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Robust Design of a Switched PI Controller for an Uncertain Traffic

Model

Antoine Lemarchand , Damien Koenig and John J. Martinez

Abstract— This paper deals with the robust local H∞ regu-
lation of a freeway section. The model used to describe the on-
ramp neighborhood is a discrete-time linear switching model.
We extended this model with parametric uncertainties. We
propose to design a bank of robust PI controllers to ensure that
the system follows the concentration references even in presence
of parametric uncertainties and exogenous disturbances. These
controllers are computed using LMI resolution.

I. INTRODUCTION

The amount of vehicles on roads increases every day, and

causes a waste of time and money [13]. With the construction

of new roads, traffic control via on-ramp metering is one of

the most explored ways to deal with this problem. The on-

ramp metering aims at the improving of traffic condition by

controlling the inflow of freeways.

Most of the solution proposed are based on a hierarchical

architecture [14],[7],[9]. This architecture is constituted by

the high level (⇔optimization layer) and by the low level

(⇔local controller level).

The high level layer computes the optimal references (con-

centrations) to be tracked by the system. This layer is usually

based on linear programming algorithms [6],[7],[4]. These

references are open loop calculation based on a nominal

model. Due to parametric uncertainties and disturbances, the

optimal solution computed by this algorithm can’t be applied

directly on the system.

Therefore, we use the low level layer to ensure that the sys-

tem really tracks optimal references. In this layer, references

are locally applied to on-ramps neighborhoods as shown in

Figure 1. Several approaches have been explored to solve

this issue such as ALINEA [5], and others such as [15],[16].

In this article, we focus on the local regulation layer. We

assume that the optimal trajectories computed by the opti-

mization layer are known. Since the parameters of the model

are strongly uncertain, the Cell Transmission Model (CTM)

is extended with a model of uncertainties. Thanks to this

model, we design a bank of robust switched PI controller

which guarantee a certain attenuation of the H∞ norm of

disturbance transfer function.

The paper is organised as follows. A brief presentation of

the CTM is provided in Section II. This model is extended

with parametric uncertainties and written as a discrete-time

switching uncertain model (Section III). The design of robust

switched PI controller via LMI formulation is presented in

Section IV. Some simulation results are provided in Section

V. In Section VI, some concluding remarks end the paper.

Fig. 1. Local regulation.

II. CELL TRANSMISSION MODEL

The CTM is a first order linear discrete traffic model

proposed in [2],[1] and used in many traffic issues. The

CTM model is presented in three parts: Section II-A presents

the elementary cells and Section II-B presents the junction

model.

A. Elementary Cell

Consider the road section divided into elementary cells.

Assuming that in each cell, the density, ρ(k), of vehicles is

homogenous. Then ρ(k) can be related to φi(k) and φi+1(k)
(respectively the flow entering and leaving cell i) by

ρi(k + 1)=ρi(k) + T
li

(φi(k) − φi+1(k)), (1)

as depicted in Figure 2

Fig. 2. Elementary cell.

where li is the length of cell i and T the period of

discretized time. To guarantee numerical stability, T has to

fit the condition T < inf( li
vi

),∀i = 1, ..., N (N , the number

of cells). Notice that (1) is the conservation law of vehicles

[8].



B. Junctions

Assuming that a cell can contain at most one on ramp

at the beginning of the cell and one off ramp at the end as

depicted in Figure 3. Denote ui the flow entering cell i via

on ramp, and φouti
the flow leaving cell i− 1 via off ramp.

We consider that off-ramps have infinite capacities (i.e. no

congestion propagates in the freeway section via off-ramps)

Fig. 3. Junction.

Define Sφi
(k) as the flow that upstream cell can supply,

and Rφi
(k) as the flow that downstream cell can receive.

Sφi
(k) and Rφi

(k) are characterized by

Sφi
(k) = min((1 − βi).vi−1.ρi−1(k), φMi

), (2)

Rφi
(k) = min(wi.(ρJi

− ρi(k)) − ui(k), φMi
). (3)

with vi, (km/h) the free flow speed, wi the backward con-

gestion propagation speed, ρJi
, (veh/km) the jam density

(i.e. maximal density), and φMi
, (veh/h) the maximum flow

that can travel from upstream to downstream cell and βi the

split ratio (i.e. the part of the flow going out of cell i − 1
that leave main road via off ramp) defined by

βi =
φouti

(k)

φouti
(k) + φi(k)

. (4)

Obviously the flow moving from upstream to downstream

cell is the minimum of (2) and (3), i.e.

