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Abstract

The Farrow-structure-based steerable broadband beamformer (FSBB) is particularly useful in the applications where

sound source of interest may move around a wide angular range. However, in contrast with conventional filter-and-

sum beamformer, the passband steerability of FSBB is achieved at the cost of high complexity in structure, i.e., highly

increased number of tap weights. Moreover, it has been shown that the FSBB is sensitive to microphone mismatches,

and robust FSBB design is of interest to practical applications. To deal with the aforementioned problems, this paper

studies the robust design of the FSBB with sparse tap weights via convex optimization by considering some a priori

knowledge of microphone mismatches. It is shown that although the worst-case performance (WCP) optimization has

been successfully applied to the design of robust filter-and-sum beamformers with boundedmicrophonemismatches,

it may become unapplicable to robust FSBB design due to its over-conservativeness nature. When limited knowledge

of mean and variance of microphone mismatches is available, a robust FSBB design approach based on the worst-case

mean performance optimization with the passband response variance (PRV) constraint is devised. Unlike the WCP

optimization design, this approach performs well with the capability of passband stability control of array response.

Finally, the robust FSBB design with sparse tap weights has been studied. It is shown that there is redundancy in the

tap weights of FSBB, i.e., robust FSBB design with sparse tap weights is viable, and thus leads to low-complexity FSBB.

Keywords: Steerable broadband beamformer; Microphone array; Farrow structure; Robust beamforming; Convex

optimization

1 Introduction
As one of the key technologies for microphone arrays,

broadband beamforming has been used in a wide range

of audio and speech processing applications, such as tele-

conferencing, hearing aids, and audio surveillance [1–6].

The most popular methods for broadband beamform-

ing for microphone arrays are based on the well-known

filter-and-sum structure [2]. In practice, sound source of

interest may move around some angular range. Accord-

ingly, the passband width of a broadband beamformer

usually needs to be designed to cover the whole angular

range of movement of the sound source.1 It is known that,

there is a trade-off between passband width and stopband
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attenuation for a filter-and-sum broadband beamformer,

i.e., the larger the passband width, the worse the stop-

band attenuation, and vice versa.2 As a result, the spatial

filtering performance of filter-and-sum broadband beam-

formers will deteriorate greatly when the sound source

is moving around a wide angular range. To combat this

problem, one promising solution is to design steerable

broadband beamformers, where their passbands can be

adjusted dynamically with a simple scheme, with no need

of redesign of the broadband beamformers.

Recent years have seen great interest in the design of

steerable broadband beamformers for microphone arrays

[7–14]. Among the proposed design approaches, some are

tailored to specific array configurations, such as differ-

ential microphone arrays [7] and spherical microphone

arrays [8]. Comparatively, the Farrow-structure-based

steerable broadband beamformers (FSBBs), also known

as the polynomial beamformers [12], are particularly
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interesting in some applications, since they are applicable

to arbitrary array configurations, and moreover, their

passbands can be steered online with just one single

parameter [10]. In practice, there usually exist some mis-

matches among microphones, such as gain and phase

errors [15]. Unfortunately, the FSBBs are highly sensi-

tive to microphone mismatches. Therefore, the design of

FSBBs robust against microphone mismatches has drawn

attention recently.

Generally speaking, according to whether any priori

knowledge of microphone characteristics is used or not,

the existing design approaches for robust FSBBs can be

classified into two categories. In [9, 12], white noise gain

(WNG) constraint has been utilized to design robust

FSBBs, where no knowledge of microphone characteris-

tics is considered. However, the main problem with the

WNG constraint-based approach is that it is unclear how

to choose the WNG constraint level optimally. To get

over the problem, a robust FSBB design approach based

on the weighted least squares has been proposed in [11],

which takes into account the probability density function

(PDF) of microphone characteristics. By considering the

knowledge of microphone characteristics, no user-tuning

parameters are required any more; thus, it can facili-

tate the FSBB design. Although this design approach has

shown robust against microphone mismatches, the diffi-

culty with the approach is that the PDF of microphone

characteristics may not be easily accessible in practice.

Instead, the bounds of uncertain microphone mismatches

[16, 17] or the limited knowledge of mean and variance

of microphone mismatches [18] may be practically avail-

able to a designer. Therefore, it is necessary to establish

efficient design schemes for robust FSBBs by consider-

ing these types of knowledge of microphone characteris-

tics. Besides the aforementioned robustness problem of

the FSBB in the presence of microphone mismatches,

another problem with the FSBB is that its computa-

tional complexity is particularly demanding in contrast

with its counterpart based on filter-and-sum structure,

which is the price it has paid for the passband steerability.

However, the low-complexity FSBB design has not been

addressed in the literature, which is of interest to practical

applications.

Inspired by our previous work on robust filter-and-

sum beamformer design [16, 18], the robust FSBB design

using convex optimization with some priori knowledge of

microphone mismatches is studied in this paper. More-

over, to reduce the computational complexity of the robust

FSBB, the robust FSBB design with sparse tap weights has

also been studied. To summarize, the contributions of the

paper are threefold:

• For bounded microphone mismatches, the robust

FSBB design based on the worst-case performance

(WCP) optimization criterion has been established. It

is shown that although the WCP optimization has

been successfully applied to the design of robust

filter-and-sum beamformers as in [16, 17];

unfortunately, it may become unapplicable to robust

FSBB design due to its over-conservativeness nature

as analyzed in the paper.

• When limited knowledge of mean and variance of

microphone mismatches is available to a designer,

the robust FSBB design approach based on the

worst-case mean performance (WCMP) optimization

with the passband response variance (PRV)

constraint is developed. Unlike the WCP

optimization-based design, the proposed approach

performs well for robust FSBB design with the

capability of passband stability control of array

response. Moreover, some insights into the properties

of the PRV of robust FSBB have also been revealed.

