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Abstract Multilevel optimization including progressive

failure analysis and robust design optimization for com-

posite stiffened panels, in which the ultimate load that a

post-buckled panel can bear is maximized for a chosen

weight, is presented for the first time. This method is a

novel robust multiobjective approach for structural sizing

of composite stiffened panels at different design stages.

The approach is integrated at two design stages labelled

as preliminary design and detailed design. The robust mul-

tilevel design methodology integrates the structural sizing

to minimize the variance of the structural response. This

method improves the product quality by minimizing vari-

ability of the output performance function. This innovative

approach simulates the sequence of actions taken during

design and structural sizing in industry where the manu-

facture of the final product uses an industrial organization

that goes from the material characterization up to trade con-

straints, through preliminary analysis and detailed design.

The developed methodology is validated with an example

in which the initial architecture is conceived at the prelimi-

nary design stage by generating a Pareto front for competing

objectives that is used to choose a design with a required
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weight. Then a robust solution is sought in the neighbour-

hood of this solution to finally find the layup for the panel

capable of bearing the highest load for the given geometry

and boundary conditions.

Keywords Optimization · Robust · Multiobjective ·

Composites · Stiffened panel · Progressive failure

1 Introduction

Stiffened composite panel construction is characterised by

a thin skin that is stabilised in compression by longitudinal

stringers, running across the panel width at regular intervals.

A stiffened panel loaded by compression undergoes shorten-

ing, at a certain value of shortening or load level, transverse

deflections occur all in a sudden, this is called buckling.

The skin between the stiffeners acts like a supported plate

and this may assume a number of different buckled con-

figurations distinguished by their differing wave number.

The behaviour of the panel, if loaded beyond buckling is

called post-buckling. It is well known that the buckling load

does not represent the maximum load that the structure can

carry. As a matter of fact, failure may not occur until the

applied load is several times the buckling load (Stevens et al.

1995). This post buckling strength capacity has significant

potential for weight saving.

The extensive use of stiffened panels as structural ele-

ments leads to the need for highly complex optimization

of components where several objectives have to be per-

formed at the same time. Venkataraman and Haftka (2004)

used the model complexity, analysis complexity and opti-

mization method complexity to classify the difficulty of

the optimization process in structural analysis. Model com-

plexity can be understood as the level of realism with
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which the problem is being analysed, e.g. use of ana-

lytic or numerical models. At any of these model lev-

els the type of analysis can vary from linear elastic to

geometrically and materially nonlinear. The optimization

complexity takes into account the number of design vari-

ables, number of objectives, type of optimization (global

vs. local) and uncertainty. Venkataraman (1999) presents

a detailed review of analysis methods used for stiffened

panels.

An efficient method for analysing stiffened panels in

buckling is the Finite Strip Method (FSM), pioneered by

Wittrick (1968) and Cheung (1968), in which the panel

is divided into strips and the displacement field in these

strips is described by trigonometric functions. Programs

such as VICONOPT (Butler and Williams 1993) and

COSTADE (Mabson et al. 1996) make use of FSM for

the structural analysis. Another program for the design

of buckled stiffened panels is PANDA2 (Bushnell 1987)

that can analyse panels using FSM, finite difference

energy method or smeared representation of the stiffen-

ers. VICONOPT and PANDA2 use the method of fea-

sible directions for carrying out the optimization while

COSTADE uses the Improving Hit-and-Run algorithm

(Zabinsky 1998).

With increasing computational power, recently, more FE

analysis and Genetic Algorithms have been employed in the

optimization of post-buckled stiffened panels (Bisagni and

Lanzi 2002; Kang and Kim 2005; Lanzi and Giavotto 2006;

Rikards et al. 2006). Most of these papers make use of meta-

models to approximate the response of the stiffened panels

in order to reduce the computational resources needed for

the task. Artificial Neural Networks (ANNs) and Genetic

Algorithms (GAs) have been used not only for structural

optimization. Worden and Staszewski (2000) used ANNs

and GAs to find the optimal position of sensors for impact

detection in composite panels while Mallardo et al. (2013)

performed this task on more complex composite stiffened

panels.

With increasing optimization complexity, the compu-

tational resources required for the solution, especially if

a multiobjective optimization problem is faced, typically

increase with dimensionality of the problem at a rate that

is more than linear. Then, massive computer resources are

required for the design of realistic structures carrying a large

number of load cases and having many components with

several parameters describing the detailed geometry. One

obvious solution is to break up large optimization problems

into smaller subproblems and coordination problems to pre-

serve the couplings among these subproblems as proposed

by Sobieszczanski-Sobieski et al. (1987) where different

levels of substructuring are used to represent the structure.

Liu et al. (2000) developed a two-level optimization pro-

cedure for analysing a composite wing where the response

at the lower (panel) level was used to build a Response

Surface for the optimal buckling load that is used later for

the global (wing) problem optimization. Wind et al. (2008)

developed a multilevel approach to optimize an structure

consisting of several components. It was optimized as a

whole (global) as well as on the component (local) level.

The approach used a global model to calculate the inter-

actions for each of the components. These components

were then optimized using the prescribed interactions, fol-

lowed by a new global calculation to update the interactions.

