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Abstract. The aim of this article is to introduce a new topology optimisation formulation for optimal robust

design of Micro Electro Mechanical Systems. Mesh independence in topology optimisation is most often

ensured by using filtering techniques, which result in transition grey regions difficult to interpret in practical

realisations. This problem has been alleviated recently by projection techniques, but these destroy the mesh

independence introduced by the filters and result in single node connected hinges. Such features in the de-

sign are undesirable as they are not robust with respect to geometric manufacturing errors (such as under/over

etching). They can be avoided by optimising for several design realisations which take into account the pos-

sible geometry errors. The design variations are modelled with the help of random variables. The proposed

stochastic formulation for the design variations results in nearly black and white mechanism designs, robust

with respect to uncertainties in the production process, i.e. without any hinges or small details which can create

manufacturing difficulties.

1 Introduction

The focus in this article is on the design of compliant mech-

anisms by topology optimisation. Compliant mechanisms

gain their mobility from the flexibility of the building com-

ponents and they have found wide applicability in the pro-

duction of Micro Electro Mechanical Systems (MEMS) –

small mechanical devices coupled with electronic circuits.

The manufacturing is based on etching techniques utilised

in the semi-conductor industry. The dimensions of MEMS

are in the order of several hundred µm and due to their small

size any hinges or assembly procedures are undesirable.

Topology optimisation (Bendsøe and Sigmund, 2004) has

been utilised widely in the industry for optimising machine

elements and assemblies. It is an iterative process where the

aim is to minimise predefined objective, such as weight, cost

or compliance, by distributing material in the design domain

and fulfilling prescribed constraints. The design domain is

discretised by using cells in 2D or voxels in 3D, and a de-

sign variable is assigned to each of them. The variables

can take values 1 or 0, where 1 is assigned if a cell is filled
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with material and 0 if it is void. In order to utilise gradient

based optimisation methods, the 0/1 design problem is re-

laxed and the design variables are allowed to take values con-

tinuously between zero and one. The optimisation problem

is mesh dependent1 and convergence for mesh refinement is

ensured by regularisation. Among the different methods pro-

posed in the literature, the so-called filtering techniques have

gained popularity. Initially, filtering has been introduced on

the sensitivities of the objective (Sigmund, 1997), and later

on the density field (Bruns and Tortorelli, 2001; Bourdin,

2001). The regularised topology optimisation problem re-

sults in designs with grey transition regions between the void

and solid. These regions can often be removed by post-

processing, however in many cases they model the correct

physics of the problem and discarding them will compro-

mise the design performance. Recently, several projection

schemes (Guest et al., 2004; Sigmund, 2007; Xu et al., 2010)

have been proposed to decrease the grey transitions in the

final designs. The first two (Guest et al., 2004; Sigmund,

1Mesh independence does not guarantee uniqueness of the so-

lution. The optimisation problem considered in this article is non-

convex and possesses several different local minima, i.e. the solu-

tion is not unique. Mesh independence means that the minimum

feature sizes remain constant with mesh refinement.
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176 B. S. Lazarov et al.: Robust design of compliant mechanisms

2007) impose length scale on the void or the solid phase by

regularising with finite support density filter and threshold

projection with threshold 0 or 1, respectively. The projection

scheme proposed in Xu et al. (2010) is based on Heaviside

projection with arbitrary threshold. It results in nearly black

and white designs with small features which are mesh depen-

dent.

Topology optimised designs for MEMS consist of solid el-

ements connected with hinges. The hinges in the case with-

out Heaviside projection appear as grey material regions, and

for projected designs as solid elements connected through a

single node (e.g. Pedersen et al., 2001). The robust formu-

lation (Sigmund, 2009; Wang et al., 2011), provide nearly

black and white designs without any hinges by requiring the

performance to be insensitive with respect to production er-

rors in the geometry. The formulation is able to represent

constant uniform under- or over- etching error distributed

uniformly along the perimeter of the design. Under- or over-

etched design realisations are obtained using two different

threshold projections. A more realistic representation of the

manufacturing uncertainties requires to model them in a con-

tinuous space, i.e., considering the threshold to vary contin-

uously between the most dilated and the most eroded case.