φi(k) = min(Sφi
(k), Rφi

(k)). (5)

Junction modes:

From (2), (3), and (5) one can identify the three possible

modes of the junction: A free mode (F) where the flow is

proportional to the upstream cell concentration, a decoupled

mode (D) where the flow is equal to the maximal flow,

and a congested mode (C) where the flow is proportional

to the remaining space in downstream cell. A graphical

representation of (2), (3) and (5) is provided in Figure 4.

It is called the fundamental diagram. This kind of diagram

appears in every traffic issues using macroscopic model [3].

III. UNCERTAIN SWITCHED CTM

A. Uncertain Parameters

The nominal parameters of the fundamental diagram can

be computed using the calibration methods described in

[12] with experimental datas1. The obtain diagram contains

1Real time measurements realized on D383 road (near Lyon, France)
provided by DDE69

strong uncertainties. They can be modeled as the following

parametric uncertainties:

vi−1(k) = v0i−1 + ∆vi−1(k),
φMi

(k) = φM0i
+ ∆φMi

(k),

wi(k) = w0i
+ ∆wi(k),

(6)

where v0, φM0 and w0 are respectively the nominal

free flow speed, maximum flow, and backward congestion

propagation speed computed thanks to [12], and ∆v0, ∆φM0

and ∆w0 the corresponding uncertainties. The new uncertain

fundamental diagram is depicted in Figure 4.

Fig. 4. Fundamental diagram with parametric uncertainties.

B. Matrix formulation

Consider a freeway section, divided into N cells, N + 1
junctions and Nin inputs. Define

α(k) := [α1(k), · · · , αN+1(k)] (7)

where αi(k) ∈ {F,D, C} represents the mode of junction i
presented in Section II-B.

Proposition 3.1: For all α(k) the dynamics of a freeway

section can be written as an uncertain dynamical system:

ρ(k + 1) = (A0α(k)
+ Fα(k)∆(k)G).ρ(k)

+Bα(k).u(k) + Eα(k).d(k)
(8)

where ρ(k) = [ρ1(k), ..., ρN (k)] is the state vector

of vehicle densities for each cell, u(k) the on ramp

controlled flows and d(k) a vector of external disturbances.

A0α(k)
, Bα(k), Eα(k), Fα(k), G are know matrices of

appropriate dimensions. Each matrices and vectors are

defined bellow. (see (11-14) and (16-17))

Proof: First, the conservation law (1) is rewritten as

follows:

ρ(k + 1) = ρ(k) + Θ.φ(k) + B.u(k) (9)

where φ = [φ1, · · · , φN+1] is the vector of flows in each

junctions, and

Θ =







T
l1

− T
l1

0 0

0
. . .

. . . 0
0 0 T

lN
− T

lN






,



B =





















0 0 0

T
li1

0
...

0 T
lix

...

... 0 0
0 0 T

liNin





















.

Secondly, the vector φ(k) is reformulated thanks to the

results of Section II-B with a matrix formulation as follows:

φ(k) = Aφα(k)
(k).ρ(k) + Bφα(k)

.u(k) + Eφα(k)
.d(k)

+aJα(k)
(k).ρJ + aφMα(k)

.φM (k),
(10)

where, ρJ := [ρJ1
, · · · , ρJN+1

] is the vector jam den-

sities of each cell, φM (k) := [φM1
(k), · · · , φMN+1

(k)]
is the vector of maximal flows in each junction (see

Figure 4), d(k) the boundary conditions, and the matri-

ces Aφα(k)
(k), Bφα(k)

, Eφα(k)
, aJα(k)

(k), aφMα(k)
are respec-

tively described by:

Aφα(k)
(k) =













−w1(k).eC1
0 0

v1(k).eF2

. . . 0

0
. . . −wN (k).eCN

0 0 vN (k).eFN+1













,

Bφα(k)
=



















0 0 0

−eC1 0
...

0 −eCx

...
... 0 0
0 0 −eCNin



















,

Eφα(k)
=













eF1 0

0
...