• In contrast with filter-and-sum beamformer, the

passband steerability of FSBB is achieved at the cost

of high complexity in structure, i.e., highly increased

number of tap weights. However, it is shown that

there is redundancy in tap weights of FSBB, i.e., robust

FSBB design with sparse tap weights is viable. To this

end, a two-stage approach for the design of robust

FSBB with sparse tap weights using the reweighted

l1-norm constraint optimization has been proposed,

which leads to the design of low-complexity FSBB.

The rest of the paper is organized as follows. In

Section 2, we formulate the problem of robust FSBB

design. In Section 3, we present the robust FSBB design

using the WCP optimization, when the bounds of micro-

phone mismatches are known. In Section 4, we develop

the robust FSBB design using the WCMP optimiza-

tion with the PRV constraint, when the limited knowl-

edge of mean and variance of microphone mismatches

is available. In Section 5, the robust FSBB design with

sparse tap weights is studied. Design examples are pre-

sented in Section 6 to illustrate the performance of the

proposed approaches. Finally, Section 7 concludes the

paper.

2 Problem formulation
Consider a K-element linear microphone array in the

farfield, where the distance the kth microphone and the

center of the array is denoted by dk . The configuration

of the FSBB is shown in Fig. 1. Unlike the well-known

filter-and-sum beamformers, herein, a Farrow structure

consisting ofM finite-impulse-response (FIR) subfilters is

used behind each microphone, where the tap length of

each FIR subfilter is N . The beampattern of the FSBB at

frequency f and angle of arrival θ (defined with respec-
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Fig. 1 The steerable broadband beamformer based on the Farrow structure

tive to the array axis, θ ∈ (0, 180°)) can be expressed as

[11]

P(φd , f , θ) =

K−1
∑

k=0

M−1
∑

m=0

N−1
∑

n=0

Ak

(

f , θ
)

wk,n,me
−j2π fdk cos θ/ce−j2π fn/fsDM−1−m

(1)

where Ak

(

f , θ
)

=
[

1 + ak
(

f , θ
)]

e−jγk( f ,θ) with ak
(

f , θ
)

and γk
(

f , θ
)

being the gain and phase errors of the kth

microphone, wk,n,m denote the weights of the FSBB, c is

the speed of sound, fs represents the sampling frequency,

andD = (φd −90°)/90° with φd being the desired steering

direction of the FSBB.

To simplify notation, (1) can be rewritten in the vector

form

P(φd, f , θ) = wTg(φd, f , θ) (2)

where (·)T denotes the transpose, w =
[

w0,0,0, · · · ,

w0,0,M−1,w0,N−1,0, · · · ,w0,N−1,M−1, · · · ,wK−1,N−1,0, · · · ,

wK−1,N−1,M−1

]T
is the weight vector of the FSBB, and

g(φd, f , θ) is the array steering vector, which is given by

g
(

φd, f , θ
)

=
(

A
(

f , θ
)

⊙ d
(

f , θ
))

⊗ e
(

f
)

⊗ s(D) (3)

with

A
(

f , θ
)

=
[

A0

(

f , θ
)

, · · · ,AK−1

(

f , θ
)]T

(4)

d
(

f , θ
)

=

[

e−j2π fd0 cos θ/c, · · · , e−j2π fdK−1 cos θ/c
]T

(5)

e
(

f , θ
)

=

[

1, e−j2π f /fs , · · · , e−j2π f (N−1)/fs
]T

(6)

s(D) =
[

DM−1, · · · ,D, 1
]T

(7)

where ⊙ denotes the Hadamard product, and ⊗ denotes

the Kronecker product.

Given some priori knowledge onmicrophone character-

isticsA(f , θ) and a desired response Pd(φd, f , θ), our prob-

lem is to design an optimal robust beamformer weight

vector w using some criterion such that the beamformer

response P(φd, f , θ) can optimally fit Pd(φd, f , θ) over the

predefined frequency-angle range of interest
(

f , θ
)

∈ �

and the predefined steering direction range of interest

φd ∈ � ⊆ (0, 180°). The advantage of the FSBB is

that its passband can be steered towards arbitrary direc-

tions with no need of redesign of beamformer weight

vector.
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3 Robust FSBBdesign using theWCPoptimization
In this section, we study the robust FSBB design via con-

vex optimization by using the WCP optimization in the

case of bounded microphone mismatches. To proceed,

first, we need to introduce a non-robust design approach

using minimax criterion when there are no microphone

mismatches.

3.1 Non-robust design

When there are no microphone mismatches, the micro-

phone characteristics now become Ak(f , θ) = 1, (k =

0, · · · ,K − 1). Accordingly, (3) reduces to

g
(

φd, f , θ
)

= d
(

f , θ
)

⊗ e
(

f
)

⊗ s(D) � g
(

φd, f , θ
)

(8)

where g(φd, f , θ) denotes the steering vector without

microphone mismatches.

The problem for FSBB design using the minimax crite-

rion can be formulated as

min
w

max
(f ,θ)∈�

max
φd∈�

∣

∣

∣
wTg(φd, f , θ) − Pd(φd, f , θ)

∣

∣

∣
, (9)

which can be recast as the following semi-indefinite con-

vex programming

min
ǫ,w

ǫ s.t.

{
∣

∣wTg
(

φd, f , θ
)

− Pd
(

φd, f , θ
)
∣

∣ ≤ ǫ
(

f , θ
)

∈ �,φd ∈ � .
(10)

The above problem can be further formulated as a second-

order cone programming (SOCP) problem and thus can

be solved efficiently via the interior point methods [19,

20].