The scenario can be modelled by using min/max formula-

tion with more than three design realisations. Increasing the

number of the design realisations will approximate closer

the design space. A more systematic approach, presented

here, is based on modelling geometry uncertainties by us-

ing stochastic theory. The threshold is modelled as a ran-

dom variable. The linear elasticity state problem becomes

non-deterministic and the methods developed for solving

Stochastic Partial Differential Equations can be utilised to

obtain the system response. The formulation proposed here

is based on the stochastic moments of the mechanism re-

sponse, and a full reconstruction of the system solution in

the stochastic and the physical space is not necessary. The

moments can be estimated easily by using Monte Carlo Sim-

ulations. The method converges relatively slowly to the true

moments. As demonstrated in Xiu and Hesthaven (2005) an

order of magnitude faster convergence for a limited number

of the random dimensions can be obtained by the Stochastic

Collocation Method, which is the solution method used for

obtaining the presented results.

The paper is composed as follows. First, the standard de-

terministic topology optimisation approach is presented for

large displacement linear elasticity in Sect. 2. The section

covers the optimisation formulation, regularisation and pro-

jection techniques, and derivation of the objective sensitivi-

ties. In Sect. 3, the existing robust formulations are discussed

and then the stochastic robust formulation is introduced. A

brief discussion of the solution techniques for the stochas-

tic state problem is presented in Sect. 4 and robust designs

for MEMS obtained by the proposed approach are shown in

Sect. 5.

2 Topology optimisation of large displacement com-

pliant mechanisms

The objective in the considered compliant mechanism de-

sign, shown in Fig. 1, is to minimise the displacement in a

selected degree of freedom. The original non-robust deter-

ministic problem (Sigmund, 1997; Pedersen et al., 2001) can

be written in discrete form as

min
ρ

: c(ρ)= lTu

s.t. : r(ρ,u)= 0 (1)

: V (ρ)≤V∗ (2)

: 0≤ ρi ≤ 1∀i ∈Ne

where the state elasticity problem is assumed to be discre-

tised using the finite element method (FEM), u is the sys-

tem response displacements vector, ρ is a vector with the

topology optimisation variables associated with each finite

element, and l is a vector with size equal to the size of u. The

element li which corresponds to the displacement degree of

interest is set to one, and the rest are set to zero. r(ρ,u) is the

residual vector function for the state problem. For a small

displacement linear elasticity formulation of the state prob-

lem, the residual vector is given as r= f −Ku, where f is the

external load and K is the stiffness matrix. For large displace-

ment formulation r is presented in Sect. 2.1. The volume of

the design domain occupied with material is denoted with

V (ρ) and it is restricted to be smaller or equal to a predefined

value V∗. The design variables ρi,i ∈Ne are bounded between

zero and one. The individual element contributions to the

tangent matrix K are calculated by using elasticity modulus

E obtained by the so-called solid isotropic material interpo-

lation with penalisation (SIMP), which can be written as

E = Emin+ ρ̂
p (E0−Emin) (3)

where E0 is the stiffness of the solid phase. Emin is the stiff-

ness of the void phase – a small number larger than zero in

order to ensure non-singularity of the tangent matrix. The

parameter p is used for penalising intermediate design val-

ues and is usually taken to be p= 3, and ρ̂i in Eq. (3) is the

physical density at the selected point in the design domain.

In order to ensure mesh independence of the optimised so-

lution, as well as to avoid checker-boards, the original design

field ρ is filtered. The filtered density ρ̃ can be obtained ex-

plicitly by using weighted average of the design variables

around each element (Bruns and Tortorelli, 2001; Bourdin,

2001) or implicitly by solving partial differential equation

(PDE) for the filtered density field (Lazarov and Sigmund,

2011)

−r2∇2ρ̃+ ρ̃= ρ,
∂ρ̃

∂n
= 0 (4)

where r is a filter length parameter which defines the length

scale imposed by the filter. For r= 0 the filtered field is equal

Mech. Sci., 2, 175–182, 2011 www.mech-sci.net/2/175/2011/
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to the original design field. The increase of the filter pa-

rameter r suppresses fast oscillations in the design field and

passes out the slowly varying components of the field. The

boundary condition ensures that the filter is volume preserv-

ing, i.e. the volume of the input design field ρ is equal to

the volume of the filtered field ρ̃. The vector n denotes the

outward normal to the design boundary. The PDE (4) is dis-

cretised by using the same mesh utilised for solving the state

problem, and in discrete form can be written as

Kf ρ̃=Tfρ (5)

where Kf is the discrete differential operator ∇2 +1 and Tf

maps the design field vector associated with each element

to the nodal input field of the PDE filter. An example of a

MATLAB implementation of the PDE filter can be found in

Andreassen et al. (2011).

