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SECTION 1

SUMMARY

This report presents the results of a one year study performed by

ALPHATECH, Inc. to develop a design methodology for the robust detection,

isolation and accommodation (DIA) of sensor failures in jet engine control

systems. This study was funded by the NASA Lewis Research Center due to

concerns about robustness problems encountered with previous [3] jet engine

sensor DIA algorithms. The purpose of this project was to address the funda-

mental issues of robustness and redundancy in dynamic systems in a quant-

itative way and develop a framework for designing DIA systems which explicitly

tolerate unavoidable modeling errors. The scope of this project during this

year has been limited to linear systems, although extensions to specific

problems encountered in nonlinear engine models have been outlined. The

results of this project as summarized at the end of this section, are believed

to represent substantial contributions to the state of the art in failure

detection and jet engine control.

This project was organized into the three separate tasks described below.

Task 1. Conduct basic research to develop a methodology for de-
signing a system to detect, and distinguish among, a set
of failure modes in the presence of model uncertainties;

Task 2. Demonstrate the design methodology via application to an
F-100 engine sensor FDIA problem at a single operating
point;

Task 3. Evaluate alternative FDIA approaches proposed for the
F-100 engine problem, and, in particular, the FDIA algo-
rithm of NAS 3-22481 [3].



In recent years a wide variety of techniques has been proposed for the

detection, isolation and accommodation of failures in dynamic systems (see,

for example the surveys in [1],[2] and the numerous methods discussed in [3]-

[10]). Some of these methods have been developed starting from general, ab-

stract dynamic models, while others have been produced in the context of part-

icular applications. While the general methods provide the basis for what in

principle should be a widely applicable failure detection methodology, their

very generality often tends to obscure the important concepts that must be

considered in the design of practical and reliable failure detection systems.

Conversely, the application-specific methods, which do address these basic

concepts, typically offer little insight into how to generalize their re-

sults .

As a result, there has not been a satisfactory general design methodology

for robust failure detection algorithms. In particular, the general ap-

proaches to failure detection described in [l]-[3] take as their starting

point mathematical models of both the system under consideration and of the

types of failures that may occur. However, if one attempts (as, for example,

was done in [3]) to use one of these approaches in a top-down or "canned"

manner in which one generates the requisite overall models and then essen-

tially plugs them into the approach chosen, the likely result will be a

failure detection algorithm that does not work satisfactorily. The general

reason for this is accurately stated in the request for proposals which re-

sulted in this study: "A fundamental limitation of the performance of this

(referring to our reference [3]) and all similar analytically redundant

schemes is the adequacy of the model used to establish the reference upon

which the detection/isolation decision is based and upon which successful



accommodation may depend." This statement raises key questions. How does one

determine what aspects of a model are most important in the context of failure

detection and isolation? How does one design DIA systems based on such knowl-

edge? How does one measure performance in a way which not only is meaningful

but also is analytical enough to provide a useful tool for comparing ap-

proaches, pinpointing critical weaknesses and suggesting alternatives for

improving performance?

The philosophy of this program extends from the work reported in [4] and

[5]. From these studies, three key concepts have been identified. First, all

failure detection, isolation, and accommodation (FDIA) methods are based,

either implicitly or explicitly, on the use of redundancy relations among the

measured system variables. Consequently, the robustness of the FDIA process

depends on the reliability of such redundancy relations, given the inevitable

presence of model uncertainties and noise.

Secondly, the presence of redundancy does not guarantee that all failures

of interest can be detected and distinguished. Clearly, only observable fail-

ures are detectable and distinguishability of failure modes is only possible

when1 the effects of each failure are distinct.

Finally, information about the presence or absence of particular failures

tends to accumulate over time. Failure decisions which make use of multiple

observations of the measured system variables will have lower error probabil-

ities than "single shot" decisions if the proper use of failure information is

made.

These concepts have been examined in detail and have resulted in several

interesting solutions to the tasks described above. Our design methodology

(Task 1) consists of a set of analytical techniques for evaluating various



FDIA designs and a variety of procedures for optimizing and modifying indiv-

idual components of that design. The evaluation process is based on the

notion of probabilistic distance metrics. By including modeling error in the

stochastic description of system behavior, we can then interpret these metrics

in terms of realizable FDIA performance characteristics. These metrics are

also used to optimize the robustness of redundancy relations for a particular

range of modeling errors. Since failure coverage and distinguishability is of

concern, particular attention is paid to those metrics which relate to de-

tectability and distinguishability of failure hypotheses.

The application of this design methodology to the F-100 engine (Task 2)

has resulted in an interesting structure for practical FDIA schemes. This

structure consists of two levels and avoids many of the computational problems

associated with the so-called "optimal" methods, [1], [2]. At the top level,

a monitoring system examines signals for the possible presence of any failure.

A separate test for each failure is used to minimize the decision delay fol-

lowing a failure. Alarms are raised at this level and trigger sequential

testing procedures which: 1) compare all pairs of failure hypotheses which

are potentially ambiguous following a given set of trigger alarms, and

2) verify that the alarm was not a false trigger. The hypothesis tests make

use of the residual signals which are derived from the optimization problems

in our robust FDIA design methodology. The "parameters" of these tests are

determined through a trade-off analysis which makes use of the metrics we have

developed. Final failure decisions are then made on the basis of these in-

dividual test results.



Finally, in Task 3, we demonstrate the generality of the distance metric

evaluation tool by defining methods of evaluation for the FDIA scheme of ref-

erence [3]. These schemes are then applied to a similar system and some po-

tential methods of improvement are suggested. These improvements attempt to

maintain much of the structure of the original algorithm including the use of

Kalman filters for generating residuals. We attempt to identify those parts

of the system model which most degrade performance and try to remove that seg-

ment from the filtering process.

The remainder of this report is organized as follows. Section 2 intro-

duces some of the fundamental concepts and problems of failure detection and

isolation. Section 3 provides an overview of an approach to FDI design which

addresses the fundamental problems of Section 2 and requires analytical tools

such as those described in Section 4 and Appendix A. In Section 5, we discuss

several specific analytical FDI design procedures which make use of the re-

sults in Section 4. An example of a complete sensor FDI system for the F-100

engine at a single operating point is also provided and simulation results are

presented. We also apply our results to the evaluation of a Kalman filter

based FDI algorithm. Finally, Section 6 summarizes the contributions of this

project and provides recommendations for future work. Appendix B provides an

extension of our analytic results to the robust accommodation problem and

Appendix C documents the design and simulation software which was generated

for this project.



SECTION 2

INTRODUCTION, MOTIVATION AND BACKGROUND

In order to motivate the analytical results discussed in Section 4 and

Appendix A, we present below several pertinent questions and some discussion

of each. These questions form a logical sequence, starting from what at first

may seem to be the simplest and most transparent query:

« What is failure detection, isolation, and accommodation (FDIA)?

Obviously, FDIA deals with the problem of detecting deviations from

normal behavior in a specified components (sensor or effector), isolating the

particular component which has "failed", and initiating the appropriate

adjustment to minimize the effect of the failure. The key point in this

sentence is that in order to detect, isolate, and accommodate deviations, one

requires a specification of what "normal behavior" is and of what a "devia-

tion" is (i.e., models of the system and of the size and perhaps the nature of

deviations to be detected). Furthermore, for each type of anomaly to be de-

tected, the model must provide sufficient redundant information to allow one

to detect the anomaly and to distinguish this anomaly from others. For

example, in a triplex sensor system, in which there are three identical

sensors of each type, one can perform voting by examining each triple to

determine if they are consistent (i.e., normal). Here the model information

used is that the three sensors measure the identical quantity, and the model

of a deviation can be specified in several ways, such as in terms of



manufacturer's instrument specifications. As a second example, consider a

relatively simple and often-used check, in which successive samples of the

output of a particular sensor are examined to determine if there is an obvious

inconsistency. Here the model information used is a crude measure of the

bandwidth of the variable being sensed. Finally, consider a simple system

involving linear motion and in which one has a velocity sensor and an accel-
•

erometer. Here the kinematic model v = a provides a mechanism for obtaining

one redundant relationship between these sensors.

In the terminology used by Chow and Willsky [4], [7], the three examples

just described are illustrations of direct (or hardware) redundancy, temporal

(or self-test) redundancy, and analytic (or functional) redundancy, respec-

tively. While there are clear differences among them, it is their

similarities—in terms of being based on models and, more explicitly, on

redundancy imbedded in those models—that we wish to stress. This permits us

to construct a unified framework in which to examine and compose different

approaches to failure detection and their robustness properties.

• What does an FDIA algorithm do?

Here again we follow Chow and Willsky. Roughly speaking, all failure de-

tection systems can be described in terms of the conceptual block diagram of

Fig. 2-1. There are three basic parts of the failure detection process. The

first part, termed "residual generation" in the figure, uses the model that

has been specified to generate "residual" signals which nominally should be

near zero and which will deviate from zero in characteristic ways when part-

icular failures occur. The way in which residuals are generated differs

markedly from method to method. For example, in a triplex system, if yi(k),
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Figure 2-1. Three Stage Structure of the FDI Process

> and ys(k) denote the outputs of three identical sensors, then

= yi(k)-y2(k) and r2(k) = y2(k)-y3(k) can be thought of as the residuals

used in a voting system. In more complex methods, such as the Generalized

Likelihood Ratio (GLR) method [1], [2], [7], [9], Kalman filters are used to

generate the residuals, while in other advanced methods including the de-

tection filter approach of Beard [10] and Jones [18], Kalman-like filters are

designed, but with gains chosen in particular ways so as to make particular

failures more readily apparent.

The remainder of the FDIA system is the decision mechanism, which con-

sists of the information collection and decision rule stages. This mechanism

involves the examination of the residuals to detect, isolate, and accommodate

failures. Depending upon the residual generation procedure, this process may

take on quite different forms. In the above triplex system example, a simple

rule of the form

ri(k) small, r2(k) small No failure

rj(k) small, r2(k) large y3 failed

ri(k) large, r2(k) small yi failed

ri(k) large, r2(k) large y2 failed

8



can be used. Similarly, in the detection filter approach, the vector of

residuals is constructed in a way so that relatively simple rules somewhat

similar to voting can be used. For the Kalman filter-based methods, such as

GLR, the effect of particular failures on the residuals can be calculated, but

in general the nature of these effects is not as simple as in the other

methods just discussed. Rather, what is required in the information, collec-

tion and decision rule stages is a very indirect detection test such as the

WSSR method used in [3], which must be followed or replaced by a more complex

isolation process such as the GLR procedure of correlating the residuals with

failure signatures.

It is here that we begin to see an important distinction. The voting and

detection filter approaches involve relatively simple decision mechanisms.

This is because they and several other approaches to FDIA (such as the "param-

eter synthesis" approach in [3]) make explicit use of specific redundant rela-

tionships in the residual generation procedure. On the other hand, GLR and

other Kalman filter-based methods make only implicit use of such relationships

in terms, for example, of the resulting failure signatures. However, the

advantage of an implicit approach over the explicit methods is that a Kalman

filter-based approach represents a statistically optimal method for extracting

and using information embedded in the residuals.

• Why is robustness an issue?

The answer to this question is obvious. As we have argued, all failure

detection methods are based on the utilization—explicitly or implicitly—of

dynamic models and, more directly on the redundancy relationships such models

imply. If the model is in error, the redundancy relationships will also be in



error, and consequently, the behavior of residuals will deviate from their

ideal characteristics. For example, in a triplex system, it will never be the

case that the three sensors are absolutely identical. As an example consider

a problem in which one has three accelerometers or gyros. In this case, scale

factor errors and misalignment angles, to mention only two possibilities,

introduce errors into the assumption that the instruments are measuring the

same variable. In the case of highly complex nonlinear systems such as a jet

engine, one uses a linear model to describe behavior at a single operating

point. Thus, clearly, errors will exist due to the linearization error as

well as the uncertainty in predicting the operating point. Furthermore, these

errors vary over the operational envelope of the system as well as during

transient operation.