3.2 Robust design

Now, we consider the robust design of FSBB in the pres-

ence of bounded microphone mismatches by using the

WCP optimization-based criterion. Due to microphone

mismatches, there will exist some perturbation in the

steering vector of FSBB, i.e., 	g(φd, f , θ) = g(φd, f , θ) −

g(φd, f , θ). Assume |ak(f , θ)| ≤ δa < 1 and |γk(f , θ)| ≤

δγ < π/2, where δa and δγ are the known bounds. Regard-

ing the perturbation of the steering vector of FSBB, we

have the following proposition.

Proposition 1. The perturbation of the steering vector

of FSBB is bounded by

‖	g(φd , f , θ)‖ ≤
√

KN · max
φd∈�

{

1 − D2M

1 − D2

}

·
{

(1 + δa)2 − 2(1 + δa) cos δγ + 1
}

.

(11)

Proof. Using (3) and (8), and noting that |D| < 1, it holds

that
∥

∥	g(φd, f , θ)
∥

∥

=
∥

∥

[

A
(

f , θ
)

⊙ d
(

f , θ
)

− d
(

f , θ
)]

⊗ e
(

f
)

⊗ s(D)
∥

∥

=

√

√

√

√N ·
1 − D2M

1 − D2
·

K−1
∑

k=0

(Ak

(

f , θ
)

− 1)2

=

√

√

√

√N ·
1 − D2M

1 − D2
·

K−1
∑

k=0

{

(1 + ak)2 − 2(1 + ak) cos γk + 1
}

≤

√

KN · max
φd∈�

{

1 − D2M

1 − D2

}

·
{

(1 + δa)2 − 2(1 + δa) cos δγ + 1
}

.

The design of robust FSBB with the WCP optimization

can be formulated as

min
w

max
(f ,θ)∈�

max
φd∈�

max
	g

∣

∣

∣
wT

[

g(φd , f , θ) + 	g(φd , f , θ)
]

− Pd(φd , f , θ)

∣

∣

∣
.

(12)

With Proposition 1, the problem (12) can be reformu-

lated as the following minimax problem

min
w

max
(f ,θ)∈�

max
φd∈�

∣

∣

∣
wTg(φd, f , θ) − Pd(φd, f , θ)

∣

∣

∣
+ ε‖w‖

(13)

where ε is chosen as the lower bound of 	g given by (11).

By introducing some auxiliary variables, (13) can be recast

as the following convex optimization problem

min
ǫ,ς ,w

ǫ s.t.

⎧

⎨

⎩

∣

∣wTg(φd, f , θ) − Pd(φd, f , θ)
∣

∣ ≤ ς

ε‖w‖ ≤ ǫ − ς
(

f , θ
)

∈ �,φd ∈ �

(14)

The procedures of the robust FSBB design using the

WCP optimization are summarized in the following.

Algorithm 1 Robust FSBB design using the WCP

optimization

1) Initialize the user parameters: the bounds of

microphone mismatches δa, δγ ; the desired response

Pd(φd, f , θ), the frequency-angle range of interest �, and

the steering direction range of interest � .

2) Compute the lower bound ε of ‖	g(φd, f , θ)‖ accord-

ing to (11).

3) Solve the convex optimization problem (14) for w.

Remark 1. As we know, although the WCP optimiza-

tion approach has been successfully used in the design
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of robust broadband beamformers with the filter-and-

sum structure, it is conservative because the worst sce-

nario that all microphonemismatch errors simultaneously

attain their maximal values rarely occurs in practice.

In contrast, the robust design of FSBB using the WCP

optimization is more conservative since it just consid-

ers the more rarely occurred worst case, which requires

not only that all microphone mismatch errors simultane-

ously attain their maximal values but also that the steering

direction of the FSBB is at the boundary of the steering

direction range of interest (note that (1 − D2M)/(1 − D2)

in (11) achieves its maximal value when the steering direc-

tion is at the boundary of �). As a result, the WCP

optimization-based design for robust FSBB suffers from

outstanding overconstraint problem which may lead to

poor design performance.

4 Robust FSBB design using theWCMP

optimization with the PRV constraint
In this section, we study the robust FSBB design via

convex optimization when the knowledge we have on

microphone mismatches is only their bounded mean and

variance.

4.1 Robust design using theWCMP optimization

Suppose the mean values of microphone gain and phase

mismatches are imprecisely known and are bounded by

some known small constants μa and μγ respectively, i.e.,

|E{ak(f , θ)}| ≤ μa, |E{γk(f , θ)}| ≤ μγ , where E{·} denotes

the mean value. Following the similar derivation as Propo-

sition 1, it holds that themean perturbation of the steering

vector of the FSBB is bounded by

‖E
{

	g(φd , f , θ)
}

‖ ≤
√

KN · max
φd∈�

{

1 − D2M

1 − D2

}

·
{

(1 + μa)(1 + μa − 2 cosμγ ) + 1
}

.

(15)

The robust design for the FSBB using the WCMP opti-

mization can be cast as

min
w

max
(f ,θ)∈�

max
φd∈�

max
	g

∣

∣

∣
E

{

wT
[

g(φd , f , θ) + 	g(φd , f , θ)
]

}

− Pd(φd , f , θ)

∣

∣

∣

(16)

Using (15), the WCMP optimization problem can be

reformulated as

min
w

max
(f ,θ)∈�

max
φd∈�

∣

∣

∣
wTg(φd, f , θ) − Pd(φd, f , θ)

∣

∣

∣
+ ε‖w‖

(17)

where ε is chosen as the lower bound of ‖E{	g(φd , f , θ)}‖

given by (15). Alternatively, the optimization problem (17)

can further be recast as the following SOCP problem

min
ǫ,ς ,w

ǫ s.t.