Hansen and Horst (2008) presented another approach to

solve the structural optimization task by dividing the com-

plete task into two separate optimization problems: a sizing

task and a topology task although this approach can be better

referred as a hybrid strategy where both tasks are performed

simultaneously.

In recent years, several approaches to integrate industrial

processes have been proposed. Structural simulations based

on robust and reliability based designs are well established

techniques for structural sizing. Reliability Based Design

Optimization (RBDO) is a method to achieve the confidence

in product reliability at a given probabilistic level, while

Robust Design Optimization (RDO) is a method to improve

the product quality by minimizing variability of the output

performance function.

In order to simulate the structural behaviour of a stiff-

ened panel, a procedure is presented for design in a uni-

fied platform, reproducing the flow of information among

the different structural departments in industry. The set

of design variables can be divided into a group of vari-

ables describing the main conceptual layout that affect the

dimensions of the model and a second group of variables

influencing the material behaviour. In the presented method,

the panel robustness is described using the second statis-

tical moment (the variance) of the performance function.

This concept can be used at any stage, but in order to

improve the maximum efficiency in the optimization strat-

egy, robustness evaluation is limited to the preliminary

design only.

The developed multilevel approach can be associated

to the family of the multilevel parametrisation models

Kampolis et al. (2007). The optimization problem is decom-

posed into two levels of design modifications, correspond-

ing to different sets of design variables. Geometrically

nonlinear elastic finite element analysis is used at the Pre-

liminary Design stage to find the set of optimum panel

architectures, that are later used to build a metamodel based

on Radial Basis Function Networks where a robust design

is found. Once the robust design is available the next stage

optimization, Detailed Design, takes place using geometri-

cally and materially nonlinear finite element analysis to find

the optimum layup in order to maximise the load that the

panel can bear.
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While previous optimization approaches only consider

elastic analysis of stiffened composite panels the present

approach includes progressive failure analysis based on con-

tinuum damage mechanics for the analysis of post-buckled

panels at the Detailed Design stage, keeping the geometry

obtained at the Preliminary Design constant, i.e the size of

the component to be optimized does not change, but the

model complexity does. The inclusion of progressive failure

analysis makes it possible to better utilize the load bearing

capacity of composite stiffened panels, ultimately leading to

weight savings.

2 Robust multiobjective optimization at multiple

stages

Multiobjective optimization or vector optimization is the

process of optimizing systematically and simultaneously a

collection of objective functions. The multiobjective opti-

mization problem may contain a number of constraints

which any feasible solution (including all optimal solutions)

must satisfy. The optimal solutions can be defined from

a mathematical concept of partial ordering or domination.

An extensive review of multiobjective optimization methods

can be found in Marler and Arora (2004) and Coello (2000),

Zitzler et al. (2000) for methods based on evolutionary

algorithms.

Kassapoglou and Dobyns (2001) used a gradient based

method to optimized cost and weight of a composite panel

under combined compression and shear by varying the cross

section of the stiffeners and their spacing. The Pareto front

was constructed by varying the spacing of the stiffeners.

Lanzi and Giavotto (2006) performed a similar task using

Genetic Algorithms and Neural Networks. A Design of

Experiments (DoE), using Finite Elements, was conducted

in order to train the neural networks, and the optimization

was performed on these networks. Similarly, the number

and cross section of stiffeners and the stacking sequence

of the skin and the stiffeners were used as the design

space. Irisarri et al. (2009) performed stacking optimiza-

tion where the number of plies in a laminate was minimized

while the buckling margins were maximized. This was per-

formed by running several models for different number of

plies starting at N layers and reducing the number until no

buckling margin was found. The orientation of each lam-

inae was optimized for every laminate and Pareto fronts

were constructed showing the trade-offs between the buck-

ling margin and the number of plies with different number

of orientations.

When both multilevel and multiobjective algorithms

are present, the multilevel iteration scheme can be inte-

grated into a Pareto front search algorithm, which can

use either genetic/evolutionary algorithms or gradient

methods to explore the design space at different lev-

els. The proposed Multilevel/Multiobjective Approach can

be defined as

Preliminary Design

Min./Max. fm (x) m = 1, 2, . . . , M;

Subject to gj (x) � 0 j = 1, 2, . . . , J ;

hk (x) = 0 k = 1, 2, . . . , K;

x
(L)
i � xi � x

(U)
i i = 1, 2, . . . , n;

Detailed Design

Min./Max. ou (y) u = 1, 2, . . . , U;

Subject to ps (y) � 0 s = 1, 2, . . . , S;

qt (y) = 0 t = 1, 2, . . . , T ;

y
(L)
r � yr � y

(U)
r r = 1, 2, . . . , v;

(1)

where x are the design variables, fm is the m − th objective

function, fm (x) = z is the objective space in Level 1, gj is

the j − th inequality constraint, hk is the k − th equality

constraint and x(L) ≤ x ≤ x(U) is the design space in Level

1, while y are the design variables, ou is the u− th objective

function, ou (y) = w is the objective space in Level 2, ps

is the s − th inequality constraint, qt is the t − th equality

constraint and y(L) ≤ y ≤ y(U) is the design space in Level

2. Notice that some of the objectives from one level can be

used at the other level (f
⋂

o �= ∅ ∧ f
⋂

o = ∅).

