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Abstract

A new robust dense matching algorithm is introduced in

this paper. The algorithm starts from matching the most

textured points, then a match propagation algorithm is de-

veloped with the best first strategy to densify the matches.

Next, the matching map is regularised by using the local

geometric constraints encoded by planar affine applications

and by using the global geometric constraint encoded by the

fundamental matrix.

Two most distinctive features are a match propagation

strategy developed by analogy to region growing and a suc-

cessive regularisation by local and global geometric con-

straints. The algorithm is efficient, robust and can cope with

wide disparity. The algorithm is demonstrated on many real

image pairs and applications on image interpolation and

creating novel views are also presented.

1 Introduction

Matching techniques are always one of the most im-

portant and most difficult task in computer vision. Dense

matching consists of establishing a maximum number of

pixel-to-pixel correspondences in two images. There have

been many dense matching algorithms developed (e.g.

[3, 7, 2, 1, 10, 5, 11]). The most common approach for

dense matching consists of correlating small image win-

dows along the one dimensional epipolar line within the

maximum disparity. This method is often computation-

ally costly, suitable only for small base line stereo images,

and also depends heavily on the epipolar geometry which

has to be provided, often by off-line calibration. Most re-

cently from researchers working on uncalibrated vision, the

epipolar geometry could be estimated on-line with robust

techniques [14, 13] which tolerates the initial mismatches.

However, this modern approach still fails frequently for

widely separated image pairs since the initial matches are

fragile and the fundamental matrix so estimated fits often to

subsets of images, not the whole image. For instance, for a

clear background/foreground scene, the fundamental matrix

often fits either to the cluster of points on the background or

that on the foreground.

In this paper, we introduce a new approach of robust

dense matching algorithm. It starts by constructing a dense

matching map using a growing/propagation schema from a

list of seed matches which may contain bad matches (Sec-

tion 2). The matching is then regularised using the local

geometric constraints encoded by planar affine applications

(Section 3). After local regularisation of dense matching,

the global geometric constraint encoded by the fundamental

matrix is recovered and used to constraint the final propa-

gation (Section 4).

This new approach has considerable advantages over the

existing ones. It can cope with wide disparity between im-

age pairs. The initial seed matches are more tolerant for

mismatches as we do not use them to fit the global funda-

mental matrix, we use it only for match propagation. In

some extreme cases, only one good seed match is suffi-

cient to provoke an avalanche for the whole textured images

while keeping bad seeds undeveloped. The algorithm is also

computationally efficient. The final fundamental matrix es-

timation is also reliable as the input matches are evenly

spread over the whole image space. Finally this algorithm

can still applies for the non-rigid scene by dropping the final

and global validation.

2 Initial match and propagation

The basic principles of the algorithm is to start from

matching some points of interest which have the highest

textureness as seed points to bootstrap a region growing

type algorithm, which then propagates the matches in the

neighborhood of seed points from the most textured pixels

to less textured ones. The algorithm therefore consists of

two steps: seed selection and propagation.



2.1 Seed Selection and Initial Matching

Points of interest [6, 12] are naturally good seed point

candidates, as points of interest are by its very definition

image points which have the highest textureness (i.e. the lo-

cal maxima of the auto-correlation function of the signal).

The ZNCC (zero-mean normalized cross-correlation) cor-

relation measure is used for matching seeds as it is invariant

to linear radiometric changes. The ZNCCx(�) at point

x = (x; y)T with the shift � = (�x;�y)T is defined to beP
i(I(x+ i)� �I(x))(I 0(x +�+ i)� �I 0(x +�))(Pi(I(x + i)� �I(x))2Pi(I 0(x +�+ i)� �I 0(x +�))2)1=2

where �I(x) and �I 0(x) are the means of pixel luminances for

the given window centered at x.

2.2 Propagation

After obtaining the initial seed matches, it comes our

central idea of match propagation from the initial seed

matches. The idea is similar to the classic region grow-

ing method for image segmentation [9] based on the pixel

homogeneity. Instead of using the homogeneity property,

a similarity measure based on the correlation score is used.

This propagation strategy could also be justified as the seed

matches are the points of interest which are the local max-

ima of the textureness, so the matches could be extended to

its neighbors which have still strong textureness though not

a local maxima.

All initial seed matches are starting points of concur-

rent propagations. At each step, a match (a;A) with the

best ZNCC score is removed from the current set of seed

matches. Then we look for new matches in its ’match neigh-

borhood’ (see Figure 1 for its definition) and simultaneously

add all new matches to the current set of seeds and to the set

of accepted matches—under construction. The neighbors of

pixels a andA are taken to be all pixels within the 5�5win-

dow centered at a and A to enforce the continuity constraint

of the matching results. For each neighboring pixel in the

first image, we construct a list of tentative match candidates

consisting of all pixels of a 3 � 3 window in the neigh-

borhood of its corresponding location in the second image.