⎧

⎨

⎩

∣

∣wTg(φd, f , θ) − Pd(φd, f , θ)
∣

∣ ≤ ς

ε‖w‖ ≤ ǫ − ς
(

f , θ
)

∈ �,φd ∈ �

(18)

Remark 2. Like the WCP optimization-based design,

the WCMP optimization-based design also belongs to

the class of white noise gain constraint-based approaches.

Consider the fact that μa < δa and μγ < δγ , it follows

from (15) and (11) that ε < ε. Therefore, the WCMP

optimization-based design is less conservative than the

WCP optimization-based design and hence is suitable for

robust FSBB design as demonstrated by the simulation

results in Section 6.

4.2 Robust design incorporating the PRV constraint

To enhance the robustness of the FSBB, i.e., to improve

its stability of passband response and hence to reduce

target signal distortion, we hereby consider to incorpo-

rate the PRV constraint into the design procedures by

using the bounded variances of microphone mismatches.

To proceed, we make the following assumptions [15]:

1) microphone gain and phase errors are uncorrelated;

2) all microphones have the same variances Var{a(f , θ)}

and Var{γ (f , θ)} for gain and phase errors, respectively.

The only knowledge we have about Var{a(f , θ)} and

Var{γ (f , θ)} is that they are bounded by some known

constants, i.e., Var{a(f , θ)}≤ σ 2
a and Var{γ (f , θ)} ≤ σ 2

γ .

Theorem 1. The variance of the array response of the

FSBB in the presence of microphone gain and phase

mismatches is given by

Var
{

P
(

φd, f , θ
)}

= wTQ(φd, f , θ)w (19)

where the (i, j)th element ofQ(φd, f , θ) is

Q(i,j)(φd , f , θ) =
{

[Var(a) + Var(γ )] cos
[

2π f (n1 − n2)/fs
]

D2M−2−(m1+m2), if k1 = k2
0, otherwise

(20)

where n1 = mod (⌈i/M⌉ − 1,N), k1 = ⌈(⌈i/M⌉)/N⌉ −

1, m1 = mod (i − 1,M), n2 = mod (⌈j/M⌉ − 1,N),

k2 = ⌈(⌈j/M⌉)/N⌉ − 1, m2 = mod (j − 1,M), where

mod (i − 1,M) is the remainder of (i − 1)/M, and ⌈i/M⌉

denotes the smallest integer larger than or equal to i/M.
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Proof. With (2), (3), and (8), we have

Var{P(φd , f , θ)} = Var
{

wT
[

g(φd , f , θ) + 	g(φd , f , θ)
]

}

= E

{

[

wT	g(φd , f , θ) − E(wT	g(φd , f , θ))
]2

}

= wT
{

E
[

	g(φd , f , θ)	gH(φd , f , θ)
]

−E
[

	g(φd , f , θ)
]

E
[

	gH(φd , f , θ)
]}

w

= wTQ(φd , f , θ)w

(21)

where the superscript (·)H represents the Hermitian

transpose, and

Q(φd, f , θ) = E
[

	g(φd, f , θ)	gH(φd, f , θ)
]

−E
[

	g(φd, f , θ)
]

E
[

	gH(φd, f , θ)
]

(22)

with its (i, j)th element given by

Q(i,j)(φd , f , θ) = E

[

	gi(φd , f , θ)	g∗
j (φd , f , θ)

]

− E

[

	gi(φd , f , θ)]E[	g∗
j (φd , f , θ)

]

≈ e−jω
[

(k1−k2)fs+(dn1−dn2 ) cos θ/c
]

D2M−2−(m1+m2)

{

E
[

an1an2
]

− E
[

an1
]

E
[

an2
]

+ E
[

γn1γn2
]

− E
[

γn1
]

E
[

γn2
]}

=

⎧

⎨

⎩

[Var(a) + Var(γ )] cos
[

2π f (n1 − n2)/fs
]

×D2M−2−(m1+m2), if k1 = k2
0, otherwise

where the superscript (·)∗ denotes the complex conjugate.

This completes the proof.

Regarding the properties of the PRV of the FSBB, we

have the following remarks.

Remark 3. Given a specific steering direction φd, it is

interesting to note that the PRV of the FSBB is inde-

pendent of angle θ , i.e., the effect of microphone gain

and phase mismatches on the PRV of the FSBB is angle-

invariant. However, the PRV of the FSBB is steering

direction variant. It has been found that the PRV of the

FSBB tends to increase with the steering direction devi-

ating from the array broadside direction as revealed in

Section 6.

Based on (18) and Theorem 1, our proposed robust

design criterion using the WCMP optimization with the

PRV constraint can be formulated as

min
ǫ,ς ,w

ǫ + βλ s.t.

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∣

∣wTg(φd, f , θ) − Pd(φd, f , θ)
∣

∣ ≤ ς

ε‖w‖ ≤ ǫ − ς

wTQ(φd, f , θ)w ≤ λ
(

f , θ
)

∈ �,φd ∈ �

(23)

where β > 0 is a trade-off parameter between the mean

deviation of the actual array response from the desired

response and the PRV. It is noted that, when incorporating

the PRV constraint directly from (19), the ill-conditioned

matrix Q(φd, f , θ) may lead to numerical instability prob-

lem. To overcome this problem, the average PRV over the

whole passband has been used instead in the third con-

straint wTQ(φd, f, θ)w ≤ λ, where Q(φd, f, θ) denotes the

average ofQ(φd, f, θ) in the passband.

To summarize, the design approach for the robust FSBB

using the WCMP optimization with the PRV constraint

consists of the following steps.