2.1 Multiobjective evolutionary algorithms (MOEAs)

Evolutionary algorithms is the general term used to define a

population based stochastic and heuristic search algorithm

inspired by biological evolution and genetic operators such

as reproduction, mutation, crossover and natural selection.

Individuals in a population represent a candidate solution

to the optimization problem. The solution with higher fit-

ness has higher chances of survival and reproduction. The

population then evolves according to the genetic operators,

and through this process better solutions are generated, this

process is repeated until the termination condition is met.

One type of Evolutionary algorithm that is well suited

for optimizing combinatorial and continuous optimization

problems through mutation and crossover is Genetic algo-

rithms (GAs) popularized by Holland (1975).

Being a population-based approach, GAs are well suited

to solve multiobjective optimization problems. A generic

single objective GA can be modified to find a set of multi-

ple non dominated solutions in a single run. The ability of

GAs to simultaneously search different regions of a solu-

tion space makes it possible to find a diverse set of solutions

for difficult problems with nonconvex, discontinuous, and

multimodal solutions spaces. The crossover operator of GA

may exploit structures of good solutions with respect to

different objectives to create new non dominated solutions

in unexplored parts of the Pareto front. In addition, most
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multiobjective GAs do not require the user to prioritise,

scale, or weigh objectives. Therefore, GAs have been the

most popular heuristic approach to multiobjective design

and optimization problems. Schaffer (1985) presents one of

the first treatments of multiobjective genetic algorithms.

In contrast to single objective optimization, where the

fitness function is the same as the objective function, in mul-

tiobjective optimization, fitness assignment and selection

must support multiple objectives. Consequently the main

difference between MOEAs and simple GAs is the way on

which fitness assignment and selection works. There are

several versions of MOEAs that use different fitness assign-

ment and selection strategies. They can be categorised as

aggregation based approaches, population based approaches

and Pareto based approaches that are the most popular

techniques.

2.2 Approximation models

For large scale designs, surrogate models may be needed

to efficiently face the optimization problem. Approxima-

tion Models are models that imitate the behaviour of the

simulated model as closely as possible while being compu-

tationally cheaper to evaluate. The exact, inner working of

the simulation code is not assumed to be known (or even

understood), solely the input-output behaviour is important.

An artificial neural network (ANN) is an emulation

of biological neural system. An artificial neural net-

work is composed of many artificial neurons that are

linked together according to a specific network architecture

(Hassoun 1995). In most cases an artificial neural network is

an adaptive system that changes its structure based on exter-

nal or internal information that flows through the network

during the learning phase.

One type of ANN is the Radial Basis Function (RBF)

Networks, which uses radial basis functions as activa-

tion functions. One of the advantages of using RBFs is

the fact that the interpolation problem becomes insensitive

to dimension of the space in which the data sites lie

(Buhmann 20001), by approximating multivariable func-

tions by linear combination of single variable functions..

The unique existence of the interpolants can be guaran-

teed adding low order polynomials and some extra mild

conditions (Hardy 1990):

ϕ (x) =

N
∑

i=1

aiρ (‖x − xi‖) + b (2)

N
∑

i=1

ai = 0

and the special case of the method of cross validation called

leave-one-out cross validation (LOOCV) can be used for

choosing an optimal value of the shape parameter (Rippa

1999).

2.3 Random simulation

When the stochastic properties of one or more random vari-

ables are available, random simulations can take place in

order to characterise the statistical nature of the model’s

response to the given variation in the input properties.

Monte Carlo methods are considered to be the most accurate

resource for estimating the probabilistic properties of uncer-

tain system response from known random inputs. Sampling

values of random variables following a probabilistic distri-

bution generate system simulations to be analysed by Monte

Carlo simulations.

Random sampling is used with the aim of generating the

possible inputs. There are several sampling techniques such

as simple random sampling, systematic sampling, stratified

sampling, descriptive sampling, etc. Simple random sam-

pling is used to characterise the statistic properties of a

function when a large enough number of samples are used.

A more efficient approach which needs a smaller number

of function evaluations is the stratified sampling approach

(Cochran 2007). A special case of this sampling approach

is the Latin Hypercube sampling technique (McKay et al.

1979). When a single normally distributed variable is sam-

pled using the Simple Random Sampling technique, the

sample points are generated without taking into account the

previously generated sample points and the sampled points

can be clustered. Latin Hypercube Sampling first decides

how many points will be used and then distributes them

evenly in order to have a sampled point in each probability

interval.

2.4 Robust design optimization

Robust design, in which the structural performance is

required to be less sensitive to the random variations

induced in different stages of the structural service life

cycle, has gained an ever increasing importance in recent

years (Messac and Ismail-Yahaya 2002; Jin et al. 2005). It

is an engineering methodology for optimal design of prod-

ucts and process conditions that are less sensitive to system

variations. It has been recognised as an effective design

method to improve the quality of the product/process. Sev-

eral stages of engineering design are identified in the liter-

ature, including conceptual design, preliminary design and

detailed design (Keane and Nair 2005; Wang et al. 2002).