Thus the displacement gradient limit should not exceed 1

pixel.

The unicity constraint of the matching and the termi-

nation of the process is guaranteed by choosing only new

matches not yet accepted. Since the search space is reduced

for each pixel, we use small 5 � 5 windows for ZNCC.

Therefore, minor geometric changes are allowed and arte-

facts at occluding contours are limited.

We can notice that the risk of bad propagation is greatly

diminished by the best first strategy over all matched seed

points. Although seed selection step seems very similar to

a A

Neighborhood of pixel a in view 1 Neighborhood of pixel A in view 2

b B

c C

Figure 1. Definition of neighborhood N (a;A)
of pixel match (a;A). It is a set of matches in­

cluded in the two 5 � 5­neighborhood N5(a)
and N5(A) of pixels a and A. Possible

matches for b (resp. C) are in the 3 � 3 black

frame centered at B (resp. 
). The complete

definition of N (a;A) is f(b; B); b 2 N5(a); B 2N5(A); (B �A)� (b� a) 2 f�1; 0; 1g2g:
many existing methods [14, 13] for matching points of in-

terest using correlation, the crucial difference is that propa-

gation needs only to take the most reliable ones rather than

taking a maximum of them. This makes our algorithm much

less vulnerable to the presence of bad seeds in the initial

matches. In some extreme cases, only one good match of

points of interest is sufficient to provoke an avalanche of

the whole textured images.

This propagation algorithm can be described as follows.

The input of the algorithm is the set Seed of the current seed

matches, the set is implemented by a heap data structure for

fast selection of the best match. The output is an injective

displacement mapping Map.

Let s(x) = maxfjI(x + �) � I(x)j;� 2f(1; 0); (�1; 0); (0; 1); (0;�1)gg be an estimate of the lu-

minance roughness for the pixel at x, which is used to

stop propagation into insufficiently textured areas a withs(a) < t where t = 0:01 and 0 � I(a) � 1.

Input: Seed
Output: Map
while Seed 6= ; do

pull the best match (a; b) from SeedLo
al  ;
(Store in Local new candidate matches)

for each (
; d) in N (a; b) do

if (
; �) and (�; d) not in Map and
s(
)>t, s(d)>t and ZNCC(
,d)>0.5

then store match (
; d) in Lo
al
end-if

end-for

(Store in Seed and Map good candidate matches)

while Lo
al 6= ; do

pull the best match (
; d) from Lo
al
if (
; �) and (�; d) not in Map
then store match (
; d) in Map and Seed
end-if

end-while

end-while



The complexity of the algorithm is O(nlog(n)), where n
is the final number of matched pixels. Notice that it is output

sensitive, only dependent on the number of final matches

and independent of disparity bound.

3 Check using local geometric constraints

The disparity map obtained from the propagation may

still be corrupted and irregular. We assume that the scene

surface is smooth enough to be approximated by small pla-

nar patches. Thus, the dense matching can be regularised

by locally fitting planar patches encoded by homographies.

The construction of the matched planar patches is described

as follows.

The first image is initially subdivided into small regular

grid. For each square patch, we obtain all matched points of

the square from the dense disparity map. A plane homog-

raphy should be tentatively fitted to these matched points

of the square to look for potential planar patches. Because

a patch is rarely a perfect planar facet except for manufac-

tured objects, the putative homography for a patch can not

be estimated by standard least squares estimators. The Ran-

dom Sample Consensus (RANSAC) method [4] is used for

robust estimation.

In practice, the stability of the homography fitting de-

creases with the patch size. Our compromise between patch

grid resolution and stability fitting is to fit a planar affine

application (which counts only 6 d.o.f instead of 8 d.o.f of

homography) in 8� 8-pixel squares.

4 Estimate the global geometric constraints

So far, only local geometric constraints are used for

matching. The global geometric constraint encoded by the

fundamental matrix for the rigid scene should also be in-

tegrated. The most popular strategy is to recover it at the

very beginning of the sparse matching [14, 13] within a

random sampling framework. There are two ways of in-

tegrating the global constraint for our approach. The first is

constrained propagation which consists in growing matches

if they satisfy the epipolar constraint, while the second is

unconstrained propagation. The advantage of constrained

propagation is that the bad propagation might be stopped

earlier, but the domain of propagation is considerably re-

duced; Even more seriously, the fundamental matrix esti-

mated at this step with a robust method often tend to fit

points in a subset of images. We adopt therefore the un-

constrained propagation and the global constraint is only

imposed by the following constrained propagation, after the

local regularisation which gives widely spread correspond-

ing points over the whole image range.