Intuitively, a residual generation procedure attempts to remove the pre-

dictable part of sensor outputs and to produce signals whose behavior under

ideal conditions is unaffected by the value of the variables being sensed.

For example, the signal r(k) = yi(k)-y2(k), where yi and y2 are identical

sensors, should only deviate from zero due to sensor noise or to a failure in

one of the two sensors. However, if there is a scale factor difference be-

tween the two, there is now another error source whose magnitude is modulated

by the variable being sensed. In the case of a Kalman filter, the vector of

residuals r(k) is ideally a white noise sequence uncorrelated with previous

measurements. However, if there are any model uncertainties r(k) will in

general have nonzero mean and a relatively complex correlation structure.

The preceding paragraph suggests one important point and leads directly

to another. The first point is an apparent advantage of techniques such as

10



voting and parameter synthesis, which make explicit use of redundancy rela-

tions. In such a case it is relatively straightforward to deduce the effect

of modeling errors on the residuals, and consequently one can use this infor-

mation to assess the relative merits of different redundancy relationships and

can determine how to design decision rules based on those that are deemed to

be "robust enough." On the other hand, methods such as those based on Kalman

filters (and to a lesser extent detection filters) make only implicit use of

redundancy relations, and thus it is apparently far more difficult to assess

how uncertainties in these relations affect performance. This is precisely

where one finds the difficulty with "top-down" approaches to FDIA algorithm

design such as were used in [3]. In particular, in a given system one gener-

ally has several sources of redundancy which are of different quality or cer-

tainty. A top-down approach using an implicit method (such as GLR, WSSR, or

the bank of observers approach) and a full system model in effect mixes to-

gether redundancy relations that are accurate with ones that are quite uncer-

tain, resulting in either severe sensitivity problems or severe limitations of

detectable failures. A more sensible approach is the separate use of these

relations so that one can take optimum advantage of each. Thus, one is led to

the concept of identifying the most reliable redundancy relations and design-

ing optimum algorithms based on these. These ideas form the basis of our work

reported here and in [12] and [13].

11



SECTION 3

OVERVIEW OF THE DESIGN APPROACH

In this section, we present a brief overview of the major concepts behind

our approach to designing robust FDI algorithms*

The first part of our design methodology is to identify those portions of

the system dynamics (called parity relations) that are known with the most

certainty, as the use of residuals based on these relations will be of great

value in minimizing false alarms. Thus the first problem we wish to address

is that of defining some "robustness metric" that quantifies how close to zero

each residual is under normal conditions given the presence of model errors

and noise. We can then develop a rcnk ordering of parity relations in terms

of robustness and address the next problem which is coverage.

Although solution of the first problem, in principle, provides a set of

robust parity relations, there is no guarantee that the failure modes which

must be identified are distinguishable from normal operation (i.e., that all

failure modes are covered). Thus the second problem is to define a metric to

assess the ability of the relations identified in the first step to detect a

specified set of failure modes. Each failure mode is also modeled with an

allowance for errors so that the effect of uncertainty associated with the

failure model will be minimized. As a result, the initial set of relations

may be augmented and residuals which are useful in detecting particular fail-

ure modes not well-covered by the initial group are generated. Let us note

12



two aspects of this problem. The first is that it requires a second metric

that measures the ability of a particular relation to distinguish between

normal conditions and a particular failure mode (i.e., to give decidely larger

values under the particular failure than under normal conditions) given the

presence of model error and noise. Again this metric can be used to rank-

order relations with respect to their usefulness for detecting particular

failures. The second point is that the relations added at this stage are less

reliable than the first ones obtained, in that they may have larger values

when no failure has occurred. They may be needed, however, to achieve the

desired coverage (i.e., to achieve a specified probability of detection for

all failures). Note also that the metric used should provide a guide to the

minimum magnitude of a particular failure that can be reliably detected (i.e.,

to achieve a specified probability of false alarm).

The final step in the design is concerned with the problem of distin-

guishability: given that a failure has occurred, can we determine which

failure mode has occurred. Here again we need a metric that measures the

ability of a parity relation to distinguish a particular failure mode from an

alternative set of possible events corresponding to one or more of the other

failure modes. Note again that if additional relations are needed, they will

be inherently less reliable under normal conditions. However, at this stage

we can, if necessary, avoid the impact such relations would have on false

alarm rate by using a two-level structure. Specifically, the relations deter-

mined in the first two stages are sufficient for detection of all failures,

but may not be able to Isolate all of them. Thus, one could use these rela-

tions to detect and trigger the use of additional relations for isolation

only. Fig. 3-1 gives a complete picture of the FDI system design process.

13
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For the most part we have discussed the residual generation phase of the

FDI system. However, the concept of metric-based evaluations with a proba-

bilistic description of model error is also of value in designing the inform-

ation collection phase, i.e., in determining the data length required to

achieve desired performance levels and in specifying the details of how suc-

cessive residuals are accumulated. These issues are discussed in more detail

in Section 5.

In the next section, we describe the metrics we have considered and indi-

cate how they are used in the design of robust FDI systems, and the evaluation

of alternative FDI schemes.

15



SECTION 4

ANALYTICAL RESULTS

In this section we develop the analytical basis for the design and analy-

sis of FDI systems. We start with a definition of redundancy and pose several

optimization problems which, when solved, provide relationships among measured

variables which can be used in the FDI process. These optimization problems

are then interpreted as special cases of statistical discrimination. Various

distinguishability "metrics" are discussed which provide the analytical basis

for FDI performance evaluation. These metrics also provide an alternative

mechanism for generating redundancy relationships which are "optimal" in the

sense of the performance metric which is used.

PROBLEM FORMULATION

Consider a linear, discrete time, time-invariant dynamic system with

uncertainty characterized by a finite set of system parameters viz.,

A& x(k) + BA u(k) + Eg wA(k) (4-1)

- CA x(k) + D£ u(k) + V£(k) (4-2)

where

x(k) « NS - dimensional state vector at time k,

y(k) = NO - dimensional measurement vector,

u(k) = NC - dimensional measurable control vector,

w(k) and v(k) are process and measurement noises respectively and are assumed

to be zero-mean, white, and Gaussian with covariance matrices Q& and RJJ,

16



respectively, and where £ = 1,2,... ,L with the a priori probability of the

model being correct denoted by P£. (Note that it is indeed possible to form-

ulate this problem using a continuum of parameter variations. Similar results

may then be derived) .

A redundancy relationship is now defined as a linear combination of mea-

surements and controls over a finite window of observation. Specifically, if

we let YT(k) - (yx(k) , yT(k+l), .. .yT(k+p) ), and uT(k) = (uT(k), UT(k+l), ...UT-
P P

(k+p) ), then redundancy relations take the form

v(k) - WT Yp(k)

Up(k)

Yp(k) + WuTup(k) (4-3)

where v(k) is the t-dimensional residual vector which, under ideal circum-

stances (no noise or modeling error) is identically zero. The matrix W is

sometimes referred to as the parity check matrix. Next, we can expand Yp(k)

in terms of the parameters of the £th system model as

Vk>

x(k) UD(k)

w(k)

w(k+p)

'v(k)

v(k+p)

17
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or

Yp(k) = Mp£ x(k) U(k) Wp(k) + Vp(k) (4-5)

Thus under the Jtth model hypothesis Eq. 4-3 can now be written as,

v(k) Mp* NpJl

0 I

x(k)

Up(k)

— —

+ HP*
0

— —

Wp(k) + Vp(k)

0

(4-6)

Now, consider the simplest case when no modeling error or noise is

present. We can make ̂ >(k) identically zero by choosing W as an orthogonal

basis for the left null-space of the matrix,

_ A
N (4-7)

That is, we find all the vectors for which wTMp = 0 and form the parity check

matrix using these vectors for its rows.

Comments

1. The number of independent parity checks for any p is NO(p+l)-NS.

2. As discussed in [19], one need only look at values of p=0,...,NS

to find all of the independent parity checks .

3. The solution for W can also be obtained by finding the vectors

which satisfy Wy
TMp=0, and then solving Wy

T Np + WU
T = 0 where

WT = (WyT, WUT).

Table 4-1 presents the details of the linear reduced-order F-100 engine

model used to demonstrate the analytical results in this project. This model

18



TABLE 4-1. DETAILS OF F-100 ENGINE MODEL

Model

8.7763920E-01
2.3492503E-03
3.8686348E-04
3.92U614E-03

4.4787161E-02
2.1774249E-02
1.4233845E-03
1.7201110E-03

1 . OOOOOOOE+00
-O.OOOOOOOE-K)0
-3.6199179E-02
2.3806910E-01

-1.3806290E400

O.OOOOOOOE+00
O.OOOOOOOE+00
2.2995210E-01
1.1445380E-01
9.3831810E-01

9.5448047E-02
9.3342350E-01

-1.4044064E-04
-9.3381410E-04

6.4114124E-02
1.4993310E-02
9.6010260E-04
5.1628816E-04

O.OOOOOOOE+00
l.OOOOOOOE+00
8.6627400E-01
4.1814U6E-03

-6.4474080E-01

O.OOOOOOOE-00
O.OOOOOOOE+00

-4.2003830E-01
-5.3470520E-01
5.8143690E-01

Model Uncer ta in ty (for Robust

1.5380000E-02
3.1333333E-03
1.7636009E-03
4.4277371E-03

3r5195694E-03
2.4867395E-03
8.5665914E-04
2.1998493E-03

O.OOOOOOOE+00
O.OOOOOOOE+00
6.8665206E-02
3.6485530E-02
1.1721950E-01

O.OOOOOOOE+00
O.OOOOOOOE+00
1.1518222E-02
6.5602008E-03
6.2302962E-02

2.1089999E-02
9.1000004E-03
1.1241082E-03
2.8102705E-03

1.6469174E-03
4.5617996E-04
1.7833420E-04
4.4917196E-04

O.OOOOOOOE+00
O.OOOOOOOE+00
1.2315690E-01
1.9306340E+00
9.3263514E-02

O.OOOOOOOE+00
O.OOOOOOOE+00
3.2224100E-02
2.4830708E-02
4.0404614E-02

A (NS.NS) --

-7.6181483E-03
2.9041661E-02
9.8545470E-01

-7.8085437E-04

B (NS.NC) —

-1.5856765E-02
-1.2106993E-03
-7.8124125E-05
2.1082116E-04

C (HO.NS) —

O.OOOOOOOE+00
O.OOOOOOOE+00

-1.7538881E-02
-2.3846535E-02
-2.1066390E-01

D (HO.NC) --

O.OOOOOOOE+00
O.OOOOOOOE+00
2.9931962E-02
4.3202233E-02

-1.8835608E-02

Redundancy)

DEL A (NS.NS) -

1.4011107E-03
8.7536051E-04
2.4200000E-03
2.7039999E-03

DEL B (NS.NC) -

5.1843788E-04
1.5556102E-04
5.5528384E-05
1. 39781 84E-04

DEL C (NO.NS)

O.OOOOOOOE+00
O.OOOOOOOE+00
3.7289455E-03
1.9171619B-03
9.9S60004E-03

DEL D (NO.NC)

O.OOOOOOOE+00
O.OOOOOOOE+00
6.0293591E-03
3.7279800E-03
8.7860543E-03

-

3.2125510E-02
-8.4782876E-02

1.1503949E-04
9.5632940E-01

-

2.9632282E-03
-2.1525344E-03
-2.6199684E-06
-1. 66006 19E-05

-

O.OOOOOOOE+00
O.OOOOOOOE+00

-1.4256181E-02
-2.1576596E-02

2.4134478E-02

-

O.OOOOOOOE+00
O.OOOOOOOE+00
4.6308138E-03
1.8882763E-04

-3.4454153E-03

.—

1.2169647E-03
1.9486381E-04
1.1208000E-03
7.2799991E-03

—
2.2065216E-04
8.5836473E-05
1.6012165E-05
3.9906063E-05

O.OOOOOOOE+00
O.OOOOOOOE+00
4.6490412E-03
3.1758063E-03
1.3030000E-02

O.OOOOOOOE+00
O.OOOOOOOE+00
3.0286349E-03
2.7165335E-04
3.3902435E-03

-3.6747955E-02
-1.2677516E-02

9.1238425E-04
3.7244798E-03

O.OOOOOOOE+00
O.OOOOOOOE+00

-7.1547480E-01
1.2127620E+00
3.4962920E-01

8.6416323E-03
2.6413030E-03
8.5322355E-04
2.1532946E-03

O.OOOOOOOE+00
O.OOOOOOOE+00
1.6963300E-01
4.1060939E-02
2.848S480E-01
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was developed in [11] along with an estimate of the uncertainty of each matrix

element. This uncertainty information will be used to generate subsequent

results. The nominal operating point corresponds to the maximum power lever

angle (PLA = 83 degrees) and the ambient conditions associated with flight at

the sea-level-static Mach (M) and altitude (h) condition; M = 0.6 and

h = 10,000 feet. The sampling interval is At = .02 seconds. The states, out-

puts and controls represent perturbations from the nominal values. The engine

variables (defined in [11]) corresponding to these perturbations are,

x = [Nl, N2, Tt4, Tt4.5]

u = [WF, AJ, FGV, SVA, BLC]

y = [Nl, N2, Pt4, Pt6, FTIT]

Parity checks, W, generated from the left null space of Mp (with A, B, C,

D defined in Table 4-1) for p=0 and 1 are shown in Table 4-2. The first line

in each parity check corresponds to the coefficients which multiply the

perturbations y(k-p) and u(k-p), the next line multiplies y(k-p+l) and

u(k-p+l) and so on up to y(k) and u(k).