Robust design may be involved in the stages of param-

eter design and tolerance design. Traditional optimization

techniques tend to ”over-optimize”, producing solutions

that perform well at the design point but may have poor

off-design characteristics. It is important that the designer
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ensures robustness of the solution, defined as the system’s

insensitivity to any variation of the input parameters. It is

quite possible that the optimal solution will not be the most

stable solution.

For design optimization problems, the structural perfor-

mance defined by design objectives or constraints may be

subject to large scatter at different stages of the service life-

cycle. It can be expected that this might be more crucial for

structures with nonlinearities. Such scatters may not only

significantly worsen the structural quality and cause devi-

ations from the desired performance, but may also add to

the structural costs, including inspection, repair and other

maintenance costs.

From an engineering perspective, well-designed struc-

tures minimise these costs by performing consistently in

presence of uncontrollable variations during the whole

life. This raises the need of structural robust design to

decrease the scatter of the structural performance. One pos-

sible way is to reduce or even to eliminate the scatter

of the input parameters, which may either be practically

impossible or add much to the total costs of the structure;

another way is to find a design in which the structural per-

formance is less sensitive to the variation of parameters

without eliminating the cause of parameter variations, as

in robust design.

The principle behind the structural robust design is that,

the quality of a design is justified not only by the mean value

but also by the variability of the structural performance. For

the optimal design of structures with uncertainty variables,

a straightforward way is to define the optimality conditions

of the problems on the basis of expected function values

response mean performance. However, the design which

minimises the expected value of the objective function as a

measure of structural performance may be still sensitive to

the variation of the stochastic parameters and this raises the

task of robustness of the design.

From the mathematical point of view, the Robust Design

Optimization can be stated as:

Min./Max. f {E (H (x)) , σ (H (x))}

Subject to gj (x) ≤ 0 j = 1, 2, . . . , J ;

hk (x) = 0 k = 1, 2, . . . , K;

σ (H (x)) ≤ σM

x
(L)
i ≤ xi ≤ x

(U)
i i = 1, 2, . . . , n;

(3)

where E (H (x)) and σ (H (x)) are the first and the second

statistical moments of optimization function H (x), gj (x) is

the j − th constraint function, σM denotes the upper limit

for the standard deviation of the structural performance and,

x
(L)
i and x

(U)
i are the lower and upper bounds for the i − th

design variable.

In formulation (3) the robust structural design optimiza-

tion problem is shown to be an optimum vector problem

in which two criteria namely the statistical mean E (H (x))

and the standard deviation σ (H (x)) of the objective are to

be optimized.

3 Methodology description

The solutions at Preliminary Design stage are found using

elastic analysis and trying to define the optimum geom-

etry of the stiffened panel for the given boundary condi-

tions. At Detailed Design stage, material nonlinearities are

included, keeping the geometry obtained in the previous

level constant. The separation of design variables for dif-

ferent stages makes this approach very efficient, since a

lower number of solutions have to be tried because there

are less design variables to mix. Another point is that

the more complex geometry optimization is done elasti-

cally, taking lower time to calculate than a full material

nonlinear analysis, so that more runs can be done in a rea-

sonable amount of time. The material properties, including

stacking sequence of the composite layup, are then opti-

mized in the next stage. The use of this strategy does

not guarantee that the obtained solution will be the global

optimum.

The iteration between levels can be finished at any point

where the decision maker believes to have obtained a rea-

sonable or the optimum solution. There is no need for the

iteration to always finish after both stages have been opti-

mized. The only requirement is that all stages are optimized

at least once. The optimization methodology is presented in

Table 1.

4 Example problem

During post-buckling, the buckled shape of the skin, i.e.,

the wave number, does not remain constant under increas-

ing compressive loading. At certain load values sudden

changes in buckling patterns are observed. These secondary

instabilities are characterised by a sudden change from the

initial post-buckled mode-shape to a higher one. This phe-

nomenon is referred to as a mode-switch, mode-jump or

mode-change. Such abrupt changes are dynamic in nature

and cause considerable numerical difficulties when using

quasi-static arc-length-related procedures in finite element

analysis. A better way forward is to use explicit dynamic

analysis (Bisagni 2000). The prediction of the collapse load

is difficult because of the susceptibility of composites to

the effect of through-thickness stresses. It follows that there

are a number of locations in the panel and a variety of

damage mechanisms which could lead to final collapse.

Another difficultly associated with research into compres-

sion of composite stiffened panels is that the post-buckling

collapse is so destructive that usually the evidence of the
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Table 1 Formulation of the optimization methodology

Iterate:

– Define the design variables, constraints and objectives for the

1st stage.

– Find the Pareto front of the solutions for the 1st stage..

– Choose a Solution.

– If Necessary:

– Build a meta-model

– Find the Robust Pareto front in the neighbourhood of the

chosen solution

– Choose the Robust solution

– If converged solution found

–Exit

– Pass a solution to the 2nd stage.

– Define the design variables, constraints and objectives for

the 2nd stage.

– Find the Pareto front of the solutions for the 2nd stage.

– Choose a Solution.

– If Necessary:

– Build a meta-model

– Find the Robust Pareto front in the neighbourhood of the

chosen solution

– Choose the Robust solution

– If converged solution found

– Exit

– If necessary

– Pass the solution to the next iteration

Continue until convergence

failure mechanism cannot be retrieved from the debris of a

laboratory test (Stevens et al. 1995; Orifici et al. 2009).