Algorithm 2 Robust FSBB design using the WCMP opti-

mization with the PRV constraint
1 : Initialize the user parameters: the bounds of mean

values of microphone mismatches μa, μγ ; the bounds of

variances of microphone mismatches σ 2
a , σ

2
γ ; the desired

response Pd(φd, f , θ), the frequency-angle range of inter-

est �, the steering direction range of interest � , and the

trade-off parameter β .

2 : Compute the lower bound ε of ‖E{	g(φd , f , θ)}‖

according to (15).

3 : Calculate the matrixQ(φd, f , θ) according to (20).

4 : Solve the convex optimization problem (23) for w.

5 Robust design of the FSBB with sparse tap

weights
Although the FSBB can be flexibly steered towards any

desired direction, it is at the cost of increased number of

FIR filters in structure, and hence is more computationally

demanding, compared with conventional filter-and-sum

beamformers. An interesting problem now arises: Is there

any redundancy in the tap weights of the FSBB by using

the above design approaches? If so, the constraint on the

sparseness of tap weights of the FSBB can be incorpo-

rated into the robust design approaches to reduce the

computational complexity of the FSBB. To this end, a

two-stage approach for the design of robust FSBB with

sparse tap weights via convex optimization is proposed

in this section. Considering the WCMP optimization-

based design with the PRV constraint is more efficient

than its counterpart based on the WCP optimization for

robust design of the FSBB; as discussed in Section 6, here-

after, we will focus on the WCMP optimization-based

design by incorporating the sparsity constraint on tap

weights.

The first stage of our proposed design approach is to

find potential redundancy in tap weights of the FSBB

using the WCMP optimization-based design approach.
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Based on (17), the problem can be mathematically formu-

lated as

min
w

max
( f ,θ)∈�

max
φd∈�

∣

∣

∣
wTg(φd , f , θ) − Pd(φd , f , θ)

∣

∣

∣
+ ε‖w‖ + μ‖w‖0

(24)

where the l0-norm ‖ · ‖0 is the count of the number of

non-zero elements of its argument, and μ denotes the

user parameter to control the degree of sparsity of the

tap weights. Unfortunately, (24) is a NP-hard optimiza-

tion problem due to the non-convex l0-norm. As it is

known, the l1-norm is the closest convex function to

the l0 norm and the l1-norm is usually able to produce

sparse solutions. To solve the difficult problem (24) effi-

ciently, the iterative reweighted l1-norm constraint [21]

is used instead to approximate the l0-norm constraint in

(24). Explicitly, at the lth iteration, we solve the following

constrained convex optimization problem

min
w

max
(f ,θ)∈�

max
φd∈�

∣

∣

∣
wTg(φd , f , θ) − Pd(φd , f , θ)

∣

∣

∣
+ ε‖w‖ + μ‖D(l)w‖1

s.t. wi = 0,∀i ∈ S(l)

(25)

where ‖ · ‖1 denotes the l1-norm, D(l) = diag{D1,D2, · · · ,

DKNM} with Di = 1/
(

|w
(l−1)
i | + ǫ

)

being the reweight-

ing matrix and ǫ being a small positive value to provide

numerical stability,w
(l−1)
i represents the ith component of

w at the (l − 1)th iteration, and S(l) is the index set of the

sparse tap weights for the lth iteration, which is obtained

by comparing the tap weights w at the (l − 1)th iteration

with a predefined small-valued threshold ξT , in particular,

when the weight |w
(l−1)
i | ≤ ξT , then w

(l−1)
i should be reset

to zero; otherwise, it will be kept unchanged. By using the

reweighted l1-norm constraint, those tap weights whose

magnitudes are small are imposed larger weightings in the

next iteration and vice versa, and accordingly, the sparsity

of the tap weights is enhanced. For initialization, D(0) is

set to identity matrix and S(0) is set to the null set. The

above convex optimization problem (25) is solved repeat-

edly until the preset maximum number of iterations L is

achieved.

The second stage of the proposed approach is to incor-

porate the PRV constraint in the design procedures. Con-

sidering (23), the design problem can be finally formulated

as the following convex optimization problem

min
ǫ,ς ,w

ǫ + βλ s.t.

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

wi = 0,∀i ∈ S(L)
∣

∣wTg(φd, f , θ) − Pd(φd, f , θ)
∣

∣ ≤ ς

ε‖w‖ ≤ ǫ − ς

wTQ(φd, f , θ)w ≤ λ
(

f , θ
)

∈ �,φd ∈ �

(26)

In summary, the two-stage design approach for the

robust FSBB with sparse tap weights include the following

steps.

Algorithm 3 Robust design of the FSBB with sparse tap

weights

1 : Initialize the user parameters: the bounds of mean

values of microphone mismatches μa, μγ ; the bounds of

variances of microphone mismatches σ 2
a , σ

2
γ ; the desired

response Pd(φd, f , θ), the frequency-angle range of inter-

est �, the steering direction range of interest � , the

trade-off parameter β , μ; the threshold ξT ; the parame-

ter ǫ for numerical stability; and the maximum number of

iterations L.

2 : Compute the lower bound ε of ‖E{	g(φd , f , θ)}‖

according to (15).

3 : Redundant tap weights finding:

a) Set S(0) = ∅, and D(0) as an identity matrix, and solve

(18) for w(0).

b) Update the index set for the redundant tap weights

S(l) =

{

i||w
(l−1)
i | ≤ εT

}

.

c) Solve (25) for w(l).

d) Set l = l + 1, repeat steps b) and c) until l = L.

4 : CalculateQ(φd, f , θ) by (20).

5 : Solve the convex optimization problem (26) for w.

6 Design examples
In this section, some design examples are presented to

demonstrate the performance of the design approaches

proposed above. The CVX convex optimization toolbox

[22] has been used to solve all the convex optimization

problems in the following.