ROBUST REDUNDANCY

The above results are easily extended for the case of model uncertainty.

Since the general residuals formed by wTMpjj, cannot be zero for every model we

pose the problem,

min J - EL { ||wTMp£||2 } (4-8)

subject to WTW - I
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TABLE 4-2. PARITY CHECK FOR F-100 ENGINE

LEFT NULL SPACE OF Mr

p

1

1

0

1

1

1

1

Ml

0.0927
-0.0688

0.3068
0.0428

-0.0863

0.4017
-0.4320

0.4333
-0.5512

0.0359
0.0145

-0.0303
0.1221

Scaled

N2

0.1180
-0.2678

0.0997
0.2579

0.4048

0.1319
0.3419

0.0721
-0.4604

0.1126
0.0362

-0.4924
0.1359

Sensor Coefficients

PT4

-0.1272
0.3590

-0.2785
-0.0216

-0.4662

-0.0024
-0.4505

0.2728
0.1453

-0.1272
0.0055

0.5286
-0.1139

PT6

-0.1272
-0.0089

-0.4249
-0.2374

0.3119

-0.0017
-0.0248

0.0732
-0.0196

0.3139
-0.4717

-0.0539
-0.2586

FTJT

-0.3316
0.3345

0.2423
-0.1069

0.0035

-0.1340
0.1783

0.1347
-0.1964

-0.0681
0.1017

-0.0447
0.0465

WF

0.0352
-0.4048

-0.1275
0.1324

0.0682

0.1600
-0.0609

-0.1800
0.1532

0.0685
-0.0427

-0.0736
0.0122

Scaled

AJ

0.0352
-0.0543

-0.4983
-0.0739

-0.0311

0.1213
-0.3061

0.0971
0.1647

-0.1697
-0.3090

0.2191
-0.2131

Control Coefficients

FGV

0.0000
-0.0039

0.0338
0.0089

0.0005

-0.0132
0.0179

-0.0136
-0.0072

-0.0149
0.0221

-0.0143
0.0155

SVA

0.0008
-0.0005

0.0025
-0.0002

0.0021

0.0012
0.0027

-0.0004
-0.0013

0.0009
0.0004

-0.0026
0.0007

BLC

0.3259
0.1472

0.2402
0.3099

-0.7131

0.0205
-0.3546

0.0460
0.1964

-0.4570
0.5405

0.4593
0.2159

The constraint in Eq. 4-8 insures that WW. The solution for W now involves

an eigenvalue decomposition of the matrix C0 = Eg fap£ Mp£
T}. That is, each

row of W satisfies,

T T
wi co = Ai»i (4-9)

t

The optimal value for J is J* = £ \± so that one easily sees that the t-best

redundancy relationships are the t eigenvectors of C0 corresponding to the t

smallest eigenvalues. This approach is referred to as the Robust Redundancy

Null Space Approach.
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Now, in contrast to the previous formulation which did not include un-

certainty, there are no longer a finite number of independent parity checks; p

may take on any value. One would expect, however, that W would become ill-

conditioned (as p gets large) if only the best parity checks for each p are

used. That is, as p grows past the maximum for perfectly known systems (Lou's

result [19]), some parity checks may be nearly dependent resulting in a parity

check matrix which is nearly singular. The number of parity checks t and the

"order" - p are design parameters which need to be chosen in the design of the

decision process. Typically, p is chosen only up to NS in keeping with Lou's

result [19].

Table 4-3 shows the 10 best parity checks of order p = 0, 1 for the F-100

engine. Each metric, \±, in the table can be no larger than 5.62 for p = 0

and 8.60 for p = 1. (The largest eigenvalues of C0 for each p). A close

examination of Table 4-1 points out an important fact discussed in the pre-

vious section. That is, a set of redundancy relations does not guarantee

coverage of all failure modes of interest. This can be seen as follows.

The sensitivity of each parity check to a sensor bias failure can be

derived from the sum of the coefficients which multiply that particular

measurement. That is, a bias of size b± in sensor i results in a bias in the

residual v of size bifeî .ê ,̂...eî ]wy where e^ is a unit vector in the

"direction" of sensor i, and wy is the parity check corresponding to v.

Referring to Table 4-3 we may conclude that many of these parity checks are

not particularly sensitive to sensor #1 (Nl) failures (e.g., for the first

parity check the Nl-failure-sensitivity is -.5105 + .6851 = .0946. The tenth

parity check has Nl-failure-sensitivity of -.1049). The usefullness of any
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TABLE 4-3. PARITY CHECKS FOR F-100 ENGINE
SMALLEST EIGENVALUES Of Co
(Robust Redundancy - Null Space Approach)

HO CONSTRAINTS

1
t

\

1

1

1

0

1

0

1

1

0

METRIC

2.604E-04

3.I55E-0)

6.576E-03

2.087E-02

2.I47E-02

2.814E-02

4.446E-02

S.377E-02

6.272E-02

S.SOOE-01

Scaled Senior Coefficient!

HI « PT4 PT6 (TIT

-0.3905 -0.3240 0.0044 -0.001) 0.0031
0.6851 0.2676 0.0108 0.0038 0.0056

0.2435 -0.4618 0.0676 -0.2346 0.0156
-0.2408 0.5366 -0.0880 0.2476 0.0049

-0.1797 0.3313 -0.0350 -0.3326 -0.0340
0.1427 -0.4372 0.0634 0.3587 -0.0105

0.0767 -0.0111 -0.5885 -O.I099 -0.0661
-0.0129 0.1735 0.5089 0.1145 0.1279

-0.0856 -0.5930 0.6019 -0.0041 -0.0674

-0.0700 -0.4761 0.3242 -0.0067 -0.0962
-0.1573 -0.3452 0.4754 0.9921 -0.0700

0.6522 0.1035 0.2382 0.0015 0.4500

0.2415 0.0120 0.0287 -0.0276 0.5011
0.1678 -0.0281 0.1357 0.0309 -0.2622

0.4126 0.0696 0.2580 0.0076 0.1087
0.3722 -0.0183 0.1482 -0.0060 0.4616

-0.1049 0.0356 0.1948 0.3466 0.264

UF AJ FCV SVA BLC

-0.0408 -0.0481 0.0109 -0.0014 0.0307
-0.0084 0.0033 -0.0003 0.0000 0.0010

-0.0029 -0.0974 0.0064 0.0010 0.3236
-0.0127 0.0906 -0.0085 0.0004 -0.3603

0.0806 -0.1784 0.0180 -0.0019 0.3938
-0.0444 0.2230 -0.0177 -0.0003 -0.3936

0.2130 -0.2693 0.0169 0.0039 -0.2395
-0.2604 0.2043 -0.0157 -0.0017 0.1648

-0.0703 0.2972 -0.0172 -0.0029 0.4249

0.02)9 0.1972 -0.0114 -0.0013 0.2510
-0.0394 0.2493 -0.0143 -0.0023 0.3356

-0.5239 -0.1689 0.0036 0.0006 0.0415

-0.5608 -0.3518 0.0211 0.0007 -0.0564
0.2388 0.2393 -0.0111 -0.0016 0.1247

-0.1605 0.0741 -0.0097 -0.0004 0.1282
-0.5238 -0.2241 0.0068 0.0011 -0.0141

-0.2453 0.5595 -0.0441 -0.0017 -0.6736

parity check for detecting a bias failure in Sensor 1, however, depends on its

robustness metric as well as its sensitivity to failures.

ROBUST DETECTION OF SENSOR FAILURES

In the case of sensor failures, a relatively straightforward modification

of the robust redundancy problem can be formulated. Since sensor failures

show up in fixed directions in the space of measurable quantities we can think

of minimizing the metric in Eq. 4-8 subject to the constraint of fixed sensi-

tivity to a particular sensor direction. That is, we want to choose the w

which minimizes

J* - min E* { | |WT Mp£| |2 } (4-10)

subject to
A _

- K

ei
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The solution to Eq. 4-10 is obtained by forming the Lagrangian function and

taking derivatives with respect to w. The solution is given by

w = X • C0-l bi (4-11)

where X = K/biTC0~lbi and the optimal value of the cost function is J* = X'K.

This result is intuitively pleasing since it points directly to the tradeoffs

which must be made in designing an FDI system, namely, that greater sensitiv-

ity to failures (as embodied by large K and relating directly to the proba-

bility of detection, P<j) is obtained only at the expense of decreased robust-

ness (as embodied by large values of J* and relating directly to the probabil-

ity of false alarm, PFA)'

Note that the above solution implies that there is only one parity check

for each value of p which makes sense. Table 4-4 shows the result of applying

this result (sometimes referred to as the robust detection null space ap-

proach) to the F-100 engine model for p = 0,1 and normalizing K so that

w^w =1. The number in the metric column is ŵ Ĉ i* and may be compared

directly to the metrics obtained in Table 4-3 to assess relative robust-

ness.

As an alternative to the problem posed in Eq. 4-10, we may consider the

optimization of a metric which represents the failure signal to model noise

ratio. That is,

w = arg max J - (WTb±)2 / E£ { ||w
TMpA| |2 } (4-12)

Interestingly, the solution is identical to Eq. 4-11 where the scalar X may

take on any value. That is, for additive sensor failures, minimizing the mean

square value of the residual with a fixed failure sensitivity is equivalent to

maximizing the signal-to-noise ratio.