Several damage mechanisms can be present when a com-

posite stiffened panel is loaded under compression, which

under increasing load combine and lead to the failure of the

panel. The main damage mechanisms experienced by com-

posites can be divided into intralaminar (fiber failure, matrix

cracking or crushing and fiber-matrix shear), and interlam-

inar (skin-stiffener debonding) (Tsai and Wu 1971; Orifici

et al. 2009).

Tsai and Wu (1971) proposed a phenomenological

strength criterion that can be applied to composite materials

for estimating the load-carrying capacity of a structure. This

criterion can give a good approximation of the beginning

of the failure process. Another way to analyse composite

structures is to use progressive failure based on Continuum

Damage Mechanics, where Hashin (1980) criteria can be

used for the damage onset and the amount of dissipated

energy drives the damage propagation.

In order to model interlaminar failure or debonding,

two main approaches are commonly used. The virtual

crack closure technique (VCCT) and the use of cohe-

sive zone models (CZM). VCCT is a method based on

LEFM, appropriate for problems in which brittle crack

propagation occurs along predefined surfaces. The VCCT

technique is based on Irwin’s assumption that when a

crack extends by a small amount, the energy released in

the process is equal to the work required to close the

crack to its original length (Krueger 2002). The CZM are

based on continuum damage mechanics and relate trac-

tion to displacement jumps at an interface where a crack

may occur. Damage initiation is related to the interfa-

cial strength and new crack surfaces are formed when

the dissipated energy is equal to the fracture toughness

(Turon et al. 2007).

The optimization in this validation is decomposed into

two stages, i.e. Preliminary Design and Detailed Design.

This kind of approach can be effective if it is possible

to separate the constraints and design variables that are

strongly dependent on the Preliminary Design from the

constraints and design variables that are primarily depen-

dent on Detailed Design variables. Then, high and low

stages analyses and optimizations are carried out sepa-

rately and tied together by an iterative scheme going from

one stage of design modification to the other and vice-

versa seeking an overall optimum design. This is possi-

ble if the interaction between the levels is sufficient to

allow effective refinements of the objective functions and

is insufficient to drastically change the Design Variable’s

domain.

Both stages are modelled using nonlinear explicit dynam-

ics finite elements analysis using Abaqus (Version 2011).

The mesh size and use of nonlinear material behaviour

increase the complexity of the models from Preliminary to

Detailed design stage.

4.1 Optimization of a composite stiffened panel

A composite stiffened panel is to be optimized; the only

fixed dimensions are the overall dimensions of the panel

W = 618.4 mm and L = 1196.0 mm, as shown in

Fig. 1. The panel is fixed at one of the transversal edges

and loaded by increasing uniform displacement at the

opposite end (The panel is loaded in pure compression).

The panel is allowed to move only in the direction of

the loading on the longitudinal edges. The goal is to

obtain a panel with minimum mass while being able to

carry as much load as possible in post-buckling. The

response of the panel has to be insensitive to manufacturing

tolerances.

For each stage of design, a set of Design Variables and a

set of constraint equations are defined, corresponding to the

respective design requirements. Finally, the objective func-

tions at different stages must be defined depending, in gen-
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Fig. 1 Stiffened panel geometry

eral, on all the design variables. The boundary conditions

are kept constant at every level.

The density of the stringers and skin is 1550
[

Kg/m3
]

and the density of the interface is 1600
[

Kg/m3
]

. Other

material properties for the stringers and skin as well as for

the interface between them are reported in Table 2.

4.2 Preliminary design optimization

In order to find the best solution according to the decision-

maker, an a posteriori preference articulation will be per-

formed (first search then decide approach), i.e. the Pareto

front will be obtained and later the optimum solution will

be chosen by the decision-maker. At the Preliminary Design

stage the material is considered as linear elastic and the

failure is tracked by the Tsai-Wu index. Geometric nonlin-

earities are included and no debonding between skin and

stringer is allowed.

4.2.1 Problem definition

The design space is defined in Table 3a. It takes into account

all the parameters that define the geometry of the panel,

including thickness of the skin (by taking into account the

number of layers) and the thickness, cross section and num-

ber of the stringers. For sake of simplicity only symmetrical

layups with 8,10 and 12 layers with predefined orienta-

tions are used. The cross section geometry of the stringer is

defined by the parameters shown in Fig. 2.