If the physical element density is represented by the fil-

tered density obtained by solving Eq. (4), the optimised de-

sign consists of grey areas which are difficult to interpret.

Practical realisations require a discrete black and white solu-

tion. Such a solution can be obtained by threshold projection

(Guest et al., 2004; Sigmund, 2007; Xu et al., 2010). All

values above the selected threshold η are projected to 1 and

all values below the threshold are projected to 0. Mathe-

matically the operation can be represented by the Heaviside

function, which is not differentiable. Therefore, for compu-

tational purposes, it is replaced by a smooth function with

the expression suggested in Wang et al. (2011) and given as

ρ̂i =
tanh(βη)+ tanh(β(ρ̃i−η))
tanh(βη)+ tanh(β(1−η)) (6)

In the limit when, β→∞ Eq. (6) approaches the Heaviside

function with threshold η. One undesirable feature of the

threshold projection is that the length scale imposed by the

density filter is lost. In Wang et al. (2011), this property is

demonstrated for several optimisation problems in heat trans-

fer and compliant mechanisms designs. The optimised de-

signs consist of small features comparable with the mesh

size. Furthermore, the threshold projection for the compli-

ant mechanisms results in hinges in the final black and white

design which is not desirable.

2.1 Non-linear elasticity and finite element formulation

It is assumed that the mechanism displacements are large and

the standard small displacements and small strains formula-

tion in linear elasticity is not capable of representing the final

deformed state of the system. In order to account for finite

deformations of a continuous body, the linear strain and the

Cauchy stresses are replaced with a non-linear strain measure

and its conjugate stress. Detailed overview and finite ele-

ment discretization for finite strains elasticity can be found in

many textbooks on the subject (e.g. Krenk, 2009; Belytschko

et al., 2000; Bonet and Wood, 1997). Here the non-linear

strains are considered to be the Green’s strains given in a

tensor form as

E=
1

2

(

D+DT
)T
+

1

2
DTD (7)

where D is the displacement gradient tensor with respect to

the initial coordinate system. Each component of E can be

written as

Eαβ =
1

2

(

∂uα

∂xβ
+
∂uβ

∂xα

)

+
1

2

∂uγ

∂xα

∂uγ

∂xβ
(8)

where Einstein summation convention is assumed with re-

spect to the index γ. By removing the second quadratic term

in Eq. (7), the small strain measure is recovered. Green’s

strains require the introduction of the 2nd Piola Kirchhoff

stress tensor. Both of them are work conjugate. A linear con-

stitutive relation is assumed between the strain dEαβ and the

stress dS αβ increments in the form

dS αβ =CαβγδdEγδ (9)

where the material tensor C is obtained as

Cαβγδ = EC0
αβγδ (10)

with E given by Eq. (3), and C0
αβγδ

– the material tensor for

unit elasticity modulus.

An expression for the residual forces is obtained by form-

ing the virtual work equation and requiring that the variation

of the total work is zero

r= p−
∫

Ω

BT (u)sdΩ (11)

p is an external force vector obtained by integrating any

point, surface or volume forces acting on the system. The

stress vector s consists of the following stress tensor compo-

nents

s= [S 11,S 22,S 33,S 23,S 13,S 12]T (12)

B(u) is a matrix function which depends on the current de-

formed state and relates the strain vector variations

ǫ = [E11,E22,E33,2E23,2E13,2E12]T (13)

to the displacement variations

δǫ =B(u)δu (14)

In total Lagrangian formulation the integration in Eq. (11) is

performed over the original undeformed volume. At equi-

librium the residual vector is equal to zero, and the solution

of

r(u)= 0 (15)

with respect to u determines the deformed state of the sys-

tem. The values of u are obtained iteratively by the Newton-

Raphson method with tangent matrix computed as

Kt =−
dr(u)

du
(16)

www.mech-sci.net/2/175/2011/ Mech. Sci., 2, 175–182, 2011
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2.2 Optimisation sensitivities

The objective sensitivities can be obtained by using adjoint

analysis, and for large displacement formulation detailed

derivations can be found in Pedersen et al. (2001). The gra-

dient of the objective with respect to the physical design field

is given as

∂lTu

∂ρ̂
= λT ∂r

∂ρ̂
(17)

where λ is obtained as a solution of the following system of

linear equations

Ktλ= l (18)

The matrix Kt corresponds to the tangent matrix computed

at the state equilibrium, i.e. for r(u)= 0, and l is an input to

the system which is zero everywhere except at the degree of

freedom where the objective is computed. The above deriva-

tion is based on the assumption of symmetry in the tangent

matrix.