... 0
0 eCN+1













,

aJα(k)
(k) =







eC1w1(k) 0
. . .

0 eCN+1
wN+1(k)






,

aφMα(k)
=







eD1
0

. . .

0 eDN






,

with,

eFi
=

{

1 if junction i is Free

0 otherwise

eDi
=

{

1 if junction i is Decoupled

0 otherwise

eCi
=

{

1 if junction i is Congested

0 otherwise

Substituting (10) into (9) and using the relations (11-14)

the formulation (15) is obtained.

Aα(k)(k) = I + Θ.Aφα(k)
(k), (11)

Bα(k) = B + Θ.Bφα(k)
, (12)

Edα(k)
= Θ.Eφα(k)

, (13)

aα(k)(k) = Θ.(aJα(k)
(k).ρJ + aφMα(k)

.φM (k)).(14)

ρ(k + 1) = Aα(k)(k).ρ(k) + Bα(k).u(k)
+Edα(k)

.d(k) + aα(k)(k).
(15)

Notice that (11) and (14) contains uncertain parameters. Let’s

separate the nominal parts and the uncertain parts of (11)

and (14). From (6), the term (11) can be decomposed as a

nominal and uncertain part:

Aα(k)(k) = A0α(k)
+ Fα(k).∆(k).G (16)

with,

A0α(k)
= Aα(k)(k)|vi(k)=v0i

,wi(k)=w0i

,

Fα(k) = Θ.













0 · · · 0 eC1
. 0

eF2 0
. . .

. . . 0 eCN

0 eFN+1
0 · · · 0













,

G =

(

diag(||∆vi||∞)N+1
2 0

0 diag(||∆wi||∞)N
1

)

and,

∆(k) =

(

diag(δvi(k))N+1
2 0

0 diag(δwi(k))N
1

)

δvi(k) =
∆vi(k)

||∆vi||∞

δwi(k) =
∆wi(k)

||∆wi||∞

so ∆(k)T ∆(k) < 1.

From (6) the term (14) can be written as an external

disturbance:

aα(k)(k) = EφM
α(k)

.φM (k) + EJα(k)
.ρJ + Ewα(k)

.w∆(k)

(17)

with:

EφM
α(k)

= Θ.aφMα(k)
(18)

EJα(k)
= Θ.aJα(k)

(k)|wi(k)=w0i

(19)

Ewα(k)
= Θ.diag(eCi

)N+1
1 (20)

E∆(k) =







∆w1(k).ρJ1

...

∆wN+1(k).ρJN+1






(21)

Substituting (16) and (17) in (15), the formulation (8) of

the proposition is obtained.



IV. REGULATOR DESIGN

A. Study case

For our study, we consider that optimal trajectories (ρ∗(k)
for mainline concentration and u∗(k) for on-ramp flow are

known. Without loss of generality, we consider the neigh-

borhood depicted in Figure 5.

Fig. 5. On-ramp neighborhood.

We consider here that in normal traffic condition (i.e.

without accidents) the different mode of the section that can

occurs are the following:

• case 1 : α(k) = [FFFFFF ]
• case 2 : α(k) = [FFFFFD]
• case 3 : α(k) = [FFFFCD]
• case 4 : α(k) = [FFFCCD]
• case 5 : α(k) = [FFCCCD]
• case 6 : α(k) = [FCCCCD]

α(k) defined in 7. We notate Ω this set of case. In case

1, all the junctions of the section are in free mode (F).

Just before congestion appears (case 2) junction 4 switches

to decoupled mode (D). Then in case 3, 4, 5 and 6, the

congestion propagates backward (i.e. junction 5 to 2 switch

to congested mode (C)). We denote τij the transition from

case i to case j. So the set of possible transition is:

Υ = {τ11, τ12, τ21, τ22, · · · , τ55, τ65, τ66}. (22)

B. Extended system

The problem now, is to design a switched PI controller in

order to stabilize the system and attenuate the disturbances.

For this purpose, we have to extend our system with an

integrator. To keep the stabilizability property of the system,

we can only extend one state of the system with an integrator.