Table 2 Material properties

Symbol Value Description

a. Elastic properties of the bulk composite

E11 [GPa] 159.0 Longitudinal modulus of elasticity

E22 = E33 [GPa] 10.0 Transversal modulus of elasticity

ν23 0.52 In-plane Poisson’s ratio

ν12 = ν13 0.3 Out-of-plane Poisson’s ratio

G23 [GPa] 5.0 In-plane Shear Modulus

G12 = G13 [GPa] 3.0 Out-of-plane Shear Modulus

b. Damage parameters of the bulk composite

σ 0t
1 [MPa] 2413.0 Longitudinal strength in tension

σ 0c
1 [MPa] 1655.0 Longitudinal strength in compression

Gt
c1[N/mm] 110 Tensile fracture toughness in the longitudinal direction

Gc
c1[N/mm] 90.0 Compressive fracture toughness in the longitudinal direction

σ 0t
2 = σ 0t

3 [MPa] 59.0 Transversal strength in tension

σ 0c
2 = σ 0c

3 [MPa] 186.0 Transversal strength in compression

Gt
c2 = Gt

c3[N/mm] 0.25 Tensile fracture toughness in the transversal direction

Gc
c2 = Gc

c3[N/mm] 0.8 Compressive fracture toughness in the transversal direction

σ 0
12 = σ 0

13[MPa] 121.0 Out-of-plane shear strength

σ 0
23[MPa] 85.0 In-plane shear strength

c. Elastic properties of the interface

Em[GPa] 4.35 Modulus of elasticity

νm 0.36 Poisson’s ratio

d. Damage parameters of the interface

σ 0
m[MPa] 69.0 Tensile strength

Gt
cm[N/mm] 0.13 Tensile fracture toughness

τ 0
m[MPa] 80.0 Shear strength

Gs
cm[N/mm] 0.65 Shear fracture toughness
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Table 3 Preliminary design - problem definition

Description Value

a. Design Variables

Number of layers in the Skin NSK = 8, 10, 12

Number of layers in the Stringers NST = 8, 10, 12

Number of Stringers NS = 3, 4

Stringer Height [mm] 25 ≤ SH ≤ 40

Stringer Length 1 [mm] 8 ≤ SL1 ≤ 20

Stringer Length 3 [mm] 18 ≤ SL3 ≤ 30

Stringer Length X [mm] 20 ≤ SLx ≤ 30

b. Constraints

Mass [Kg] m ≤ 5

Reaction Force [MN] RF ≥ 0.5

c. Objectives

Description Operation

Mass minimise

Reaction Force maximise

Tsai-Wu index minimise

The constraints are defined in Table 3b. These are the

result of previous knowledge and needs from the decision-

maker and impose bounds on the results of the optimization.

Table 3c shows the defined objectives for this problem.

Tsai-Wu index criterion is used in order to have a bet-

ter understanding of the solution, where a solution with

higher reaction force at a given shortening obtained by elas-

tic design does not necessarily have to carry more load than

when damage is included.

4.2.2 Optimization

The optimization is done using the Archive based Micro

Genetic Algorithm (AMGA) (Tiwari et al. 2008), which is

an evolutionary optimization algorithm and relies on genetic

variation operators for creating new solutions. It uses a gen-

erational scheme, however, it generates a small number of

new solutions at every iteration, therefore it can also be

classified as an almost steady-state genetic algorithm. The

Fig. 2 Stringer Geometry Parameters

algorithm works with a small population size and maintains

an external archive of good solutions obtained.

The parent population is created from the archive using

a strategy similar to environmental selection. The creation

of the mating pool is based on binary tournament selec-

tion. Any genetic variation operator can be used to create

the offspring population. The update of the elite population

(archive) is based on the domination level of the solu-

tions, diversity of the solutions, and the current size of the

archive. In order to reduce the number of function evalua-

tions per generation, AMGA uses a small size for the parent

population and the mating pool. The parent population is

created from the archive using only the diversity informa-

tion of variables. Using an external archive that stores a

large number of solutions provides useful information about

the search space as well as tends to generate a large number

of non-dominated points at the end of the simulation

4.2.3 Results

Presenting the results to the decision-maker can be a daunt-

ing problem when there are more than 3 objectives due to

the fact that is impossible to represent graphically a space

with more than 3 dimensions. Another way to present the

results can be in a tabular form. The part of the objective

space that was explored is shown in Fig. 3. When the fea-

sible objective space is available, the Pareto front can be

constructed using non-dominating sorting.

The next step is to choose a solution from the Pareto

front. The decision-maker can rely on his experience and

knowledge about the problem to do so. For illustration, let

us suppose that the designer wants to use a panel with a

mass of around 4.53 kilograms, in this case there are two

possible solutions illustrated in Fig. 4, both solutions have

comparable mass, but solution “1” has higher reaction force

and Tsai-Wu index than solution “2”.

Fig. 3 Explored objective space
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Fig. 4 Choosing a solution

from the Pareto front

These solutions are completely different in the design

space, one has less stringers, but bigger stringer cross

section, while the other has more stringers and smaller cross

sections, the number of layers and therefore the thicknesses

of the skin and stringers are the same.

It seems that solution “1” is a better solution when only

the reaction force is considered, however, the lower Tsai-Wu

index value of solution “2” indicates that, when damage is

considered, this panel will possibly fail at a higher load than

solution “1”, but a design with a lower value of the Tsai-Wu

index does not necessarily fail at a higher load as pointed

out by Groenwold and Haftka (2006). To be completely

sure which panel carries more load, it is recommended to

analyse both solutions including progressive failure. Once

progressive failure analysis of both architectures is carried

out, solution “2” is found to be a better choice giving a

higher reaction force.