The gradients with respect to the design variables ρ are

computed using the chain rule

∂lTu

∂ρ
=
∂lTu

∂ρ̂

∂ρ̂

∂ρ̃

∂ρ̃

∂ρ
(19)

The derivative ∂r/∂ρ̂i is computed analytically by differenti-

ating Eq. (11) with respect to ρ̂. With respect to the filtered

field it is computed by applying the chain rule and after that

analytically differentiating the threshold projection given by

Eq. (6). In discrete vector form the gradients with respect to

the nodal values of the filtered field are given as

s=
∂lTu

∂ρ̃
(20)

where s is assembled element-wise by integrating the sen-

sitivities contribution from each element (Lazarov and Sig-

mund, 2011). The final gradients with respect to the original

design variables associated with the elements are computed

as

∂lTu

∂ρ
=TT

f K−1
f s (21)

3 Robust topology optimisation

A general overview of various formulations for obtaining ro-

bust solution to an optimisation problem can be found in

Beyer and Sendhoff (2007); Tsompanakis et al. (2008). In

this work, robustness is required for the system performance

with respect to uniform under- or over- etching of the design,

i.e. the optimised design has to perform well when the mech-

anism elements are produced thinner or thicker with respect

to a reference topology supplied to the manufacturer.

The geometric variations in the design topology can be

modelled by varying the threshold η in Eq. (6). Three pro-

jections with three different thresholds ηe,ηi,ηd are shown in

Fig. 4. The three projections are called eroded, intermedi-

ate and dilated (Sigmund, 2009; Wang et al., 2011). If the

intermediate projection is considered to be the reference de-

sign, uniform over-etching error can be modelled by the dif-

ference between the intermediate and the eroded design pro-

jections. Uniform under-etching error can be modelled by

the difference between the intermediate and the dilated de-

sign projections. Using these three cases, robust designs for

small displacement compliant mechanisms are obtained in

Wang et al. (2011) by minimising the maximal objective of

the three projections. The formulation is an extension of an

earlier work by Sigmund (2009) where the min/max formu-

lation is applied for eroded and dilated designs obtained with

thresholds η = 1 and η = 0, respectively. Both formulations

utilise several discrete points in the design space and they do

not account for the continuous nature of the geometric er-

rors. A way to expand the considered error space is to use

the min/max formulation for more than 3 cases, however the

latter would increase the computational burden significantly.

A continuous geometric error can be modelled systemati-

cally by employing a stochastic variable with suitable (phys-

ically admissible) distribution function. Here it is modelled

by using the threshold projection Eq. (6) where the threshold

η is considered to be uniformly distributed, i.e. η ∈U[a,b].

The lower bound a of the uniform distribution corresponds

to the most dilated case, and the upper bound b – to the most

eroded case. The mean threshold corresponds to the refer-

ence design supplied to the manufacturer. Representing the

threshold as a random variable results in random variations

in the deterministic objective considered in Eq. (1), as well

as in the volume occupied with material. The original de-

terministic optimisation Eq. (1) can be reformulated by us-

ing a probability measure of the mechanism performance, or

the moments of the objective distribution. By utilising the

stochastic moments of the response, the following stochastic

robust optimisation problem can be introduced

min
ρ

: E
[

lTu
]

s.t. : r(ρ,u)= 0 (22)

: Vd (ρ)≤V∗

: STD
[

lTu
]

≤ g

: 0≤ ρi ≤ 1∀i ∈Ne

where E
[

lTu
]

is the expected value of the deterministic ob-

jective and STD
[

lTu
]

is the standard deviation. Alternatively

optimal robust design can be obtained by

min
ρ

: E
[

lTu
]

+κSTD
[

lTu
]

s.t. : r(ρ,u)= 0 (23)

: Vd (ρ)≤V∗

: 0≤ ρi ≤ 1∀i ∈Ne

The first optimisation problem given by Eq. (22) minimises

the mean performance by constraining its standard deviation.