The most direct approach to estimate the fundamental

matrix is from a list of pixel matches (x; y) obtained from

each local planar affine application A by y = Ax where x
is the middle of the corresponding square. These matches

are evenly spread in image space (contrarily to interest

points) and the fundamental matrix is robustly estimated by

RANSAC from them. The obtained matching consensus

and fundamental matrix are finally improved by applying

the M-Estimator proposed in [13] and implemented by an

iterated re-weighted least square [15].

5 Experimentations

The matching algorithm described above is experi-

mented on many image pairs.

Figure 2. Top: initial seed matches. Bottom:

disparity after unconstrained propagation.

5.1 Stability of region growing matching

We first compare the dense matching map by different

seed selections for the first and twentieth image of the mpeg

“flower garden” sequence (our matching use only two im-

ages of the sequence). The pair of “flower garden” images

shown on the top row in Figure 2 is very difficult to match

by classical correlation or dynamic programming as the dis-

parity is too strong and the ordering constraint along the

epipolar lines is obviously violated.

The seeds are Harris points [12] matched by 11�11 cor-

relation (ZNCC > 0:8) and bidirectional consistency [5].

They are superimposed on the original pair as shown in Fig-

ure 2. Naturally, there exists still false matches marked by

a square instead of a cross for good matches. The disparity

map of dense matching after region growing is shown on the

bottom of Figure 2. It takes 2.5 seconds by an UltraSparc

333MHz for image size of 360� 240.

We then manually select four seed matches from the pre-

vious ones and show them on the left of Figure 3. The re-

sulting match growing is display on the right of Figure 3.



Figure 3. Left: Four manually selected seed

matches. Right: the resulting disparity map.

Figure 4. Left: 4 selected seeds and 158 false

matches. Right: the resulting disparity map.

Each seed match is sufficient to provoke an avalanche of

correct matches in each of the four isolated and textured ar-

eas. The matched areas cover roughly the same surface as

that obtained with the automatic seeds in Figure 2 and 78%
of matched areas are common between two methods.

To these manually selected matches, 158 false matches

with good normalized correlation score (ZNCC > 0:9)

are added. Still 70% of the matched areas are common with

the automatic seeds in Figure 2.

From the above experiments, we see that the match prop-

agation is robust w.r.t. the initial seed selection.

5.2 Comparing with Image­Matching

We show the advantage of unconstrained propagation

to calculate the fundamental matrix for the previous big

camera movement, by comparing our results with those of

Image-Matching [14]. Image-Matching estimates a fun-

damental matrix Fi from least median square using seed

matches by correlation and relaxation. The default parame-

ters of Image-Matching are used. In particular, its correla-

tion step is more conservative than ours because big 15�15
windows are used with the same ZNCC threshold (0.8). It

follows that there are no seed matches in the flowers be-

cause the geometric distortion between images is too strong

(top of Figure 5), and the resulting Fi is too bad to allow

constrained propagation in flowers on the bottom right of

the trunk (bottom left of Figure 5) in spite of sub-pixel accu-

racy for seeds. Our dense matching is only pixel accuracy,

but unconstrained propagation from the same seeds fills the

full and common regions in the two images. It follows that

our resulting fundamental matrix Fp is better in these areas

than Fi and it is shown by allowing constrained propaga-

tions everywhere (bottom right of Figure 5).

Figure 5. Top: Image­Matching seed matches.

Bottom left: Fi­constrained propagation.

Bottom right: Fp­constrained propagation.

5.3 Applications

We have used the result of our dense matching algorithm

and fundamental matrix estimation for image interpolation

[8] (left Figure 6 and Figure 8) and surface reconstruction

(right Figure 6 and Figure 7). In both cases, the rendering

is improved with a mesh which explicitly models half oc-

cluded areas and gradient edges (automatic building). As

expected, the precision of the reconstruction decreases with

the depth (Figure 6). In Figure 7, the face profile seems

to be correct but the hairs are difficult to match. The algo-

rithm parameters are the sames for all examples, except for

the different faces in Figure 8 under similar conditions (pro-

vided by [11]): the regions of interest for seed matches are

reduced to limit bad seeds. Many exemples are available at

our Web site http://www.inrialpes.fr/movi/pub/Demos.

6 Conclusion and future work

We have presented a new method of dense matching al-

gorithm. The main contributions are twofold. A match

region growing technique inspired from the region grow-

ing for image segmentation allows to match important ar-

eas across two images. Both local and global geometric

constraints are integrated. Unlike the existing methods, the

global constraint is recovered and used after local regular-

isation. The method has been experimented on many real

image pairs including wide disparity and the application for

image interpolation and novel view synthesis is convinc-

ing. Actually we are investigating different multiresolution



strategies, smoothness constraints for propagation, and also

work on multiples images.

Figure 6. Interpolation and surface recon­

struction for the “flower garden”’ image pair.

Figure 7. Herve image pair and the recon­

structed surface.
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