Consider a ten-element uniform linear microphone

array with the inter-element spacing 5 cm. Behind each

microphone, a Farrow structure consisting of five FIR fil-

ters is used, where the tap length of the FIR filters is 20

unless otherwise stated, i.e., K = 10,M = 5, and N = 20.

The steering direction range of interest is [ 40°, 140°], the

normalized frequency range of interest is [ 0.25π , 0.875π ],

and the sampling frequency fs is 8000 Hz. The passband

width, denoted as ̟ , is set to 20°, and for a specific steer-

ing direction φd, the two stopband regions are �
φd

sl =

[ 0°,φd − ̟/2 − 20°], and �
φd
sr =[φd + ̟/2 + 20°, 180°],

where two transition bands each with a width of 20°

has been considered. The desired response is defined as

Pd(φd, f , θ) = 1 in the passband and Pd(φd, f , θ) = 0 in the

stopbands. Suppose that all the microphone gain errors

ak(f , θ) have a uniform distribution in [−0.05, 0.05], and

that all the microphone phase errors γk
(

f , θ
)

have a
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uniform distribution in [−π/36,π/36], i.e., corresponding

to E
{

ak
(

f , θ
)}

= 0, E
{

γk
(

f , θ
)}

= 0, Var
{

ak
(

f , θ
)}

=

8.333 × 10−4, and Var
{

γk
(

f , θ
)}

= 2.5 × 10−3.

6.1 Example 1: robust design usingWCP optimization

First, we consider the case of no microphone mismatches

when using the WCP optimization, i.e., corresponding to

the non-robust design. Figure 2 shows the array response

of the FSBB using the non-robust design, where the steer-

ing direction, i.e., the direction of arrival of the sound

source of interest, is set to 60°. As can be seen, the

FSBB design based on the WCP optimization performs

well when there are no microphone mismatches, since its

mainlobe can be steered to the desired direction with a

stopband level below −13.7 dB for the stopband region

[ 0°, 30°]∪[ 90°, 180°]. For comparison, the array response

of the well-known least-squares (LS) design based on the

conventional filter-and-sum structure [3] is also shown

in Fig. 3, with the same number of microphones as for

the FSBB. Note that the LS design based on the filter-

and-sum structure is non-steerable; therefore, its pass-

band has to cover the whole direction range of interest

where sound source may be present, i.e., [ 40°, 140°]. Con-

sequently, the passband region is too wide, which will

lead to poor spatial filtering performance. For instance,

when the sound source of interest is impinging on the

array from the angle 60°, the undesired interference

and noise signals within the angular region (90°, 140°)

can not be reduced anymore by the non-steerable

beamformer.

Next, we consider the FSBB design using the WCP

optimization in the presence of microphone mismatches.

Figure 4 shows the corresponding array response of the

FSBB steered to 60°, where the user-defined parameter

ε is set to 1.74 according to (11). The simulation result

is the average over 100 Monte Carlo trials, i.e., by using

100 random samples of microphone mismatches. As we

have discussed above, although the WCP optimization-

based criterion has been successfully applied to the robust

design of filter-and-sum beamformers, it has failed to

work for the design of robust FSBB due to its over-

conservativeness. Therefore, the WCP optimization-

based criterion may not be suitable for the design of

robust FSBB. To justify the overconservativeness of WCP

optimization for FSBB design, the array response of the

FSBB designed by the less-conservative WCP optimiza-

tion with the user-defined parameter ε reduced to 0.02

is shown in Fig. 5. Compared with Fig. 4, it can be

seen clearly that the beamformer performance can be

improved significantly through reducing the effect of con-

servativeness of WCP optimization.

6.2 Example 2: robust design usingWCMP optimization

with the PRV constraint

In the following, we assume that the mean and vari-

ance values of microphone gain and phase errors are

all not precisely known due to practical measurement

errors. That is, the gain and phase errors are not zero-

mean and instead bounded by some small values, i.e.,

|E
{

ak
(

f , θ
)}

| ≤ 5× 10−6, |E
{

γk
(

f , θ
)}

| ≤ 8.73× 10−6;

the variance values are also bounded by Var
{

ak
(

f , θ
)}

≤

4.2 × 10−3 and Var
{

γk
(

f , θ
)}

≤ 1.27 × 10−2, respec-

tively, i.e., each is around five times more than the actual

variance of microphone gain/phase errors. All the results
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Fig. 2 Array response of the FSBB using the WCP optimization without microphone mismatches. The steering direction φd = 60°. a 3D view of the

array response. b Side view of the array response
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(a) (b)

Fig. 3 Array response of the non-steerable LS design based on the conventional filter-and-sum structure without microphone mismatches. a 3D

view of the array response. b Side view of the array response

are the average over 100 Monte Carlo trials with random

samples of microphone mismatches.

Figure 6a and e shows the array response and the PRV of

the robust FSBB based on the WCMP optimization with

the PRV constraint, respectively, where β = 20. While

Fig. 6b and f shows the array response and the PRV of

the robust FSBB based on the WCMP optimization with-

out the PRV constraint, respectively, i.e. β = 0. The

steering direction is set to 60°. To see the results more

clearly, the associated side views are also presented in

Fig. 6c, d, g, and h. Comparedwith theWCP optimization-

based design, i.e., Fig. 4, the design approach using the

WCMP optimization performs well in the presence of

microphone mismatches. Moreover, by imposing the PRV

constraint, the variance of passband array response can

be effectively reduced, especially in the low-frequency

region. Note also that the PRV of the robust FSBB is

nearly invariant with angle θ as demonstrated in Fig. 6g

and h, which is consistent with the theoretical finding in

Remark 3.