Mech. Sci., 2, 175–182, 2011 www.mech-sci.net/2/175/2011/
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The second formulation Eq. (23) provides an alternative

where the parameter κ controls the contribution of the stan-

dard deviation to the objective. Increasing κ puts more

weight on the standard deviation and the obtained solution

possesses response which is less sensitive to geometry vari-

ations. In both formulations, based on the results from Sig-

mund (2009) and Wang et al. (2011), the volume constraint

is imposed on the dilated design, i.e. Vd (ρ)≤V∗. The dilated

design has the largest amount of material in the considered

model.

The expectation E
[

lTu
]

of the original deterministic objec-

tive can be computed as

E
[

lTu
]

=

∫

c(ρ,η)dP
[

η
]

=

∫ b

a

c(ρ,η)ϕ(η)dη (24)

where ϕ(η)= 1/(b−a) is the probability density function for

uniform distribution U[a,b]. The standard deviation of the

deterministic objective is given as STD
[

lTu
]

=
√

Var
[

lTu
]

,

and the variance is computed as

Var
[

lTu
]

=

∫ b

a

(

c(ρ,η)−E
[

c(ρ,η)
])2
ϕ(η)dη (25)

4 Optimisation algorithm and numerical

implementation

The main difficulty from computational point of view, in the

stochastic robust formulation, is the evaluation of the mean

and the variance of the deterministic objective. These can

be estimated by obtaining a solution of the finite strain elas-

ticity problem with stochastic modulus of elasticity. Several

solution strategies can be employed (Xiu, 2010), and among

them the easiest and the most expensive one for a single ran-

dom variable, in terms of computations, is the Monte Carlo

simulations (MCS) method. The method converges to the

true expected value relatively slow, with a rate proportional

to the inverse of the square root 1/
√

M of the number of

the realisations M. For a sufficiently smooth solution of the

stochastic partial differential equation problem, the Stochas-

tic Collocation Method (SCM) (Xiu and Hesthaven, 2005;

Xiu, 2010) converges an order of magnitude faster than MCS.

The method doesn’t require the actual construction of the so-

lution in the stochastic space, and the integrals for the expec-

tation Eq. (24) and the variance Eq. (25) can be computed

by evaluating the solution of the deterministic problems at

prescribed collocation points ηi. The SCM method is based

on Lagrangian polynomial approximation in the stochastic

space. The residual of the interpolated solution is required to

be zero at selected collocation points, which can be written

as

r(ρ(ηk),uk)= 0, k= 1...M (26)

Each one of the above equations is equivalent to the state

problem formulated for threshold ηk. The integrals Eq. (24)

uout

kout

L/2

kin

fin

L

L/25

Figure 1. Design domains and boundary conditions for a compliant

inverter design.

and Eq. (25) can be computed as

E
[

c(ρ,η)
]

=

M
∑

k=1

c((ρ,ηk)ωk (27)

Var
[

c(ρ,η)
]

=

M
∑

k=1

(

c(ρ,ηk)−E
[

c(ρ,η)
])2
ωk (28)

=

M
∑

k=1

c(ρ,ηk)2ωk−E
[

c(ρ,η)
]2

where ωk are integration weights. The sensitivities for the

stochastic robust formulation Eq. (22) can be obtained from

Eq. (27) and Eq. (28) by differentiating them with respect

to ρ

∂E
[

c(ρ,η)
]

∂ρi

=

M
∑

k=1

∂ck

∂ρi

ωk (29)

∂Var
[

c(ρ,η)
]

∂ρi

=

M
∑

k=1

2ck

∂ck

∂ρi

ωk−2E
[

c(ρ,η)
] ∂E

[

c(ρ,η)
]

∂ρi

(30)

where ck = c(ρ,ηk). The gradients ∂ck/∂ρi can be estimated

using the derivation presented in Sect. 2.2.