24



TABLE 4-4. PARITY CHECKS FOR F-100 ENGINE
(Robust Detection - Null Space Approach)

SENSITIVITY COIISTUIirrS

Senior
Sensitivity
Constraint

,

2

3

4

5

1

2

}

4

5

p

0

0

0

0

0

1

1

1

1

1

HETRIC

4.487E-02

2.23IE-02

2.266E-02

8.543E-01

4.39U-02

3.79SE-04

8.546E-04

6.366E-03

4.984E-03

6.I90E-03

Scaled Sensor Coefficients

Nl K2 PT4 PT6 FTIT

0.6828 0.2472 0.0656 -0.0023 0.44.65

0.1357 0.618S -0.5738 0.0063 0.10S2

0.0350 -0.557} 0.6469 0.0023 0.0194

-0.0508 0.2525 0.0944 0.5901 0.0682

0.6411 0.2752 0.0523 0.0044 0.4653

-0.5640 -0.3169 0.0023 0.0021 0.0195
0.7021 0.2831 0.0111 0.0001 0.0188

0.6319 0.3088 -0.0570 -0.0024 0.0113
-0.6877 -0.1201 -0.0690 0.0005 0.0117

-0.5427 -0.4167 0.1986 0.0044 -0.0042
0.6170 -0.0048 0.2218 -0.0009 -0.0001

-0.4789 -0.3207 0.0089 -0.1895 0.0010
0.5498 0.2829 0.0114 0.2450 0.0063

-0.3127 -0.3425 -0.0089 0.0095 0.1126
0.6909 0.4805 0.0012 -0.0073 0.1152

Scaled Control Coefficients

UF AJ FCV SVA BLC

-0.4577 -0.2341 0.0080 0.0013 -0.0678

0.0247 -0.2999 0.0168 0.0028 -0.4097

-0.1659 0.2625 -0.0164 -0.0027 0.4154

-0.1552 0.3104 -0.0268 -0.0002 -0.6714

-0.4741 -0.2471 0.0085 0.0014 -0.0895

-0.0570 -0.0567 0.01 II -0.0013 0.0211
-0.0212 -0.0062 0.0001 0.0000 0.0024

0.0382 0.0159 -0.0094 0.0020 -0.0641
0.0039 -0.0357 0.0020 0.0003 -0.0487

-0.0735 0.0463 0.0044 -0.0023 0.1495
-0.0500 0.0930 -0.0057 -0.0009 0.1462

-0.0125 -0.1374 0.0177 -0.0015 0.2586
-0.0363 0.1299 -0.0109 0.0000 -0.2913

-0.1438 -0.1044 0.0110 -0.0003 -0.0225
-0.1138 -0.0706 0.0028 0.0004 -0.0197

STATISTICALLY BASED METRICS FOR ROBUST FDI

Ideally, the parity relations which are of most use are those which would

allow us to minimize the probability of making erroneous decisions. However,

in most situations, direct minimization of the error probability, so as to

determine an optimal set of parity relations, is not possible. This is be-

cause an analytic expression for the probability of error is often difficult
%

to come by, and even if it can be found, the expression is too complicated for

optimization. Therefore, it is useful to search for criteria that are easier

than the error probability to evaluate and optimize but are, in some sense,

related to the error probability. Statistical distance or divergence measures

between two probability distributions under two hypotheses (normal and failure

mode i, or failure mode i and failure mode j) provide such easily compatible

criteria.

25



Reference [12] (Appendix A) identifies (among others) two useful distance

measures which we consider here; the J-divergence and the Bhattacharyya

distance. The J-divergence between the two probability density functions

(pdfs) p(v|Hi) and p(v|Hj) is defined by,

Jij = / [p(v|H±) - p(v|Hj)] An ̂  tjn~ dv (4-13)
•Ai

p(v|H1)

p(v |H j )

and the Bhattacharyya distance, B^, is defined as

1/2
Bi:j = -An / [p(v|Hi) p (v |H j ) ] dv (4-14)f tP (v |

» M

Thus in order to compute and/or optimize Eqs. 4-13 and 4-14 we must have

(or approximate) the pdfs under different hypotheses. Following [13], we

assume that under the ith hypothesis, and fcth model, the system is,

AAi x(k) + E£i WJl(k) 4 dĵ k) (4-15)

y(k) = C£i x(k) + vti(k) + b£i(k) (4-16)

where d^ and b^ account for additive failure effects (e.g., bias, drifts).

Thus the measurements y(k) (and hence the residuals _v(k) ) under the V th model

are Gaussian random variables which can be characterized by a steady state

mean vector and covariance matrix, and p(v|Hi) is a weighted sum of Gaussians,

(WSOG) . Computation of Jij and BJJ in terms of the parameters in Eqs. 4-15

and 4-16, and the parity check matrix, W, is now possible in principle.
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However, solutions to Eq. 4-13 and 4-14 for the WSOG distribution are very

unwieldy (though computable) and difficult to optimize. A more useful result

is obtained if, for each hypothesis, we approximate the WSOG function by a

single Gaussian function. The best Gaussian function to choose depends on the

goals of the approximation and one can, in general, conceive of optimizing

statistical distance criteria in choosing the parameters of the Gaussian

approximation. However, one easily computable and commonly used approximation

is the Gaussian function which preserves the first two moments of the WSOG

distribution. In particular, if we let m^ and Cv^ represent the mean and

covar lance (both functions of W) of p(v|%), we have,

L

mv1 = E* {v|H±} = IPZ v1-* (4-17)

L

cov {v|H±} = I P£ { Cv
1* + (~̂ * - mvi) ("̂ * - m̂ )T } (4-18)

where the quantities

E (v|%,Jlth model) and

cov (vJHi, £th model)

are directly computable from Eq. 4-] 5 and 4-16 and the parity check matrix.

In fact, it is easy to show that myi = Ŵ Y,,
1 and C^ = WT Cy1 W where Yp1 and

P
Cyl are the mean and autocovariance function (ACF) of the window of

measurements and are easily computed as in [13].

Using the Gaussian sum approximation embodied in Eq. 4-17 and 4-18 and

letting C1 and CJ denote the ACF of Yp under the ith and jth hypotheses
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respectively, we can explicitly evaluate the distance measures in Eqs. 4-13

and 4-14 as:

- YPJ1T W
. T j -1 T i -1
[W C WJ + [W C WJ

+ - tr
2

1 (WTC W) -2IJ (4_19)

1 r, T J >°-5 , T i r°'5
B = i In det [(WC W) (WC w)

T i 0.5 T j —0.5+ (w c w) (we w) ]

+ - [Yp - YpJ]T W [W (C + C ) W] W [Ypi - YpJ] (4-20)

The general optimization approach for both distance measures involves a

gradient-type scheme. However, in two special cases, which are of consid-

erable interest in the FDI problem, the optimization provides explicit solu-

tions.

IDENTIFICATION OF SENSOR BIAS FAILURES OF KNOWN MAGNITUDE

In this case only b£* in Eq. 4-16 is different for the hypotheses HI,

1=0,1 ..... NO. Under H0, bĵ
1 = 0. This implies that the ACFs C1 = CJ = C» and
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the distance measures (Eqs. 4-19, 4-20) are scaled versions of the Mahalonbis

distance:

Bi:j

W(WTCW)" WT [Ypi - YpJ] (4-21)

The optimal parity relation, W, which maximizes the criterion in Eq. 4-21 is

given by

-1 _ _
W = C [Ypi - YpJ]

and the optimal distance measure is

= [Ypi - V]T C IV ' Vl

The parity relation v(k) = WTYp(k) described above (i.e., for sensor bias
/

failures of known magnitude) can be thought of as an approximate whitener

followed by a correlator, as shown in Fig. 4-1. The approximation stems from

the Gaussian sum approximation. Finally, we note that the residual which

results in this case is precisely the decision statistic obtained when we con-

sider the problem of distinguishing known signals with (p+1) observations in

zero-mean colored Gaussian noise with autocovariance function C and signal

means Ypi and YpJ.
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Figure 4-1. Whitener-Correlator Interpretation of Detection
Parity Relation

IDENTIFICATION OF NOISE VARIANCE AND SCALE FACTOR FAILURES

This case corresponds to having different covariances under H^, i=0, 1, -

...NO with the additive bias terms d̂ i(k) and b̂ (k) zero for all i and A.

As a result Ypi = 0, but C
1* CJ. With this simplification, optimization of

Jij and B^j yield identical optimal parity relations (Appendix A) which sat-

isfy the eigenvalue equation,

.-1 .
w = A w (4-22)

The eigenvectors which make J^j and Bij largest are those which correspond to

the eigenvalues for which A + A~l is smallest.

DISCUSSION

The use of statistical discrimination metrics in defining robust parity

relations provides us with several interesting results.

1. As discussed above and in Appendix A, the parity checks are functions

of the statistical characterization of the measurements (and control inputs if
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they are available). This characterization, in the form of means and auto-

covariance functions, was computed from the uncertain system model of Eqs. 4-

15 and 4-16. We can, however, easily of derive parity checks from experiment-

ally determined statistical information as well. Furthermore, insights into

the problem of adaptive FBI may be drawn by considering the operation of on-

line estimation of the statistics of the measurements.

2. Although we have focussed only on the problem of determining parity

check relationships, the metric based evaluation and optimization technique

can be applied to the information collection or decision algorithm as well.

For example, we might define a window of residuals and maximize the distin-

guishability of two hypotheses by choosing a linear transformation of the

residuals over time. We could also define simpler functional relationships

between residuals and decision statistics and optimize the parameters of the

relationships using an appropriate metric. Section 5 treats some specific

algorithms in this way.

3. In addition to defining parity relations, discrimination metrics such

as J^j and Bj* are useful in defining performance bounds for any FD1 algorithm

in tihe presence of model uncertainty. As discussed in Appendix A and [13],

both metrics can be used to place bounds on the performance of the "optimal"

decision rule based on the observed data. This allows fundamental performance

limits to be determined and used for comparison in the design process. Also,

the comparison of various system "configurations" (e.g., various sensor com-

plements including hardware redundancy or various combinations of models) can

be accomplished without designing an entire FDI system simply by measuring the

distinguishabillty of various hypotheses with metrics that use the probability

density function of the observed quantities.
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4. Evaluation of alternative FDI schemes, such as Kalman Filter based

algorithms, is possible by applying distinguishability metrics to the

sufficient statistics of that algorithm; i.e., using the pdf of these

statistics in the metric computations. Section 5 documents an example of the

evaluation of Kalman filter based algorithms using metrics applied to the

residuals. Because of the invertibility of the Kalman filter, these results

essentially demonstrate the information content of the sensors themselves,

given the size of assumed model error.
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SECTION 5

APPLICATION RESULTS

The theoretical work accomplished in Task 1 of this project and detailed

in Appendix A has focussed, primarily, on various approaches to the problem of

generating robust residuals and evaluating the associated "information con-

tent" for the failure hypothesis testing problems of interest.

In this section, we apply these results to the development of FDI

algorithms for sensor bias failures and to the evaluation of Kalman filter

based FDI.

5.1 DECISION ALGORITHMS

Although, it is possible to use residuals directly in making decisions,

there are practical advantages to using further processing before decisions

about a system's failure status is made. For example, residuals can be chosen

to represent physical structure alone by ignoring the effects of sensor noise

in the metric based optimized parity relation computations. As a result, re-

siduals which are valid over a wider range of operating conditions may be

obtained.

We have decomposed the further processing of residuals into two compon-

ents; information collection and decision logic. The information collection

phase is necessitated by the fact that all decisions about the system's oper-

ational status must be made by comparing a number (or set of numbers) to a

threshold. Thus, all of the failure information must be noninvertibly com-

pressed, over time, into a set of decision statistics upon which the decision
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logic will operate to determine the system's status. Furthermore, since the

actual performance of the overall FDI algorithm depends highly on its decision

statistics, a useful algorithm should allow analytical assessment of these

statistics in terms of failure distinguishability. Several candidate algor-

ithms are outlined below.

5.1.1 Maximum Likelihood Decision Rule

Since the information collection algorithm operates on the residuals over

time we consider a window of residuals, vq(k) defined by

Vq(k) = [V (k-q), v(k-q+l), ..., v(k)] (5-1)

where

v(k) = Wy Yp(k) + Wu Up(k) ,

and where Up and Yp are p-windows of the NC controls and NO outputs respec-

tively and W = [Wy|wu] is the t by (NO+NC)(p+l) parity check matrix.