For the case 1 and 2, we choose to extend the system with

an integrator on ǫ5(k) (where ǫ5(k) = ρ5(k) − ρ∗5(k)) . For

the case 3 to 6, we choose to extend the system with an

integrator on the density of the cell where the congestion

front stand (respectively ǫ4(k) to ǫ1(k)). So,the new state

vector becomes

X(k) =

(

ρ(k)
z(k)

)

(23)

with:

z(k + 1) = z(k) +























ǫ5(k) , if case 1 or 2

ǫ4(k) , if case 3

ǫ3(k) , if case 4

ǫ2(k) , if case 5

ǫ1(k) , if case 6

(24)

The extended system is described in a compact form as

follows:






X(k + 1) = (Aaα(k)
+ Faα(k)

.∆(k).Ga).X(k)
+Baα(k)

.u(k) + Eaα(k)
.w(k)

Z(k) = Caα(k)
.X(k)

(25)

with

Aaα(k)
=

(

A0α(k)
0

Azα(k)
1

)

,

Faα(k)
=

(

F1α(k)

0

)

,

Ga =
(

G 0
)

,

Baα(k)
=

(

Bα(k)

0

)

,

Eaα(k)
=

(

fd.Eα(k) 0 fφ.HφM
α(k)

0 −fz.Azα(k)
0

fJ .HJα(k)
fw.Hwα(k)

0 0

)

,

Caα(k)
=

(

Azα(k)
0
)

,

d̄(k) =
(

d(k) ρ∗(k) φM (k) ρJ w∆(k)
)T

,

According to (24), we have

Azα(k)
=























(

0 0 0 0 1
)

, if case 1 or 2
(

0 0 0 1 0
)

, if case 3
(

0 0 1 0 0
)

, if case 4
(

0 1 0 0 0
)

, if case 5
(

1 0 0 0 0
)

, if case 6

fd, fz , fφ, fJ and fw are added to the matrix Eaα(k)
to

weight the influence of the different perturbations for the

H∞ attenuation criteria.

C. LMI formulation

Take the following notations, α(k) = i, α(k + 1) = j.

Assume that each cell density is measured. This seems to be

a fair assumption since sensor becomes cheaper and cheaper,

and since much roads are equipped of sensors.

Proposition 4.1: if ∃ Qi = QT
i > 0, ei > 0, Ui, i ∈ Ω

such that (26) holds for all transition τij ∈ Υ,

Then:

• The extended system (25) is stable under state feedback

u(k) = −KiX(k), Ki = UiQ
−1
i ,

• The poles of the system are placed in a circle of center

σ and radius r,

• The H∞ norm of the transfert function between w(k)
and Z(k) is bounded by γ (weighted by fd, fz , fφ, fJ

and fw).

Proof: The core of our approach is the use of the

following candidate Lyapunov function

Vi(k) = X(k)T PiX(k). (27)

Where Pi is a positive definite matrix. Since Pi = Pi
T > 0.

We can write the following H∞ attenuation criteria:

X(k + 1)T PjX(k + 1) − X(k)T PiX(k)
+Z(k)T Z(k) − γ2w(k)T w(k) < 0

(28)













ǫiFai
F T

ai
− rQj Aai

Qi + Bai
Ui − σQi rEai

0 0

∗ −rQi 0 QiG
T
a QiC

T
a

∗ ∗ −rγ2I 0 0

∗ ∗ ∗ −ǫiI 0

∗ ∗ ∗ ∗ −r−1I











< 0 (26)

Substituting (25) in (28), the following condition is obtained:

((Aai
+ Fai

.∆(k).Ga − Baα(k)
Ki).X(k) + Eai

.d̄(k))T

.Pj((Aai
+ Fai

.∆(k).Ga − Baα(k)
Ki).X(k)

+Eai
.d̄(k)) − X(k)T PiX(k) + (CiX(k))T (CiX(k))

−γ2d̄(k)T d̄(k) < 0,

(29)

Taking the notation Aai
− Bai

Ki = Γi the previous

inequality is equivalent to:

(

Π1
11 Π1

21

∗ ET
ai

Eai
− γ2I

)

< 0 (30)

Π1
11 = (Γi + Fai

.∆(k).Ga)T Pj(Γi + Fai
.∆(k).Ga)

−Pi + CT
i Ci

Π1
21 = (Γi + Fai

.∆(k).Ga)T PjEai

Applying Schur complement, we obtain the following in-

equality:




−Pi + CT
i Ci 0 (Γi + Fai

.∆(k).Ga)T

∗ −γ2I Eai

∗ ∗ −P−1
j



 < 0

(31)

Using majoration lemma, we can demonstrate that (31) holds

if ∃ǫi > 0 such that








−Pi + CT
i Ci

+ǫ−1
i GT

a Ga
0 ΓT

i

∗ −γ2I Eai

∗ ∗ −P−1
j + ǫiFai

FT
ai









< 0 (32)

Applying the Schur complement
(

−Pi + CT
i Ci + ǫ−1

i GT
a Ga 0

∗ −γ2I

)

−

(

ΓT
i

ET
ai

)

(

P−1
j − ǫiFai

FT
ai

)−1 (
Γi Eai

)

< 0
(33)

Multiplying both side of (33) by

(

Pi−1 0
0 I

)

and applying

Schur complement, (34) is obtain.




−P−1
j + ǫiFai

FT
ai

ΓP−1
i Eai

∗ Π2
22 0

∗ ∗ −γ2I



 < 0 (34)

Π2
22 = −P−1

i + P−1
i CT

i CiP
−1
i + ǫ−1

i P−1
i GT

a GaP−1
i

Applying twice Schur lemma on term Π2
22, (34) becomes:













−P−1
j + ǫiFai

FT
ai

ΓP−1
i Eai

0 0

∗ −P−1
i 0 P−1

i GT
a P−1

i CT
i

∗ ∗ −γ2I 0 0
∗ ∗ ∗ −ǫiI 0
∗ ∗ ∗ ∗ −I













< 0

(35)

It is stated in that In order to improve the performance,

the poles of the closed loop system are placed in a particular

region. like in [11], we place the poles in a circle of center

σ and radius r by replacing Aai
−Bai

Ki by
Aai

−Bai
Ki−σI

r
.

This particular region is depicted in Figure 6. With this

change and taking P−1
i = Qi, P−1

j = Qj and Ui = KiP
−1
i

(26) is obtained.

Fig. 6. Pole placement region.

V. SIMULATION RESULTS

For simulation, we take the on-ramp neighborhood de-

picted in Figure 5. We choose the following parameters (cells

are homogenous):

• Cell length l = 0.3km
• Free flow speed v = 80km/h ± 5%
• Backward congestion speed v = 35km/h ± 15%
• Maximum flow φM = 7000km/h ± 8%

These parameters values and uncertainties ranges are chosen

according to experimental data.

We take the following weighting constants: fd = 1, fz =
1/200, fJ = 1/22, fp = 1, fw = 1/4. These constants are

chosen with respect to the range of disturbance values.

To compute our controllers, we take σ = 0.6 and r = 0.35
for transition τij , i = j and σ = 0 and r = 1 for

transition τij , i 6= j, this means that we doesn’t place pole

for the switching between modes. This leads to reduce the

conservatism of our approach. The result of pole placement

for each of the 6 cases is depicted in Figure 6.

We detail our results for case 4. We obtain the following



state feedback gain:

K4 =
(

221.24 216.49 191.24 113.05 36.36 13.53
)

The sensitivity functions between disturbances and ρ3 are

given in Figure 7, we can see only 6 sensitivity function

because the matrix Ea4
has several columns of zeros. The

attenuation is good in low frequency, where disturbances

occurs [10].
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In the scenario we have chosen, the system has to track a

congestion front which propagates backward then forward.

The system goes from case 1 to case 5 via all the intermediate

cases then goes back to case 1. The result of the simulation is

depicted in Figure 8. We can see that the system is following

the congestion front despite parametric uncertainties and

disturbance. The active controller (K1 to K5) is chosen with

respect to traffic condition. The choice of this controller is

based on the nominal parameters of the system and so the

controller chosen may not be the appropriate one. This can

explain the switching problem that occurs around t = 1.7h
when the system switches from case 3 to case 2.
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Fig. 8. Simulation results.

VI. CONCLUSIONS

In this paper, the CTM has been extended with parametric

uncertainties. A new robust switched H∞ PI controller has

been designed, taking account of the uncertainty model.

The simulation result shows that this solution is efficient

to track congestion front, and shows a good attenuation of

disturbance. Some improvements on switching conditions

and queue regulation still have to be done.
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