The optimum design variables for this solution are

(Table 4):

Table 4 Optimum inputs for preliminary design

Description Optimum

Number of layers in the Skin 8

Number of layers in the Stringers 10

Number of Stringers 3

Stringer Height [mm] 37.33

Stringer Length 1 [mm] 19.82

Stringer Length 3 [mm] 25.97

Stringer Length X [mm] 23.00

4.3 Optimizing for robustness

Once the decision is taken, the next step is first to check for

the solution robustness, and if it is not robust enough opti-

mize for Robustness. A meta-model from this data, shown

in Fig 5, is obtained from the solutions in the Pareto front

previously found. The approximation is based on a neural

network employing a hidden layer of radial units and an

output layer of linear units.

Monte Carlo simulation using descriptive sampling is

then used to describe the statistical moments (mean and

standard deviation) of the outputs or objectives (mass, reac-

tion force and Tsai-Wu index) due to the random variability

of the inputs. It is assumed that the discrete input (design

variables) do not have any unpredictability, so that only the

continuous variables (cross section parameters) are used for

Fig. 5 Pareto Front Meta-model
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Table 5 Robust design -

problem definition Description Value

a. Design Variables

Stringer Height [mm] 35 ≤ SH ≤ 39

Stringer Length 1 [mm] 18 ≤ SL1 ≤ 20

Stringer Length 3 [mm] 24 ≤ SL3 ≤ 28

Stringer Length X [mm] 21 ≤ SLx ≤ 25

b. Distribution of Design Variables

Mean Std. Dev. Low. Bound Up. Bound

SH 0.001 ∗ SH SH − 0.1 SH + 0.1

SL1 0.001 ∗ SL1 SL1 − 0.1 SL1 + 0.1

SL3 0.001 ∗ SL3 SL3 − 0.1 SL3 + 0.1

SLX 0.001 ∗ SLX SLX − 0.1 SLX + 0.1

c. Constraints

Description Value

Mass [Kg] m ≤ 4.53

Reaction Force [MN] RF ≥ 0.5

Tsai-Wu index T W ≤ 1.046

d. Objectives

Description Operation

Mass minimise

Reaction Force maximise

Tsai-Wu index minimise

Std. Dev. Mass minimise

Stand. Dev. Force minimise

Std. Dev. Tsai-Wu index minimise

this purpose. Table 5b presents the statistical characteris-

tics of the input variables. It is assumed that the inputs are

described by a truncated normal distribution with the mean,

standard deviation and bounds shown in it. The mean val-

ues are the ones obtained form the optimization at the first

stage. The manufacturing tolerances can be included by set-

ting the correct lower and upper bound, .i.e. ±0.1 mm in this

example.

4.3.1 Problem definition

In order to optimize for robustness the problem defined in

Table 5 has to be solved.

The Design space is defined in the neighbourhood of

the chosen deterministic solution at the first stage, only the

continuous design variables are considered to have random

variations.

The constraints are set such that only improvements to

the deterministic solution can be obtained, i.e. the con-

straints are the values of the objectives obtained in the

deterministic solution.

4.3.2 Optimization

Once the meta-model is available, the optimization can be

done by exploring the solution’s neighbourhood with a gra-

dient based algorithm that encapsulates the Monte Carlo

simulations. The optimizer is in charge of finding a more

robust solution, while the Monte Carlo simulation is giving

the statistics of the problem being solved.

4.3.3 Results

In order to get a robust design the standard deviations of

the objectives have to be optimized as well. A new Pareto

front in a 6 dimensional space is generated and the decision-

maker has to choose a solution from all the points obtained

in the front. She can choose the design with the lowest stan-

dard deviation of the reaction force, the smallest mass, or

any combination that she deems the best. For this problem

the standard deviation of the Tsai-Wu index was judged to

be the main factor affecting the overall robustness of the

design.



Robust design and optimization of composite stiffened panels in post-buckling 419

Table 6 Optimum inputs for robust design

Description Optimum value

Stringer Height [mm] 37.46

Stringer Length 1 [mm] 19.57

Stringer Length 3 [mm] 26.33

Stringer Length X [mm] 22.77

Table 7 Comparison of outputs for robust design

Description Rob. Sol. Det. Sol.

Mass [Kg] 4.530 4.529

Reaction Force [MN] 0.660 0.659

Tsai-Wu index 1.038 1.045

Std. Dev. Mass [Kg] 0.00076 0.00075

Std. Dev. Force [MN] 0.00021 0.00021

Std. Dev. Tsai-Wu index 0.00007 0.00047

The optimum input variable values are summarised in

Table 6. The optimum response values are recapitulated in

Table 7 and their distributions shown in Fig. 6. Comparing

the results in Table 7, it can be seen that a small increase in

the mass and standard deviation of the mass gives a higher

reaction force, lower Tsai-Wu index, and lower standard

deviations for the reaction force and Tsai-Wu index, leading

in general to a better more robust solution.

Figure 6 illustrates these differences, showing graphi-

cally the lower variability of the response due to random

inputs. Notice that the objective in this step was not to

improve the solution drastically, but rather to find a solution

with lower variability when dealing with random inputs that

is desirable in industry, where the designer should consider

manufacturing tolerances.

4.4 Detailed design optimization

At the Detailed Design stage, progressive damage and fail-

ure in the material is considered to predict correctly the

postbuckling load regime. Nonlinear explicit dynamic finite

element analysis is performed. The intralaminar failure is

analysed using continuum damage mechanics, taking into

account all the possible failure modes including fibre failure

in tension or compression, matrix cracking or crushing and

shear failure of the matrix. The interlaminar failure is model

using cohesive elements based on cohesive zone models.