5 Numerical examples

The proposed stochastic robust formulation is demonstrated

for the design of compliant inverter mechanism, with de-

sign domain and boundary conditions shown in Fig. 1. The

length of the design domain is chosen to be L= 300 µm and

the thickness is t = 7 µm. The elasticity modulus is set to

E0 = 180 GPa. The input and the output springs stiffness is

set to kin = 4.00 mN µm−1 and kout = 0.01 mN µm−1, respec-

tively. The driving force is fin = 20 mN. The integration of

the expectation and the variance is performed using Gaus-

sian quadrature. The error tolerance for the Newton-Raphson

iterations is set to be 10−6 and the algorithm is stabilised us-

ing arc-length control. The Method of Moving Asymptotes

(MMA) (Svanberg, 1987) is utilised for solving the optimi-

sation problem.

www.mech-sci.net/2/175/2011/ Mech. Sci., 2, 175–182, 2011
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L/2

L

L/25

Figure 2. Boundary conditions for filtering. The bold lines corre-

spond to Dirichlet BC ρ̃= 1.0, the dotted lines correspond to Neu-

mann BC ∂ρ̃/∂n= 0, and the dashed lines correspond to Dirichlet

BC ρ̃= 0.0. The length of the bold lines around the two springs is

L/50.

All designs are obtained using a continuation scheme with

respect to the projection parameter β (see Eq. 6). The opti-

misations start with β= 1 and every 50 steps, β is increased

with 1. When β is equal to 16, the continuation scheme dou-

bles it and the design process runs for 100 iterations. In or-

der to decrease the computational cost, all steps except the

last one (β= 32) are performed with 2 Gaussian integration

points. Such a numerical integration scheme is not able to ap-

proximate the standard deviation well, however based on nu-

merical simulations, it captures very well the mean response.

The initial steps are used only to obtain good initial guess

for the final optimisation step, thus it is not necessary to es-

timate the moments of the response very precisely. The final

step of the optimisation (β= 32) is performed with Kronod-

Patterson quadrature using 31 points. The optimisation pro-

cess can be improved further by using the nested property of

the Kronod-Patterson integration points and estimating the

error in the integration process. The robust designs are rel-

atively stiff compared to the non-robust and small displace-

ment theory can be used in the initial steps to decrease further

the computational cost. The difference in the performance

for designs obtained by using large and small displacement

formulation, in the examples presented here is between 15 %

and 20 %. Therefore for small β linear analysis can save sig-

nificant amount of computational time. For large β the design

changes relatively slow and if the initial guess if far from the

optimal one, the optimisation would require large number of

iteration steps. In order to avoid half width elements close

to the design domain borders (e.g., Wang et al., 2011), the

boundary conditions (BC) for the PDE filter (Fig. 2) differ

from the original formulation (Lazarov and Sigmund, 2011).

Dirichlet BC ρ̃= 0 is imposed on two sides of the design do-

main and ρ̃= 1 is imposed around the input and the output of

the system. The BC ρ̃ = 1 implies solid material outside of

the design domain and ρ̃= 0 implies void.

The first example is an optimised topology of the com-

pliant mechanism using the large displacement deterministic

formulation. The result is shown in the middle of Fig. 3,

and is obtained with threshold projection η = 0.5. In order

to use the same settings as the ones for the robust formu-

lation, the volume constraint is imposed on design obtained

with threshold projection η = 0.3. The optimised topology

consists of elements and one node connected hinges. Small

deviations from the design are shown on the figure as well.

The left design in Fig. 3 is obtained by erosion with Heav-

iside projection threshold η = 0.6. The mechanism is com-

pletely disintegrated. The right design in Fig. 3, is obtained

by dilation with projection threshold η = 0.4. The mecha-

nism hinges are filled with material and the mechanism be-

comes very stiff compared to the reference one obtained for

η = 0.5. The mean value of the deterministic objective for

η ∈∈U[0.3,0.7] is E[c]=−6.23 and the standard deviation is

STD[c]= 8.84. For η ∈ [0.4,0.6] the values are E[c]=−11.05

and STD[c]= 10.57. Clearly the performance of the design

is not robust with respect to erosion or dilation.