Recall now that in our representation of uncertainty, (see Section 4) it

turned out that v(k), and hence vq(k) could be described statistically by a

weighted sum of Guassians (WSOG) probability density function (pdf) for each

failure hypothesis. That is;

Pv (c|Hi) - I PSL Nv (mA ; P4) (5-2)
1 £=1 q

where N^(m,P) denotes a Gaussian density in the variable £ with mean, m, and

covariance matrix P and p^ denotes the a-priori proability of the £th model.
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In a classical m-ary hypothesis testing problem, if we can compute pv
q

then a simple maximum likelihood (ML) decision rule can be defined. That is,

Decide HI: if Pv U|Hi) > Pv U|HO , for all j. (5-3)
q q

Although Eq. 5-3 represents an optimal algorithm (in the sense of minimum

error probability for the specified pdf's), the computation of these pdf's is

quite involved and highly dependent on the set of models which have been as-

sumed. We can, however, simplify the required processing and possibly reduce

the sensitivity to the specific set of models by using a Gaussian approx-

imation to the pdf's in Eq. 5-3. One commonly used approximation is the

Gaussian density which preserves the first two moments of the original WSOG

pdf. The mean and covariance of this approximate Gaussian density are given

by,

A i
E(vq|Hi) - m

1 = J P£ m* (5-4a)
a

, A 1 1 i 1 1 T
Var(vq Hi)- Cv - J. PA [P4 + (m£ - m ) (mA - m ) ] (5-4b)

q Si

Given this approximation, the information collection phase is considerably

simplified. Eq. 5-3 reduces to an algorithm where decisions are made on a

linear transformation of the windowed residuals [14]. In particular, de-

cisions are based on the log-likelihood-ratio (LLR) statistic,

*i = {(mi) Cv-l} v (k) - - (m1) Cv~l (mi) (5-5)
q 2 q
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In Eq. 5-5, note that m1 and Cv~l are computed off-line and we have assumed
q

that Cvi is the same for all hypotheses as in the case of sensor bias fail-
q

ures. Details of this calculation are now given.

The approximate mean, m1, is given by,

i
mi = {vq(k)|Hi} (5-6)

It

It

_t
(5-7)

where

E [Yp(k) |Hi , £th model]

Up1* = E [Up(k)|Hi, *th model] and

It = t x t identity matrix

The approximate covariance matrix, Cv is given by
q

cv = I Pq „
£ Si T

- mi) (mi - mi) } (5-8)

Toeplitz [Cv°, • » cq
v] (5-9)
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= WyT Cyj Wj (5-10)

-yj
Ci-l

(5-11)

and where

and [13].

E (y(k) yT(k+i) } is computed as described in Appendix A

Note that, assuming a stationary input, CV
A is a block Toeplitz matrix
q

(although Cy-s is not) an hence Cv is also Toeplitz. This property is usefulyj q
since reliable and efficient algorithms exist for computing Cv~*«q

5.1.2 An Alternative FDI Algorithm

The approximate ML algorithm described above represents a considerable

simplification over the optimum ML algorithm based on the WSOG density func-

tion. In some instances, however, further simplification may be desired. In

particular, Eq. 5-5 requires the maintenance of a possibly large window of

residuals and thev resulting inner product with a large pre-stored sequence.

This processing requirement stems, primarily, from the residual sequence being

(in general) not "white". If, however, Cv were block diagonal (vq(k) uncor-
q

rellated or "white"), then the decision statistic, &i, is based on a simpler

computation, viz.,

(5-12)
j=0

where Vi = E(v(k)|Hi) and Cv° is the covariance of v(k).
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Although, in general, v(k) is a correlated sequence, we can define the

decision statistic,

T «
(5-13)

J-o
and choose the g^ to maximize the distinguishability of Hypothesis i from

other failure hypotheses. That is, we will partition the failure space into

sets of pairwise hypotheses and design a single statistic (\±) which is useful

for distinguishing them. For example, suppose we consider the detection

problem in which each failure hypothesis should be as discriminable as poss-

ible from normal operation. We can, for example, minimize B^Q as discussed in

to find the best choice of g^. For the problem of detecting sensor bias

failures,

8i ~ { I I [Cv ]jk r
1 ML (5-14)

j k q

where the term in braces is the covariance matrix of the sum in Eq. 5-13,

[Cv Hk is the j-k'th block matrix of dimension t x t in the Toeplitz matrix
q _

Cv and Vi is the expected value of v(k) under the ith failure hypothesis,
q

(see Eq. 5-7).

In order to define an FDI algorithm which utilizes X^, we need to compute

the statistics of X^. Decision regions (in X-^ - space) are then easily deter-

mined using a Gaussian approximation. For the detection problem, we specifi-

cally need the mean E(X̂ ) and variance o^, under normal operation (H0) and un-
A

der the ith failure (Hi). Specifically,

Under H0: E(Xi) = 0 (5-15)

{ I I [Cv ] }-l yt
j k q Jk
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(Note here that further simplification of the braced term is possible using

the Toeplitz properties of Cv ).
q

Under % : E( \±~) = gj
1 • • (q+1) (5-16)

var(X^) = as in 5-15.

A number of observations can be made concerning the Eqs. 5-13 to 5-16.

1. First, any sensor bias failure whose magnitude is greater than that

assumed in computing g£ will result in a larger value of E(A^) under H^ .

Thus, the likelihood of making a type 2 error (choosing H0 under H^) is

smaller for all sensor bias failures which are larger then the design value.

This is clearly a desirable property of FDI algorithms.

2. Distinguishability metrics can be computed for Xj, for each q, there-

by indicating the length of the information collection window which is needed

to achieve the desired performance. For example, the Bhattacharyya metric,

using the approximate Gaussian densities defined by Eqs. 5-15 and 5-16 is,

Bio - - V < I I [Cv 1 .k r
1 VL (q+1) (5-17)

Notice that the dependence on the window size, q, is imbedded in the bracketed

term.

5.1.3 Minimizing Decision Delay for Abrubt Failures

The algorithms discussed in 5.1.1 and 5.1.2 are based on moving window

calculations for both residual generation and information collection.

Implicit in the analysis of these algorithms is the assumption that the effect

39



of a failure is present throughout the window. In the case of abrupt fail-

ures, these algorithms result in a decision delay at least as long as the

information collection window. In cases when large uncorrellated errors are

present in the residuals (e.g., due to sensor noise) this window can be

exceptionally large resulting in possibly large decision delays.

When dealing with abrupt changes in systems a significant problem is the

one of unknown onset time. Fig. 5-1 illustrates the improvement in detecta-

bility of a constant mean in white Gaussian noise when the optimal processing

(maximum likelihood decision statistic) is begun at the failure onset time as

opposed to operating over a moving window. The figure suggests that for long

windows, one would expect significant performance improvements from the algo-

rithm which is started at the failure onset time.

A variety of techniques have been introduced which attempt to realize

performance that approaches the level obtained when failure onset time is

known. Willsky's paper [2] provides a good review of the issues and reference

[16] is an example of current work in this area.

To avoid the computational burdens which are typical of many solutions to

the problem of unknown onset time (e.g., GLR with implicit failure time esti-

mation [2]), we are interested in alternative algorithms. The use of decen-

tralized parity relations of various orders provides us with such an altern-

ative.

First, note that zeroth-order parity relations, that is relations based

on memoryless comparison of the values of inputs and outputs at the present

time only, respond instantaneously when a failure occurs. Higher-order re-

lations provide information with some time delay. A two-level FDI structure

which makes selective use of these relations is now described. First, at the
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Figure 5-1. Advantage of Known Onset Time

monitoring level we have tests based on the shortest (lowest order) and most

sensitive of the parity relations (preferably zeroth order) so that we have

full coverage of all failure modes. Alarms are declared at the monitoring

level using short intervals for information accumulation and relatively low

thresholds. This produces very fast detection at the expense of possibly

larger false alarm rates. These alarms, however, are not used as a positive

failure indication, but rather as a trigger for the second level. The second

level consists of longer running tests (beginning at the initial point in the
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monitoring data window if desired, so that no time delay is introduced by the

two-step procedure) for reliably identifying the failure mode and rejecting

any false start. These somewhat longer tests are based on the same low-order

parity relations used at the monitoring level, as well as other higher-order

relations.

The second level tests (which are triggered by alarms at the monitoring

level) provide final reliable failure decisions. They make use of residuals

in a selective way so as to minimize the decision errors and delays of each

test. That is, only those residuals which provide reliable information about

the hypotheses being tested are used as inputs to these tests. One test which

may be employed is known as a Sequential Probability Ratio Test (SPRT). This

test has the property that it reaches a decision in as short a time as is

possible given the level of uncertainty in the residuals and specified prob-

abilities of correct and incorrect decision.

Fig. 5-2 shows a functional breakdown of an FDI system based on the pro-

posed two level structure for detecting and identifying sensor failures in the

F-100 engine example; details of the F-100 model were given in Table 4-1. The

trigger mechanism consists of five weighted sum of squared residuals (WSSR)

statistics (one for each failure mode) which are used in parallel to generate

a single trigger. Each WSSR statistic, sk, is defined by

sk+l = a sk + (1-a) Wk (5-18)

where,

Wk = v(k)Tcv-lv(k),

Only those residuals which contribute significantly to the distinguishability

of a single failure from normal operation and respond quickly to failures

(i.e., low order parity checks) are used in each trigger test. The parameter a
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is chosen on the basis of tradeoffs between decision delay and probability of

false triggering. The individual thresholds for each test are chosen based on

Chi-squared distributions and the desired probability of missing a failure in

the trigger mechanism.

Following a trigger, 15 SPRT tests are initiated (one for each pair of

failure hypotheses; five sensor failures plus the no-fail hypothesis). For

sensor bias failures, we use an SPRT statistic, s^, which is defined by the

log-likelihood-ratio for two means in white noise and is given by,

__T 1 _ T . _ _ T , _
sk = sk-i + [vi - v-j] Cv-l v(k) - - [Vi Cy-1 VL - Vj Cv-l v-j] (5-19)

Only those residuals which contribute significantly to the distinguishability

of failure mode i from failure mode j, (note: v0 = 0) are used in each SPRT.

The SPRT algorithm chooses hypothesis i over hypothesis j if s^ > t+, hyp-

othesis j over i if sfc < t~, and continues sampling when t~< s^ < t+. A

decision is made when all the SPRT's "vote" in favor of a single hypothesis

over all others. When a decision event doesn't occur, we are left with an

indication of the ambiguity set which the algorithm can not resolve using the

current data. Finally, note that in Eq. 5-19, the size and sign of the sensor

bias failure is assumed known. When neither size or sign is known, the SPRT's

must be modified so that any triggerable failure is correctly isolated; e.g.,

see [20].

5.1.4 Simulation Results

The algorithm of Fig. 5-2 was coded and tested on a linear simulation

of the F-100 engine at h = 10k, M = .6, PLA = 83°. Five zeroth order robust

detection parity checks using the "null space" approach (Section 4) were gen-

erated based on model uncertainties corresponding to the curve fit errors [11]
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of the reduced order linear model being used and subsets of these selected for

each test. The "jth" WSSR and "jth" SPRT tests for distinguishing failures

from normal behavior used only a single parity check (the one corresponding to

sensitivity to the jth failure) while the "i-jth" SPRT tests for distinguish-

ing between failure i and failure j used two parity checks (the ones corres-

ponding to sensor failure i and sensor failure j sensitivity). Table 5-1

shows the values of the coefficients which multiply scaled versions of the

measurements and control values for each parity check. The number in the

metric column is related to the robustness of the parity check, where zero is

a perfect parity check and each metric must be smaller than 5.6 (largest

eigenvalue of the "C0" matrix in Section 4). Notice that failures of sensor 1

and 5 show up in parity checks one and five in a very similar manner. This

implies a possible difficulty in distinguishing these two failures.

Figure 5-3 shows the five residuals (scaled by 1000) obtained from the

corresponding parity checks and noiseless measurements generated by the linear

F-100 engine model with fuel flow as the only input (modeled as a first order

Markov process with 0.1 sec. time constant and standard deviation of 350 PPH).

Notice that even without sensor noise, the residual is not identically zero.

Variations in the state modulate the modeling errors through the imperfect

parity checks. A 50 rpm bias is abruptly introduced at t = 1.0 sec. and shows

up, as expected, primarily in residual numbers one and five, (see Table 5-1).

Figure 5-4 shows the five WSSR statistics with ot = .37 for each test.