The layup of the composite parts (skin and stringers) are

optimized. At this stage, the design variables at Preliminary

Design stage are frozen (kept constant), i.e. the geometry

does not change.

4.4.1 Problem definition

During the Preliminary Design Level optimization, the

geometry of the panel was established, leading to the use

of 8 layers in the skin and 10 in the stringers. For sake

of simplicity, only four orientations (-45°, 0°, 45°, 90°)

and symmetric layups are considered. The design space is

defined in Table 8a.

The design space contains only discrete variables. The

objective space is constrained by the constraints defined in

Table 8b. Only one constraint is used in this level, since

the geometry and therefore the mass of the panel is not

Fig. 6 Comparison between deterministic and robust solutions
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Table 8 Detailed design-problem definition

Description Value

a. Design Variables

Orientations −45◦, 0◦, 45◦, 90◦

b. Constraints

Reaction Force [MN] RF ≥ 0.655

c. Objectives

Description Operation

Internal Energy maximise

Reaction Force maximise

changing. The Reaction Force constraint is used in order to

obtain better results than the previous stage. The value of the

constraint around the reaction force from the robust design

including damage propagation and failure. Table 8c shows

the defined objectives. The main objective chosen at this

stage is to find the panel that carries the biggest amount of

load for the architecture obtained at the previous stage. The

internal energy is also optimized and it used as an indicator

of the panel stiffness.

4.4.2 Optimization

The optimization is done using the Non-dominated Sorting

Genetic Algorithm (NSGA-II) (Deb et al. 2002) which is a

multiobjective technique that deals with the high computa-

tional complexity of non-dominated sorting, lack of elitism

and need of a sharing parameter specification by using

a fast non-dominated sorting, an elitist Pareto dominance

selection and a crowding distance method. In NSGA-II, the

solutions are first sorted according to restriction fulfilment.

Fig. 7 Solutions for Detailed Design stage

Table 9 Skin layup optimization

Original Optimum

[45,−45, 0, 90]S [90, 0, 0, 0]S

Table 10 Stringers layup optimization

Original Optimum

[45, 0,−45, 0, 90]S [45,−45, 0, 0, 0]S

Feasible solutions come first, and then infeasible solu-

tions are sorted by increasing degree of constraint violation.

Feasible solutions and every set of solutions with the same

violation degree are then respectively sorted according to

Pareto dominance. This sorting is performed by succes-

sively extracting form the chosen subpopulation the current

set of non-dominated solutions (fronts). All the solutions in

a front are given the same rank value, beginning at 0 for the

first front extracted, 1 for the second and so on. This way,

solutions can be sorted according to rank. Finally, within

every group of solutions having the same rank, solutions

are sorted according to the crowding distance. This crite-

rion places first those solutions whose closest neighbours

are farther, thus enhancing diversity.

4.4.3 Results

There are only two objectives present, so that they can be

presented in a simple way to the decision maker on a table

or on a scatter plot of the solutions. Figure 7 shows all the

solutions that were obtained using the NSGA-II algorithm

for this level, it can be seen that there are several solutions

violating the constraints, and an overall optimum solution

maximizing both of the objectives, the reaction force and

the internal energy. In this case, it can be said that the Pareto

Fig. 8 Response of the optimum solutions at different stages
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front converges to a single point. The result of the optimiza-

tion in the design variable space is shown in Table 9 and

10.

Notice that the fibres tend to orient themselves in the

direction of the load as it would be expected. A comparison

of the solutions obtained in Level 1 and Level 2 is shown

in Fig. 8, it can be seen that the reaction force was dramat-

ically improved from 0.658 MN to 0.829 MN, the solution

is also stiffer, but it fails at a lower shortening.

In this validation, this result is satisfactory, so that no fur-

ther iterations are needed, i.e. that the solution obtained is

the final one.

The final panel is characterised by the stringer cross

section defined in Table 6 with the layup found in Table 10

and skin layup in Table 9.

5 Conclusions

The main aim of this manuscript was to develop a method-

ology that can be used efficiently for multilevel/multiscale

analysis of aerospace composite components. It presented

the main concepts and methodologies necessary to imple-

ment a Robust Multilevel-Multiobjective Design Optimiza-

tion method. It was shown that a combination of opti-

mization methods is the best solution when dealing with a

multilevel optimization, and the use of a multilevel iteration

scheme can be integrated into a Pareto front search algo-

rithm, which can use either genetic/evolutionary algorithms

or gradient methods to explore the design space at different

levels and for different purposes. The architecture was also

presented showing the way in which it can be implemented

to optimize the performance of a composite stiffened panel.

A Multilevel optimization strategy that includes progressive

failure analysis and robust design optimization for compos-

ite stiffened panels was presented. The design was made at

two stages, in the first stage the geometry and the robustness

of the design were optimized and in the second stage, the

load bearing capacity of the panel was maximized. In order

to find the optimum design of a real component, subjected to

different types of load combinations, a more realistic design

should include more load cases generating more objectives

and constraints and increasing complexity to the problem.
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