Three projections for an optimised design obtained by us-

ing large displacement robust formulation are shown in Fig. 4

and Fig. 5. All of them perform similar for the selected

thresholds. The mean for η ∈ [0.4,0.6] is E[c] = −9.58 and

the standard deviation is STD[c] = 3.46. Furthermore, in

contrast to the non-robust deterministic design, the mecha-

nism does not posses any hinges, and small erosion or di-

lation does not disintegrate it. The penalty is smaller max-

imal displacement. The performance and the standard de-

viation of the design for η ∈U[0.3,0.7] is E[c]=−8.96 and

STD[c] = 5.80. The mean performance in the design inter-

val is better for the robust design compared to the one for

the deterministic case. In addition it is robust with respect

to erosion or dilation, i.e. the standard deviation is smaller

for the design obtained by using the robust formulation. The

projections shown in Fig. 4 are obtained with two integra-

tion points and the projections in Fig. 5 are obtained with 31.

The topology in the second case (Fig. 5) differs slightly from

the one obtained with two integration points. The perfor-

mance is improved slightly and the main difference is in the

eroded design which is thicker than the one shown in Fig. 4.

This behaviour is expected, as more precise approximation

is based on integration points which are closer to the bounds

of the threshold interval and therefore the sensitivities for

highly eroded or highly dilated structures will have contri-

butions to the average sensitivities given by Eq. (29) and

Eq. (30). Threshold projections for a design obtained with

broader threshold interval η ∈ [0.2,0.8] are shown in Fig. 6.

Increasing the threshold interval decreases the performance

of the mechanism and increases its robustness with respect to

geometry variations. The optimal threshold interval, as well

as the selected threshold distribution, have to be tuned to a

given production process. Increasing V∗ makes the volume

constraint inactive. For the selected formulation and bound-

ary conditions, the optimisation finds topology with the high-

est possible flexibility rather than the highest possible force

transfer.

Mech. Sci., 2, 175–182, 2011 www.mech-sci.net/2/175/2011/



B. S. Lazarov et al.: Robust design of compliant mechanisms 181

Figure 3. Three threshold projections, eroded, intermediate and dilated, obtained with thresholds η= 0.6,0.5 and η= 0.4, respectively. The

design is obtained using large displacements deterministic optimisation formulation with threshold η= 0.5 and volume constraint 30% of the

original volume imposed on the dilated projection at η= 0.3. The objective is c=−29.12 µm and the projection parameter is β= 32.

Figure 4. Three threshold projections, eroded, intermediate and dilated, obtained with thresholds η= 0.6,0.5 and η= 0.4, respectively. The

design is obtained using large displacements robust optimisation formulation with threshold η ∈U[0.3,0.7] and volume constraint 30% of

the original volume imposed on the dilated projection at η= 0.3. The objective is E[c]=−7.85 µm, the standard deviation is STD[c]= 1.0,

the number of the integration points is 2, and the projection parameter is β= 32. The objective expectation and standard deviation, computed

with 31 integration points Kronrod-Patterson rile are E[c]=−8.43 and STD[c]= 5.83.

Figure 5. Three threshold projections, eroded, intermediate and dilated, obtained with thresholds η= 0.6,0.5 and η= 0.4, respectively. The

design is obtained using large displacements robust optimisation formulation with threshold η ∈U[0.3,0.7] and volume constraint 30 % of

the original volume imposed on the dilated projection at η= 0.3. The objective is E[c]=−8.96 µm, the standard deviation is STD[c]= 5.80,

the number of the integration points is 31, and the projection parameter is β= 32.

Figure 6. Three threshold projections, eroded, intermediate and dilated, obtained with thresholds η= 0.6,0.5 and η= 0.4, respectively. The

design is obtained using large displacements robust optimisation formulation with threshold η ∈U[0.2,0.8] and volume constraint 30 % of

the original volume imposed on the dilated projection at η= 0.2. The objective is E[c]=−6.12 µm, the standard deviation is STD[c]= 4.00,

the number of the integration points is 31, and the projection parameter is β= 32.
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6 Conclusions

A new optimisation procedure for robust design of compli-

ant mechanisms is demonstrated. The performance of the

obtained designs is robust with respect to uncertainties in

the geometry. The uncertainties are modelled using Heavi-

side projection with a random threshold which is selected to

be uniformly distributed in the threshold interval. The ob-

tained designs do not possess any hinges and the require-

ment for robustness ensure easy manifacturability. For large

complex models the proposed formulation needs further im-

provements in order to decrease the number of optimisation

iterations and the computational cost associated with each of

them. This will be subject of future work.
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