Clearly both WSSR statistics one and five can trigger SPRT tests when a

failure of sensor 1 occurs. Fig. 5-5 shows the SPRT tests designed to distin-

guish each failure from no failure (siQ» i=1 5). The WSSR thresholds

were chosen so that a false trigger was initiated at .42 seconds.
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TABLE 5-1
ZEROth ORDER ROBUST DETECTION PARITY CHECKS

(Null Space Approach)

Sensor
Sensitivity
Constraint

1

2

3

4

5

p

0

0

0

0

0

Metric -

4.487E-02

2.231E-02

2.266E-02

8.543E-01

4.391E-02

Scaled Sensor Coefficients

Nl N2. _JPT4_ PT6 , . _ . , _ . FTIT

0.6828 0.2472 0.0656 -0.0023 0.4456

0.1357 0.6185 -0.5738 0.0063 0.1052

0.0350 -0.5573 0.6469 0.0023 0.0194

-0.0508 0.2525 0.0944 0.5901 0.0682

0.6411 0.2752 0.0523 0.0044 0.4653

Scaled Control Coefficients

WF AJ FCV SVA BLC

-0.4577 -0.2341 0.0080 0.0013 -0.0678

0.0247 -0.2999 0.0168 0.0028 -0.4097

-0.1659 0.2625 -0.0164 -0.0027 0.4154

-0.1552 0.3104 -0.0268 -0.0002 -0.6714

-0.4741 -0.2471 0.0085 0.0014 -0.0895

Scale Factors Definitions

T T
= W v + W ,.

S • Y
y

u =

S =

S =

S • U
u

diag [lE4, 1.5E4, 550, 130, 1600 ]

diag [1.5E4, 5, 50, 10, 1 ]

Following the false trigger, all SPRTS in Fig. 5-5 indicate that no failure

has occurred by t = 0.70 seconds by crossing the threshold t~ = -9.2, and are

therefore turned off. The thresholds (t+ = 9.2 and t~= -9.2) correspond to

equal probabilities of type 1 and type 2 decision error and are determined

from equations found in [2] and [6]. Finally, Fig. 5-6 shows the five SPRT

tests for distinguishing sensor number 1 failures from all other hypotheses.
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As expected the most difficult decision (and hence longest SPRT decision

delay) is between sensor //I and #5. However a correct isolation of sensor

failure //I is obtained at t = 1.24 seconds when S^Q > t+, and 821, §31, s^i,

s51 < t~.

In summary, we have presented three potential decision algorithms for

detecting and isolating sensor bias failures in the F-100 jet engines at a

single operating point. One of these was chosen and implemented in Fortran

code (see Appendix C) and demonstrated with a linear simulation of the F-100

engine.

In the next subsection, we apply the theoretical results of Section 4 to

the evaluation of Kalman filter based algorithms.

5.2 KALMAN FILTER EVALUATION

As discussed in Section 4 and Appendix A, the metrics we have proposed

for use in selecting parity checks can also serve as an evaluation tool for

any FDI system. Task 3 of this project consists of evaluating FDI algorithms

based on Kalman filter residuals and in particular, the algorithm discussed in

reference [3].

The algorithm reported in [3] consists of a single Kalman filter (KF)

which uses all five available measurements to estimate the four state vari-

ables (see Table 4-1 for model details) and produce a vector of five re-

siduals. These residuals are then used to form a weighted sum of squared

residuals (WSSR) detection statistic. The WSSR is summed over a finite

window, and compared to a single threshold for detecting the presence of a

sensor failure. Isolation of the failed sensor is accomplished through the

use of five KF's (KF̂ ,...,KF5), each of which makes use of only four of the
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available measurements. The residuals from the five isolation filters are

then used to form 5 WSSR statistics which are then low-pass-filtered (a re-

cursive, exponential age weighting of the WSSR statistic) and compared to the

statistic generated by a KF which uses all five measurements, (KFg). Ideally,

when sensor i fails, the statistics produced by KFg and KFj, j*i, will "di-

verge" due to the presence of a failed sensor in each of these filters. The

statistic produced by KFj will remain comparatively small.

A number of error sources are possible contributors to poor performance

of this algorithm. First, in the detection phase, modeling error produces

non-ideal residuals, (namely nonwhite), thus causing a decrease in detection

performance from that which could have been predicted on the basis of the

chosen WSSR weights and thresholds. The exact nature of how modeling error

can effect performance depends on the choice of Kalman Gain as well. Thus,

our metric based approach to assessing the impact of modeling error on KF-

based FDI algorithms depends highly on the choice of Kalman Gain.

To demonstrate the use of metrics i, \raluating Kalman Filter based algo-

rithms, we designed a Kalman Gain using "LQGALPHA," a software package devel-

oped by ALPHATECH which includes the capability of computing steady state

Kalman Gains from specified process and sensor noise covariances matrices.

The standard deviations for the corresponding sensor noises were as

follows:

= 13.9 RPM

=12.1 RPM

= 0.67 PSI

OpT6 = .09 PSI

= 2.2° F
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A fuel flow variance of 350 PPH, (all other control inputs assumed zero)

was used. These noise variances were then scaled in accordance with the

scaling (both output scaling and "correction factors") applied to the nominal

model. The resulting gain (discrete time KF formulation) is shown in Table

5-2. The equivalent continuous time filter has a transfer function (states

to state estimates) with eigenvalues of about -40, -6, -2, -.8 (rad/s.).

Note that the mode corresponding to the smallest eigenvalue (-40) has a time

constant on the order of the sampling time (T = .02 sec) indicating that cer-

tain linear combinations of the measurements are used directly at each time

step with little or no filtering.

TABLE 5-2. KALMAN GAIN AND EQUIVALENT CONTINUOUS TIME TRANSFER
FUNCTION (STATES TO ESTIMATE) AT "DC"

1.4870000E-01
7.2420000E-02
4.8110000E-03
5.8830000E-03

Discrete Time Steady State Kalman Gain

2.1830000E-01
1.0640000E-01
7.0520000E-03
8.6410000E-03

7.4580000E-02
3.6350000E-02
2.4070000E-03
2.9500000E-03

1.4280000E-01
6.9550000E-02
4.6140000E-03
5.6430000E-03

-2.7160000E-01
-1.3230000E-01
-8.7930000E-03
-1.0750000E-02

Figure 5-7 shows the five KF residuals of the nominal KF (Table 5-2) with

an Nl-bias failure of 50 RPM occurring at t = 1.0 seconds. The truth model

used to generate the residuals in Fig. 5-7 was chosen from the set of randomly

perturbed system matrices used in the robust parity check design process.

Software for implementing this process is described in Appendix E. The system

matrices were generated by adding zero-mean Gaussian errors to the nominal

system matrices of Table 4-1. The variances of the individual terms were
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obtained from the reduced order model curve fit errors ("oy/x") reported in

[11] (and shown in Table 4-1), and checks for outliers are performed before

using any result. No sensor noise is simulated since the realistic values of

noise variances tend to obscure the robustness results. A 1st order Markov

model for fuel flow is used as the input with a correlation time of 0.1

seconds and a steady state standard deviation corresponding to 350 PPH. This

input is intended to model the correlation structure of the input generated by

the control system which regulates the engine at this operating point.

With no sensor noise and measurable control inputs, an ideal filter would

have residuals which are identically zero during no failure and a bias in each

residual following the failure. Thus the effects of model mismatch are easily

derived from Fig. 5-7. The expected residual bias (scaled by 1000 as in the

figure) due to an Nl-failure can be calculated using the KF evaluation results

discussed subsequently and in Appendix A. In particular, E{\JKJ-} = [4.1, -0.4,

-0.3, -0.2, 1.5]T. As is evident in the figure, deterioration of the KF resi-

duals due to modeling error is not particularly severe in terms of detecting

an Nl-sensor failure if one allows for the non-ideal behavior in setting

thresholds.

5.2.1 Evaluation of KF Using the Bhattacharyya Distance

Characterization of KF performance cannot, of course, be realistically

inferred from a single simulation. The use of performance metrics, however,

can provide a realistic characterization by assessing the ensemble-

averaged impact of model errors in terms of FBI performance. First, however,

we must extend the results of Appendix A to include systems with known control

inputs. Consider a Kalman Filter which is based on the nominal system,
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x(k) + B0 u(k)

y(k) = C0 x(k) -I- D0 u(k)

(5-20)

(5-21)

The mean and covariance of the residuals for the nominal KF under the ith

failure and the ith model hypothesis (A£,B£,C£,D£) are computed, from the

dynamic equations,

where, we have,

xa(k)

(k) = H£ xa(k)

u(k) + K (vk

u(k)

Ao[I-K0C0]

(5-22)

(5-23)

(5-24)

(5-25)

(5-26)

(5-27)

- D (5-28)
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Thus, under the ith failure and £th model we have,

E C v l H i . A ) = H£ xi£' + M£ u + bt (5-29)
a

where

xi* = [ I - Ft J-1 { G£ u + K bi } (5-30)

and

C* A cov(v|H l t i) = F£ C* FT + G£ Q GT + K R KT (5-31)
a "~ a £ £

where

R = cov(vk)

Q = cov(ufc)

Note that, in Eqs. 5-20 and 5-21, the measurable input sequence is assumed to

be a white noise process. Other statistical characterizations of the input

sequence can be included by adding additional states to Eq. 5-22. Highly

correlated input sequences tend to be the "worst case" for evaluation purposes

since the modeling error (which is modulated by the state) would then tend to

produce highly correlated residuals and be most confused with sensor biases.

These results were applied to the KF described by the Kalman gain in

Table 5-2 in order to assess the mismatched-model-ensemble-average FDI per-

formance. Table 5-3 shows the pairwise B-distances between sensor bias

failure modes (positive and negative failures of sensors; i = 1 ..... 5, and no

failure; i = 0), based on a Gaussian approximation to the "weighted sum of

(10) Gaussians" probability density function which is implied by our multiple

truth model assumptions and the input and sensor noise covariances used to

generate the gain in Table 5-2. In the table, larger distances imply lower

achievable misclassification rates when the assumed Gaussian statistics are
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TABLE 5-3. BHATTACHARYYA DISTANCES FOR SENSOR BIAS FAILURES
KALMAN FILTER RESIDUALS

SENSOR

Nl

N2

PT4

PT6

FTIT

FAILURE

1 +

-
2 +
-

3 +

-
4 +

-
5 +

0

1.111E+00
1.111E-KX)
1.562E+00
1.562E+00
2.146E+00
2.146E+00
9.798E+00
9.798E+00
4.600E-01
4.600E-01

1

3.321E+00
2.024E+00
3.581E+00
2.933E+00
1.109E+01
1.073E+01
6.593E-01
2.482E-KX)

2

4.238E+00
3.179E+00
1.165E+01
1.107E+01
1.258E+00
2.786E+00

3

1.165E+01
1.224E+01
2.170E+00
3.042E+00

4

9.861E+00
1.065E+01

used. Note that the B-distance for detecting FTIT sensor bias failures is

quite small indicating that the assumed failure size of 8°F may not be easily

detectable. Other failure sizes assumed in Table 5-3 correspond to 50 RPM for

Nl and N2 sensors and 3 PSI for PT4 and PT6. In addition, the B-distance be-

tween positive bias failures of Nl and FTIT is also small enough to indicate

potential misclassification problems.

The separate effects of sensor noise and modeling error can easily be

assessed by setting the sensor noise equal to zero and computing the pairr

wise B-distances. These distances are given in Table 5-4. All distances are

larger than in Table 5-3 as expected although the relative ordering changes

somewhat.

