Fig. 5(b), the reader will find the target

graphs at ♯168 and ♯182 are the same. This is because

there is too much segmentation noise between these frames

and the target graph is not updated. Although the dynamic

graph does not represent the target very well in this period,

the part correspondences are still satisfactory, since our undi-

rected target graph is deformable and the pairwise geometric

relations tolerate structure variation to some degree. The target

graph also contains many outliers around ♯250. However,

successful matching can still be obtained due to the robustness

of the proposed affinity matrix.

2) Resistance to Noise: Since the inputs for graph match-

ing are the separated candidate parts, the performance of

the foreground/background separation is important. In reality

however, the extracted candidate parts contain lots of noise

caused by the complex background and the non-accurate

foreground/background separation, as shown in Fig. 5(b).

Moreover, the local parts always have great similarity with

each other in color appearance, and the target graph also con-

tains some outliers and noise. All of these make the matching

and tracking difficult. By introducing several constraints to

construct a less-noisy affinity matrix in Section V, the spectral

matching method will find the optimal correspondences with

less noise from very noisy inputs. For example, at ♯168, ♯182,

♯250, and ♯452 in Fig. 5(b), although many outliers exist, most

matched candidate parts belong to the target and most outliers

are not matched. The target center can be located robustly

with these matched parts. On the contrary, we may not exactly

know where the target is if the target location depends only

on segmentation without correspondence results.

3) Reliability in Voting: In the absence of voting weights,

incorrect correspondences would contribute equally to correct

correspondences to the tracking process. The weighed voting

procedure of Section VI allows reliable tracking in the pres-

ence of correspondence noise. This is visible in the last row of

Fig. 5, where every green square represents the tracked center

lii ′
c of (18) for every single correspondence. Note that these

tracked centers are close to the real target center when the

matching is good, as in ♯005 of transformer sequence, and

♯034 and ♯452 of football sequence. On the other hand, they

tend to scatter when matching is poor, as in ♯049 of trans-

former sequence, and ♯168 and ♯250 of football sequence.

The closer the tracked centers, the higher accuracy of the

matching. The weighted voting mechanism of (19) suppresses

the contribution of incorrect correspondences, while enhancing

that of correct ones. This can be seen in Fig. 5, from the

fact that the tracked centers lii ′
c of bad correspondences are
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usually far away from the target center with lower weights than

good correspondences. This observation demonstrates the

reliability of our weighted voting process.

D. Comparison Analysis

1) Comparison Among DGTs: We implement two versions

of DGT to test the effectiveness of fine-tuning target location

by µ∗ of (22) using the foreground/background segmentation:

one without fine-tuning (DGT-0) and the other one with fine-

tuning (DGT-S). All of the other parameters for DGT-0 and

DGT-S are the same in our experiments. Table I and II

show that, while the performance of DGT-0 is quite good,

the segmentation-based adjustment is beneficial. When the

targets are large, e.g. in lemming, lipinski, transformer and

dancer, the two trackers have similar performance. This is not

surprising since, in this case, there are plenty of target parts

to enable a robust graph matching. The gains of DGT-S by

fine-tuning are more significant when targets are small, e.g.

in up, neymar and bolt, since the matching and voting steps

become less stable. When the targets rotate or undergo drastic

deformation too quick, as in yunakim, gymnastics, diving and

avatar, the dynamic graph representation cannot adapt to the

variations immediately, thus the segmentation-based tuning is

also helpful. On the other hand, DGT-0 has better performance

over DGT-S in the sequence bluecar. This is mostly due to the

fact that the bluecar target is occluded for a sizeable length of

time (between ♯005 and ♯070), and only the unoccluded local

parts are segmented from the background. If the tracker relies

too much on segmentation, the dynamic graph will gradually

shrink to the unoccluded region, limiting tracking accuracy in

subsequent frames. If without fine-tuning, the dynamic graph

will not shrink, and the accurate target center can still be

located with the unoccluded parts.

Based on the good performance of DGT-0, it is convinced

that graph matching is the foundation of the good performance

of DGT-S. With more and more high-level computer vision

tasks using segmentation, it is also quite reasonable to incor-

porate segmentation modification here and the performance is

actually improved. The combination of these two parts is an

attractive strategy for visual tracking.

2) Comparison to Other Trackers: The results of

Tables I and II and Fig. 7 show that the DGT has superior

performance to many state-of-the-art trackers in the literature.