(a) (b)

Fig. 4 Array response of the robust FSBB using the WCP optimization in the presence of microphone mismatches, where the user-defined parameter

ε is equal to 1.74. The steering direction φd = 60°. Average of 100Monte Carlo trials. a 3D view of the array response. b Side view of the array response
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(a) (b)

Fig. 5 Array response of the robust FSBB using the less-conservative WCP optimization in the presence of microphone mismatches, with the

user-defined parameter ε being reduced from 1.74 to 0.02. The steering direction φd = 60°. Average of 100 Monte Carlo trials. a 3D view of the array

response. b Side view of the array response

Now, we study the performance of the robust FSBB

using WCMP optimization with PRV constraint in the

presence of larger microphone mismatch errors. Here, we

assume that all microphone gain errors ak(f , θ) have a

uniform distribution in [−0.1, 0.1], and all microphone

phase errors γk(f , θ) have a uniform distribution in

[−π/18,π/18]. Figure 7a and e shows the array response

and the PRV of the robust FSBB based on the WCMP

optimization with the PRV constraint, respectively, where

β = 20. While Fig. 7b and f plots the array response and

the PRV of the robust FSBB based on the WCMP opti-

mization without the PRV constraint, respectively. The

steering direction is set to 60°. For ease of comparison,

the associated side views are also presented in Fig. 7c,

d, g, and h. From the simulation results, we can see that

the robust FSBB still shows satisfactory performance even

in the presence of larger microphone mismatch errors.

Similar to the above case with smaller microphone mis-

matches, by imposing the PRV constraint, the variance of

passband array response of the FSBB beamformer can also

be reduced.

To show the effect of the PRV constraint on the per-

formance of robust FSBB, we first introduce the passband

fluctuation [18], which is defined as the ratio of maxi-

mum mean magnitude response to the minimum one in

the passband. Passband fluctuation is an indicator of the

deviation of the actual mean passband response obtained

from the desired flat-top one. Figure 8a, b, and c shows

the passband fluctuation, the stopband level, and the aver-

age PRV of the robust FSBB with various PRV constraints

in the presence of microphone gain errors [−0.05, 0.05]

and microphone phases errors [−π/36,π/36], where two

cases are considered, i.e., φd = 60° and 90°. As can be

seen from Fig. 8a and c, with more stringent PRV con-

straint, i.e., increasing the trade-off parameter β , the PRV

of the FSBB tends to decrease, while keeping the passband

fluctuation at a lower level. However, this is at the cost of

sacrificing the stopband level as shown in Fig. 8b. There-

fore, a trade-off between the performance of passband and

that of the stopband should be considered during design

of robust FSBB.

As analyzed above, the PRV of the FSBB is dependent on

steering direction. Now, we study the effect of the steering

direction on the PRV of the FSBB. Figure 9a and b shows

the average PRV of the FSBB versus steering direction φd

with β = 0 and β = 20, respectively. Herein, four FSBBs

with different number of microphonesK and different FIR

tap length N have been considered, i.e., K = 7, N = 20;

K = 7, N = 30; K = 10, N = 20; and K = 10, N = 30.

As expected, it can be seen from Fig. 9 that the PRV of the

FSBB is varying with steering direction. Interestingly, the

average PRV tends to increase with the steering direction

deviating from the array broadside.

6.3 Example 3: robust design with sparse tap weights

Now, we study the performance of the robust FSBB design

with sparse tap weights by using Algorithm III. The user

parameters are set as: the trade-off parameter μ = 5 ×

10−7, the threshold parameter ξT = 10−6, the parame-

ter for numerical stability εT = 10−6, and the maximum

number of iterations L = 4. The remaining user param-

eters are set same as in Example 2. All the results are the
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 6 Performance of the robust FSBB using the WCMP optimization with the PRV constraint. Microphone gain errors (−0.05, 0.05) and phase errors

(−π/36,π/36). The steering direction φd = 60°. Average of 100 Monte Carlo trials. a Array response of the FSBB with PRV constraint. b Array

response of the FSBB without PRV constraint. c Side view of a. d Side view of b. e PRV of the FSBB with PRV constraint (β = 20). f PRV of the FSBB

without PRV constraint. g Side view of e. h Side view of f
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 7 Performance of the robust FSBB using the WCMP optimization with the PRV constraint. Microphone gain errors (−0.1, 0.1) and phase errors

(−π/18,π/18). The steering direction φd = 60°. Average of 100 Monte Carlo trials. a Array response of the FSBB with PRV constraint (β = 20).

b Array response of the FSBB without PRV constraint. c Side view of a. d Side view of b. e PRV of the FSBB with PRV constraint (β = 20). f PRV of the

FSBB without PRV constraint. g Side view of e. h Side view of f
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(a)

(b)

(c)
Fig. 8 Effect of the PRV constraint on the performance of the robust

FSBB based on the WCMP optimization with the PRV constraint.

Average of 100 Monte Carlo trials. a Passband fluctuation versus β . b

Stopband level versus β . c Average PRV versus β

(a)

(b)

Fig. 9 Effect of the steering direction on the PRV of the robust FSBB

using the WCMP optimization with the PRV constraint. Average of 100

Monte Carlo trials. a Average PRV versus φd , with β = 0. b Average

PRV versus φd , with β = 20

average over 100 Monte Carlo trials with random samples

of microphone mismatches.