Finally, Table 5-5 shows distances for a perfectly known model with non-

zero sensor noise. Comparing Table 5-5 with Tables 5-3 and 5-4 we can con-

conclude that deterioration of the filter (smaller distances) due to model-

ing error is not particularly severe in terms of potential FDI performance.
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TABLE 5-4. BHATTACHARYYA DISTANCES FOR SENSOR BIAS FAILURES
KF WITH NO SENSOR NOISE

SENSOR FAILURE

1 +
-

2 +
-

3 +
-

4 +
-

5 +

0

1.680E+01
1.680E+01
2.197E+01
2.197E+01
2.591E+01
2.591E+01
1.396E+01
1.396E+01
4.275E400
4.275E+00

1

5.801E+01
1.953E+01
4.274E+01
4.269E+01
2.545E+01
3.608E+01
1.031E+01
3.185E+01

2 3

5.754E+01
3.824E+01
4.264E+01 3.927E+01
2.923E+01 4.049E+01
2.200E401 2.401E-K)!
3.050E+01 3.636E+01

4

1.708E+01
1.940E+01

TABLE 5-5. BHATTACHARYYA DISTANCES FOR SENSOR BIAS FAILURES
KF WITH NO MODELING ERRORS

SENSOR FAILURE

1 +
-

2 +
-

3 +
-

4 +
-

5 +
-

0

1.294E-KX)
1.294E+00
1.864E+00
1.864E-KX)
2.395E+00
2.395E+00
1.313E+02
1.313E+02
6.828E-01
6.828E-01

1

3.731+00
2.583E+00
4.006E+00
3.372E+00
1.352E+02
1.300E+02
8.611E-01
3.092E+00

2

4.564E+00
3.955E+00
1.357E+02
1.307E+02
1.480E+00
3.614E+00

3

1.351E+02
1.324E+02
2.490E+00
3.667E+00

4

1.272E+02
1.368E+02
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However, it should be noted that the major effect of modeling errors (Table

5-5 vs. 5-3) appears to be in the distances involving sensor number four

(PT6), suggesting possible filter error and FDI problems for filters which

rely heavily on PT6 for updating state estimates.

5.2.2 Extension of the Evaluation Technique for Unknown Base Points

The results above suggest that error sources other than parametric

modeling error may be the primary cause of poor performance of the algorithm

in [3]. One source which has been neglected until now is the uncertainty in

the linearization or base-point of the linearized system model. To include

this error source in our analysis, we proceed as follows.

6x(k+l) = AQ &c(k) + B0 6u(k) (5-32)

6y(k) = C0 6x(k) + D0 6u(k) (5-33)

where 6x, 6y, and 6u represent deviations from a nominal set of basepoints,

XB°» YB° and UB°- T"6 statistics of the KF residuals under the £th model

hypothesis (Â , B£, C£, D£, XB^»
 vg^, Ug^) and the ith bias failure hypothesis

+ bf) can then be computed from the dynamic equations;

xa(k+l) = F£ xa(k) + G* 6uk 4- K(vk+bi) + ba (5-34)

v(k) xa(k) 6u(k) (5-35)

where F£, G£, H£, D£, and K are the same as in Eq. C-5 through C-9, and;

- XB°] - - UB°]

- XB°) - - UB°)]

(XB £ - - UB°)
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The nominal base points for the F-100 engine model (Table 4-1) correspond

to the unsealed values shown in Table 5-6. Clearly, comparing the bias sizes

which we are evaluating (see Table 5-7) with YB°, even a 1% error in base

point determination will result in severe degradation of FD1 performance.

Table 5-7 shows the degradation in terms of the Bhattacharyya distance metric

for a 1% error perturbation of all base points. Comparing Tables 5-7 and 5-3,

we see that base-point uncertainty can result in up to a 3-order-of-magnitude

decrease in pairwise B-distances. Not surprisingly, the B-distances assoc-

iated with sensor 4 (PT6) are affected least since the nominal base point (and

hence the 1% perturbations) for this sensor is smallest (in comparison to its

corresponding failure magnitude). Thus a preliminary conclusion that can be

drawn regarding the use of this KF for FDI is that base point accuracy plays a

major role in defining the limits of FDI performance.

TABLE 5-6. BASE POINT VALUES AND SENSOR FAILURES

XB° = [8900 rpm, 11,700 rpm, 186° F, 139°F]

UB° = [8000 PPH, 3 ft.
2, -25 deg., 3 deg., 0%]

YB° = [8900 rpm, 11,700 rpm, 284 PSI, 42.5 PSI, 1343° F]

SENSOR
Bias [50 rpm, 50 rpm, 3 PSI, 3 PSI, 8°F]
Failure
Magnitudes

1% errors [89rpm, 117rpm, 28.4PSI, 4.25PSI, 13.4°F]
in YB°
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TABLE 5-7. BHATTACHARYYA DISTANCES FOR SENSOR BIAS FAILURES
KF WITH 1 % UNCERTAIN BASE POINTS

SENSOR FAILURE

1 +
-

2 +
-

3 +'

4 +
-

5 +

5.2.3 Results

0

2.149E-02
6.902E-02
6.291E-02
1.659E-01
1.358E-01
9.107E-02
2.799E+00
2.812E+00
3.063E-02
8.625E-02

1

6.557E-02
2.193E-01
1.781E-01
1.050E-01
2.740E+00
2.928E+00
2.043E-02
1.526E-01

2 3

2.114E-01
2.099E-01
2.867E+00 3.652E+00
2.939E+00 2.152E+00
3.675E-02 1.548E-01
2.745E-01 1.546E-01

4

2.778E+00
2.915E-KX)

for KF Improvement

FDI schemes which rely on residuals from a Kalman Filter are fundamen-

tally "centralized" approaches. That is, a large dynamic system model is

developed and all information relating to that model is used without regard to

the quality of the corresponding model. Efforts to tune a Kalman filter based

on known uncertainties can be effective, but these efforts are largely heur-

istic in nature and no well-defined and quantifiable methodology exists. The

generation of residuals through robust parity checks is fundamentally a "de-

centralized" approach to FDI. That is, only the best relationships between

measured variables are selected and used individually in the FDI process.

Thus, one might expect that improvements to the Kalman filter based approach

might be achieved if some sort of partial decentralization could be performed.

Figure 5-8 gives one example of a method for partial decentralization. In

Fig. 5-8a, the measurements, y(k), are decomposed into two sub-vectors yi(k)

and y2(k). When the model for y2 is not well known for example, severe
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y(k) =
y_2(k)

v(k)

x(k)

R-1986

5-8a. Nominal Filter

(ZI-AO)-i x(k)

y2(k)
v2(k)

R-1987

5-8b. Partially Decentralized Filter

Figure 5-8. Partial Decentralization of a Kalman Filter
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estimation errors may occur in the nominal filter as the "good" information

(yi) is mixed with the "bad", (y£) through the nominal gain matrix KQ. In

Fig. 5-8b filtered state estimate are formed using only yi(k). The resulting

estimates, (which are not corrupted by the inaccurately modeled measurements

y2(k)), could then be used to generate residuals corresponding to the measure-

ments y2(k). Of course, if one uses the ill-modeled description of y2(k)

(namely G£) the residuals, V2, will contain errors. Alternatively, one might

consider using y2(k) and yi(k) in a robust parity relation to form additional

residuals or estimates of y2«

In order to determine the potential for partial decentralization for the

F-100 engine model we considered the use of metrics for FBI in determining

the quality of various parts of the overall model. In particular, we con-

sidered five multi-input-single-output (MISO) systems corresponding to each

of the five measurable quantities (Nl, N2, PT4, PT6, FTIT). We then gener-

high order (p = 5) robust parity checks for each of these systems using the

robust-redundancy null-space approach (see Appendix E). This approach, effec-

tively, gives the best Auto-Regressive-Moving-Average (ARMA) model for the

single output system from the set of randomly perturbed models we have defined

In addition, the approach provides a metric for comparing the quality of these

ARMA models (the smallest eigenvalue of the symmetrized partial observability

matrix). The results are shown in Table 5-8. Comparisons of the metrics

corresponding to the best ARMA model (parity check) for each MISO system sug-

gests that the models for PTA and FTIT are particularly poor in comparison to

the other sensors. Thus, it is possible that improved filter performance may

be achieved by removing PTA and FTIT sensors from the filter. Of course,

estimates of PTA and FTIT may be needed for the overall control law, in which
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case the robust ARMA models of Table 5-8 or those generated through other

optimization strategies (see Appendix B) may be used.

TABLE 5-8. EIGENVALUES AND ARMA COEFFICIENTS (p = 5) FOR MISO SYSTEMS

SENSOR METRIC

3.710E-05

Nl

4.770E-06

N2

1 .OSOE-02

PT4

8.881E-04

PT6

2.261E-02

FT IT

SCALED AR
COEFFICIEMTS

-0.1137
0.3850
-0.5628
0-.5669
-0.4210
0.1457

-0.1192
0.3921
-0.5645
0.5671
-0.4148
0.1393

0.0896
-0.2932
0.4196
-0.4213
0.3093
-0.1041

0.0734
-0.2377
0.3390
-0.3402
0.2383
-0.0829

-0.0729
0.2460
-0.3587
0.3611
-0.2682
0.0927

-0.0057
0.0130
-0.0139
0.0132
-0.0067
0.0000

-0.0028
0.0062
-0.0066
0.0063
-0.0031
0.0000

-0.0190
0.0640
-0.0929
0.0935
-0.0695
0.0240

-0.0082
0.0267
-0.0382
0.0383
-0.0280
0.0094

0.0755
-0.2478
0.3557
-0.3572
0.2619
-0.0880

SCALED

-0.0081
0.0184
-0.0196
0.0185
-0.0093
0.0000

-0.0019
0.0042
-0.0045
0.0043
-0.0021
0.0000

0.0394
-0.1278
0.1821
-0.1827
0.1336
-0.0446

0.0403
-0.1296
0.1843
-0.1848
0.1345
-0.0446

0.0511
-0.1635
0.2311
-0.2316
0.1675
-0.0547

MA COEFFICIENTS

0.0020
-0.0046
0.0049
-0.0046
0.0023
0.0000

0.0001
-0.0003
0.0003
-0.0003
0.0002
0.0000

-0.0026
0.0084
-0.0120
0.0120
-0.0088
0.0030

-0.0034
0.0106
-0.0149
0.0149
-0.0107
0.0035

-0.0035
0.0097
-0.0124
0.0122
-0.0080
0.0020

-0.0004
0.0009
-0.0010
0.0009
-0.0004
0.0000

0.0003
-0.0006
0.0007
-0.0006
0.0003
0.0000

-0.0005
0.0015
-0.0019
0.0019
-0.0013
0.0004

0.0001
-0.0001
0.0002
-0.0002
0.0001
0.0000

-0.0001
0.0006
-0.0011
0.0012
-0.0010
0.0004

0.0045
-0.0103
0.0110
-0.0104
0.0052
0.0000

0.0015
-0.0035
0.0037
-0.0035
0.0017
0.0000

0.0671
-0.2202
0.3158
-0.3172
0.2333
-0.0788

-0.0889
0.2874
-0.4096
0.4110
-0.2998
0.1000

0.0170
-0.0628
0.0958
-0.0971
0.0747
-0.0277
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5.2.4 Evaluation of the WSSR Statistic

In order to fully characterize the performance of any FDI algorithm, one

clearly needs to consider a statistical characterization of the decision

quantities used in the decision process. The algorithm of ref. [3] makes

extensive use of the weighted sum of squared residuals (WSSR) statistic which

takes the form,

N-l
dKF = I (̂k+j) W-l v(k+j) (5-36)

J-o

To evaluate the WSSR statistic we note that for statistics with greater

than 15 degrees of freedom, the actual probability density function (which is

a chi-squared function) is well characterized by its first two moments and,

hence, can be considered approximately Gaussian. In the algorithm of ref [3]

we have 5 residuals times 3 samples (15) degrees of freedom. The mean and

covariance of d^p (which involve 1st, 2nd, and 4th moments of v(k)) are given

by:

E[dKF] = N • Tr[W-l Cv°] (5-37)

where Cv° is the steady state covariance matrix of the approximate Gaussian

density for the residual sequence, and,

N-l N-l
Var [dKp] = I I { 2'TrfW-1 CJ~k W"1 Ck~J]

k=0 j=0 (5-38)

+ Tr [W-1 CJ-k] • Tr [W"1 Ĉ -j] - Tr2 [W"1 C°] }

where C1 = E[v(k) vT(k+i)] and is computed from Eq. 5-31.
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Using the statistics of each WSSR quantity the results of Section 4 and

Appendix A could be applied. Various metrics which indicate the distinguish-

ability of the various failures modes could be computed and compared to

similar metrics for other FDI algorithms.