We next discuss the performance of these various trackers in

response to different types of challenges.

a) Structure deformation: Structure deformation can be

catastrophic for bounding box based trackers. For example,

in the sequences transformer, diving, yunakim and avatar,

where targets changes structure quickly and severely, the

bounding box based trackers (IVT, MIL, TLD, ℓ1, VTD

and CT) severely underperform part based trackers (Frag,

HABT, BHMC, SPT, and DGT). This is because the part-

based trackers focus on the appearance of local part, which

is less sensitive to structure variation than bounding box

based trackers. For the sequences with human motion, such as

waterski, lipinski, football, kwan, gymnastics, bolt, basketball,

dancer, up and neymar, while the bounding box representation

Fig. 6. Tracking results of DGT-0 under occlusion challenge.

can model the target well, the part-based trackers still own

some advantages. On the remaining sequences, e.g. lemming

and bluecar, where targets are rigid, the two representations

have equivalent performance.

Although part-based trackers own advantage in handling

large structure deformation, the lack of effective updating and

scaling does lead HABT and Frag to fail in the presence of

large and fast structure deformations. On the other hand, the

inability to stably track parts appears to be a major difficulty

for BHMC, and SPT always shrinks to local region of the

target due to a lack of global structure constraints. All these

limitations are shown in Fig. 7. Differently, our DGT performs

well in nearly all test sequences, since the inner structure

of the target is exploited sufficiently and the dynamic graph

effectively adapts to the structure deformation.

b) Occlusion: Sequences with non-trivial amounts of tar-

get occlusion, such as lemming, basketball, football, neymar,

bluecar and avatar, create difficulties to methods, such as

TLD, CT, and HABT, that do not have specific occlusion-

handling mechanisms. On the contrary, ℓ1 can precisely find

the target in bluecar where the target car is severely occluded,

as demonstrated in Table I and Table II. Several methods, such

as MIL, VTD and Frag, claim to be robust under occlusion,

but they do not always have good performances in these

sequences. This could be due to the fact that occlusion is

combined with other challenges, such as large deformation

and complex background, that these methods are not equipped

to handle. Finally, in the absence of global constraints, part

based trackers, such as BHMC and SPT, will shrink to the

unoccluded parts of the target.

Although DGT-S will also shrink to unoccluded parts for

sequences with severe and long periods of occlusion, DGT-0

performs very well in this case with the help of the visible

local parts. As depicted in Fig. 6, DGT-0 can still find out the

accurate bounding box of the target even when a few parts of

the target are exposed. Only a small number of visible parts

within the graph are enough for our tracker to recognize the

whole graph and the whole target.

c) Illumination variations: Illumination variation has

serious influence on appearance features. As shown in Fig. 7,

the frequent illumination variations in the sequence up lead

other trackers to drift away quickly, such as SPT, HABT,

ℓ1, Frag, TLD, etc. On the other hand, the incremental

subspace learning enables IVT to recognize the girl even when

the sunlight is blocked by the balloons for several times.

The online updates of LASVM classifier and color histograms
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Fig. 7. Tracking results. The results of our DGT, MIL, TLD, VTD, CT, Frag, HABT, BHMC and SPT are depicted as red, black, cyan, yellow, purple, dark
green, blue, light green, and magenta rectangles respectively. Only the trackers with relatively better performance of each sequence are displayed.

with initial and newly coming samples, provide DGT with

resistance to the frequent illumination variations. Besides, even

some parts of the target have severe appearance changes,

the structure information will still help to recognize those

corrupted parts.

d) Abnormal movement: Abnormal movements, such as

fast motion (avatar and bolt), abrupt motion (up), and rotation

(yunakim, diving lipinski and waterski), are always a great

challenge for tracking, because these abnormal movements do

not obey the movement assumption. For example, in bolt,

many trackers lose the target when it begins to speed up.

Similarly, VTD suddenly fails to track the target that jumps

up abruptly in up. Most trackers are also quite unstable when

faced with a fast spinning athlete in yunakim. The integration

of appearance based segmentation and geometric constraints

makes DGT much less sensitive to these types of abnormal

movements.

IX. CONCLUSION

In this work, we have proposed the DGT to handle defor-

mation and occlusion challenges, a noval dynamic graph based

tracker that captures the inner structure information of the

target by modeling the interactions between local parts. Target

tracking is interpreted as matching the candidate graph to

the target graph, and the matching is solved with recourse

to spectral technique. Target location is determined by a set

of weighted votes of matched parts according to their corre-

spondences reliability, and refined by a foreground/background

segmentation. Extensive experiments have shown that the DGT

has tracking performance superior to many state of the art

trackers, in the presence of various challenges, especially

deformation and occlusion.
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