First, we demonstrate the complexity-reducing impact

of the sparsity constraint on the robust FSBB. Figure 10

shows the performance comparison of the sparse FSBB

and its non-sparse counterpart with N = 30, where the

steering direction is φd = 60°, and there is no PRV con-

straint (i.e., β = 0). Herein, the non-sparse FSBB refers

to the FSBB designed by Algorithm II, which has a full

active tap weights, i.e., no zero-valued tap weights. For the

sparse FSBB, the number of the active weights is reduced

to 738, i.e., over 50% tap weights of the non-sparse FSBB

are nullified. The array response of the sparse and non-

sparse FSBBs is shown in Fig. 10a and b, while the PRV
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 10 Performance comparison of the sparse robust FSBB and its non-sparse counterpart. For the non-sparse FSBB, the number of active weights

is 1500; while for the sparse FSBB, the number of active weights is 738, i.e., over half of tap weights have been nullified. The steering direction

φd = 60°. Average of 100 Monte Carlo trials. a Array response of the sparse FSBB. b Array response of the non-sparse FSBB. c Side view of a. d Side

view of b. e PRV of the sparse FSBB. f PRV of the non-sparse FSBB. g Side view of e. h Side view of f
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 11 Performance comparison of the sparse and non-sparse robust FSBBs with comparable amount of active tap weights. For the sparse FSBB,

the number of active weights is 738; while for the non-sparse FSBB, the number of active weights is 750. The steering direction φd = 60°. Average of

100 Monte Carlo trials. a Array response of the sparse FSBB. b Array response of the non-sparse FSBB. c Side view of a. d Side view of b. e PRV of the

sparse FSBB. f PRV of the non-sparse FSBB. g Side view of e. h Side view of f
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of the sparse and non-sparse FSBBs is shown in Fig. 10e

and f. In order to see the results more clearly, the corre-

sponding side views are also presented in Fig. 10c and d

and g and h, respectively. As can be seen from Fig. 10c and

d, although over one half of tap weights are nullified, the

beampattern of the resultant sparse FSBB has nearly unaf-

fected compared with the beampattern of its non-sparse

counterpart. Moreover, the variance of passband array

response of the sparse FSBB has only varied slightly com-

pared with that of its non-sparse counterpart, as shown

in Fig. 10g and h. Therefore, it has justified our statement

that there are redundancy in the tap weights of an FSBB,

and a lower-complexity FSBB can be designed via impos-

ing the sparsity constraint without producing a significant

degradation of performance.

Next, we show another advantage of the sparse FSBB

over the non-sparse FSBB with similar computational

complexity. Figure 11 shows the performance compari-

son of sparse and non-sparse FSBBs with a comparable

amount of active tap weights, i.e., with a similar computa-

tional complexity, where the steering direction is φd = 60°

and there is no PRV constraint. For the sparse FSBB, the

number of the active weights is 738, with N = 30. For the

non-sparse FSBB, the number of the active weights is 750,

with N = 15. Note here that, for the purpose of ensur-

ing a fair comparison, the active weights of the sparse

FSBB is chosen slightly less than that of the non-sparse

FSBB. The array response of the sparse and non-sparse

FSBBs is shown in Fig. 11a and b, while the PRV of

the sparse and non-sparse FSBBs is shown in Fig. 11e

and f. To see the results more clearly, the correspond-

ing side views are also plotted in Fig. 11c and d and

g and h, respectively. For the spare FSBB, the stopband

level and passband fluctuation are −7.988 and 2.043 dB,

respectively, with the average PRV 0.005. For the non-

sparse FSBB, the stopband level and passband fluctuation

are −7.802 dB and 2.408 dB, respectively, with the aver-

age PRV 0.011. Comparatively, the sparse FSBB is superior

to the non-sparse FSBB with a similar computational

complexity.

Finally, we consider the effect of the PRV constraint

on the robust FSBB with sparse tap weights. Figure 12

shows the performance of the sparse FSBB under vari-

ous PRV constraints. For comparison, the performance

of non-sparse FSBB with a comparable number of active

weights is also shown in Fig. 12. Here, the simulation set-

tings are same as in Fig. 11. Moreover, the case with the

steering direction φd = 90° is also considered. As can be

seen from Fig. 12, the sparse FSBB outperforms its non-

sparse counterpart under various PRV constraints. Similar

to the case of non-sparse FSBB shown in Fig. 8, the PRV of

the sparse FSBB will decrease with a more stringent PRV

constraint, and this is also at the cost of the stopband level

increasing as shown in Fig. 11b.

(a)

(b)

(c)
Fig. 12 Effect of the PRV constraint on performance of the sparse

robust FSBB. Average of 100 Monte Carlo trials. a Passband fluctuation

versus β . b Stopband level versus β . c Average PRV versus β



Wang and Chen EURASIP Journal on Audio, Speech, andMusic Processing  (2015) 2015:14 Page 17 of 17

7 Conclusions
In this paper, the study of robust FSBB design with

sparse tap weights via convex optimization has been con-

ducted by incorporating some priori knowledge of micro-

phone mismatches. It has been shown that due to the

over-conservativeness of the WCP optimization crite-

rion, it may become unapplicable to the robust FSBB

design, though it has been successfully applied in the

robust filter-and-sum beamformer design. When the lim-

ited knowledge of mean and variance of microphone

mismatches is available, the robust FSBB design approach

based on the WCMP optimization with the PRV con-

straint has been presented. Compared with the WCP

optimization-based design, it performs well in the pres-

ence of microphone mismatches; moreover, it has the

capability of passband stability control of array response.

Some insights into the PRV properties of FSBB are also

revealed to better understand the robustness charac-

teristic of FSBB. It was also shown in the paper that

there exists redundancy in the tap weights of the robust

FSBB. To further reduce the computational complex-

ity of the robust FSBB, a two-stage design approach

based on the reweighted l1-norm constraint optimiza-

tion has been proposed to sparsify the tap weights

of robust FSBB. Several design examples have been

presented to illustrate the performance of the presented

approaches.

Endnotes
1The passband is also known as the mainlobe of a

beamformer.
2The stopband is also known as the sidelobe of a

beamformer.
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