In summary, the KF we have designed (and potentially that of ref. [3])

appears to be fairly robust to the relatively substantial model errors defined

in [11]. If these were the only errors present, acceptable FDI performance

would be expected. However, the full envelope algorithm must be able to

predict base points as well as the system matrices which govern behavior of

the engine near these points. We have shown that the ability to detect sensor

failures is highly sensitive to base point uncertainty. Finally, we have

developed equations for the mean and covariance of a WSSR statistic in the

presence of model uncertainty and noise. These quantities can then be used to

evaluate the FDI algorithm in more detail by computation of the distance

metrics of Section 4.
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SECTION 6

CONTRIBUTIONS AND RECOMMENDATIONS

The major contributions of this work are listed below.

1. A statistical characterization of distinguishability of failures has

allowed us to evaluate FDI performance in the presence of model uncertainty

and noise. Furthermore, optimization of distinguishability metrics allow us

to choose the best linear relations among measurable variables for use in FDI.

These relationships (called parity checks) are used to form residual signals

whose behavior under different failure modes is maximally distinguishable.

Unlike residuals formed in a centralized manner (e.g., using a Kalman filter

based on a nominal model), the optimized parity check approach can select only

parts of the system model to form residuals and thus represents a decentral-

ized approach to FDI. Only the most well known parts of the system model are

used for defining residuals. Trade-offs can then be made which incorporate

notions of model uncertainty and failure distinguishability.

2. An FDI design methodology which utilizes our theoretical results has

been defined. Rather than defining a "canned" design rule, which tends to

obscure important design considerations, we have formulated the goals and

design choices which the FDI designer must make and have identified tools

which may be used in the design process.

3. The evaluation of system design issues (such as sensor configuration

and model accuracy) in terms of FDI performance can be made without complete

design of an FDI algorithm. The use of distinguishability metrics applied to
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the measurements themselves provide lower bounds on the error probabilities of

any FDI system which has access to the same measurements.

4. The evaluation of alternative FDI schemes is made possible by

applying distinguishability metrics to the sufficient statistics of the

algorithm. In the case of [11], this involves computing the distribution of

weighted sums of squares of Kalman filter residuals. We have shown that

performance is, in general, highly dependent on the choice of weights as well

as Kalman Gain, and for [11] in particular, the uncertainty in linearization

point plays a major role.

5. Application of our design techniques to a reduced order F-100 engine

model at a single operating point has demonstrated the feasibility and

usefulness of this approach. However, the highly nonlinear nature of the jet

engine (both during transients and during operating point changes) produces a

new issue; that of robust-adaptive FDI. Here, "adaptive" refers to the

scheduling of residual generation and decisionmaking parameters with different

operating conditions and during transients. The metrics developed in this

project provide a useful starting point for work in this area since they allow

quantitative assessment in determining the boundaries between adaptivity and

robustness. That is, we can begin to answer questions such as, how good is a

given linear model over a particular "parameter scheduling region", when must

we change to another model, and when must nonlinear models be considered?

6.1 RECOMMENDATIONS FOR FURTHER WORK

A number of theoretical and applications oriented extensions are

suggested here for future work.

1. First, the application and extension of our results to a highly

nonlinear system such as the jet engine can serve to both demonstrate the
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usefulness of these concepts and extend the theory and methodologies in

directions which address the application specific issues in detail. For the

jet engine problem, we believe that the issue of adaptivity versus robustness

is of primary importance. Clearly some amount of adaptation is desirable

since large differences in dynamic relationships exist between engines as well

as in a single engine over its operational lifetime. A "closed loop" adaptive

technique which operates on the same time scale as the FDI algorithm is not

sufficient since adaptation to failures is possible. Parameter scheduling

techniques should be used to transition between sets of reduced order models

if one can determine the important parameters on which to schedule, and when

scheduling is necessary.

In this regard, the results of this project can be applied in several

interesting ways. First, in determining the validity regions of reduced order

models one may consider forming sets of models through an identification

algorithm operating over increasing regions in some space of parameters. As

this region grows one would expect (particularly in the case of parameters

being control variables and reduced order models being linear approximations

to a nonlinear system) that modeling error would also grow. Quantifying the

modeling error is, then, all which is needed for evaluating each model in

terms of FDI performance. The largest region in parameter space which

maintains a desired level of FDI performance can then be selected and the

validity region for the corresponding model determined.

Alternatively one could define metrics which measure distances between

the reduced order models themselves, or between reduced order models and a

truth model. As in our results, these metrics would include the effects of

model uncertainty in the distance definition. Clearly, a robust model is one
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which is close (in terms of a metric to be defined) to the truth model even

for large changes in the parameters of the reduced model. Finally, when

linear models are used, uncertainty in the linearization point must be con-

sidered as a substantial source of error. That is, for stable systems, the

error in predicting the steady state impulse response must be determined and

included in the relevant metrics for determining model robustness.

Finally, a functional breakdown of a full envelope algorithm is presented

in Fig. 6-1.

2. A second useful application to which our results may be readily

applied is in the area of system design and analysis. The dependency of

over-all system reliability, life cycle costs, and "maintenance down-time" on

performnce (reliability) of the FBI algorithm is well known. Tradeoffs

between sensor cost, weight, duplication and FDI performance can now be made

without deriving an FDI algorithm for each option, and the impact on overall

system issues determined. Ultimately, one might conceive of an "expert" FDI

design aid which can answer relatively high level design and maintenance

questions by accessing the detailed analysis provided by this and other

efforts.

3. Within the FDI algorithm itself, some important issues in robust

decisionmaking (i.e., how to design and evaluate the elements of the decision

process) can be addressed with the results of this project. In several

application areas (such as flight control) the modeling of dynamic

relationships is in a fairly mature state. Thus, in the fundamental FDI

decomposition (Fig. 2-1) the design of residual generation or parity relations

is straight-forward (and, note, in many cases, nonlinear). In such systems,

optimized parity checks may be of less interest. However, we can achieve
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robustness in the decisionmaking process (as discussed in Section 3) by the

selective use of the known redundancy relationships. The metrics we have used

could be applied to solve this "selection" problem.

In the case when knowledge about modeling uncertainty is available but

varies over the same time scale as the decision algorithm, metrics provide a

starting point for determining parameters of decision algorithms which might

"adapt" to changing distinguishability conditions. Ultimately, in the case of

changing distinguishability conditions one would like to develop a sequential

testing procedure which, in effect, waits for favorable conditions before

decisions are made. The relevant parameters of such a test would then be

optimized at each time step.

Finally, in many cases, a decision algorithm is useful only if its per-

formance is guaranteed for a large class of failures (e.g., all bias failures

larger than a minimal failure magnitude). In some instances (e.g., tests for

bias failures vs. no bias), this property is a direct result of the direct

application of simple decision rules. However, it is not guaranteed in gener-

al (e.g., tests which must distinguish between two bias failure vectors, each

of which has a minimal failure magnitude). Preliminary results in this regard

suggest, roughly'speaking, that a transformation of residuals which tends to

orthogonalize the failure directions will allow decision rules to be designed

for "minimal" failures with performance guaranteed for all failures which are

"larger" than minimal.

4. Finally, we note than in Appendix A many connections to other

technical areas (time series analysis, pattern recognition, reduced order

modeling) were made. A complete clarification or unification of these areas
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in terms of the goals of FDI algorithms is considered useful in obtaining

better insight, and in deriving alternative concepts which may be useful for

further research into robust FDI.
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ABSTRACT

A decentralized failure detection and isolation (FDI) methodology, which

is robust with respect to model uncertainties and noise, is presented. Redun-

dancy metrics are developed, and optimization problems are posed for the

choices of robust parity relations. Closed-form solutions for some special

failure cases are given. Connections are drawn with other disciplines, and

the use of the metrics to evaluate alternative FDI schemes is discussed.
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A-l. INTRODUCTION

A-1.1 BACKGROUND AND MOTIVATION

Sensor failure detection and isolation (FDI) deals with the problem of

detecting deviations from normal behavior (which we will call "failure modes")

in a specified sensor complement and isolating the particular instrument that

has failed. In recent years, numerous approaches have been developed to per-

form FDI in linear, dynamic and stochastic systems. These methods include the

voting schemes [1],[4], the generalized likelihood ratio (GLR) technique [3],

[4], the multiple model (MM) approach [5],[6] and the detection filter scheme

[7],[8],[9]. Willsky [10] has provided a comprehensive survey of the various

FDI methods and a discussion of the strengths and weaknesses of each method.

In general, all FDI methods use, either implicitly or explicitly, redun-

dancy relations among the measured system variables to generate residuals (or

generalized parity checks) and make failure decisions. In addition, all FDI

methods can be conceptualized as consisting of three separate, clearly identi-

fiable stages: 1) residual (parity) generation, 2) information collection and

3) decisionmaking (see Fig. A-l-1). Essentially, the parity checks are a set

of signals that should be near zero when the system is operating normally, and

that will deviate from zero in characteristic ways when particular failures

occur. The residual (parity) generation process can be of varying complexity

for different FDI systems. For example, in a voting scheme parity checks are

simply the differences of outputs from identical sensors, whereas in the GLR

system, the parity checks are generated by the more complex Kalman filter (KF).
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Figure A-l-1. Three Stage Structure of the FDI Process.

In the information collection phase, the parity checks are accumulated

over time (typically over a moving time window) for the purpose of establish-

ing the presence of failures. This phase may produce one or several scalar

decision statistics, which are then compared with a threshold in the decision

phase to make failure decisions. The scalar statistics in most FDI systems

are probabilities or likelihood ratios for distinguishing among a set of hy-

potheses on residual behavior (where each such hypothesis corresponds to a

particular failure mode). These statistics are typically generated in one of

two ways ... via coherent or incoherent processing ... as shown in Fig. A-l-2.
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Figure A-l-2. Information Collection Methods
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In the coherent processing, one correlates the observed residual sequence

with a specified function of time and then squares the resulting quantity.

Here, what one, in essence, assumes is that one knows the sign history of each

residual component and any important phase relationship among residual com-

ponents under any particular failure mode. The prototypical example of this

is when a failure manifests itself as a slowly-varying bias or drift in a

particular residual component. Coherent processing in this case amounts to

weighted summing of measurements followed by squaring.

In the incoherent processing, one first computes particular weighted

squared sums of the residuals and then sums the quantities over time. In this

case, one is essentially assuming that a particular linear combination of the

residual components is large at every point in time but that the temporal

variation of this linear combination is unknown. Such a structure is of use,

for example, in detecting noise variance changes.

The tradeoff between coherent and incoherent processing is relatively

clear. In the coherent case, we are matching much more closely a particular

temporal variation and therefore will reject a larger class of other varia-

tions. Thus, if we really know this variation (i.e., the sign history of resi-

duals under a particular failure mode), one would expect a superior detection-

false alarm performance using the coherent processor. If, on the other hand,

the actual variation pattern under failed conditions is significantly different

from the assumed one, the coherent processor will not perform nearly as well,

and one may have to settle for the more conservative detection-false alarm

capabilities of the incoherent processor.
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The decision rule in an FDI algorithm normally involves comparing the de-

cision statistics with one or more thresholds. The thresholds are determined

to optimize a detection criterion such as the Bayes' risk, probability of

error, etc.

Since analytic model-based redundancy is the key to any FDI system, the

robustness of any such system depends on the reliability of the redundancy

(parity) relations that are used, given the inevitable presence of model

uncertainties, nonlinearities, and noise. That is, the problem of robust

failure detection and isolation is concerned with designing the parity gener-

ation and information collection phases of the FDI system so that the result-

ing decision statistics are "maximally sensitive" to the failure modes and

"minimally sensitive" to model uncertainties and noise. This perspective was

at the heart of the F-8 sensor FDI project [11], and the more recent theor-

etical work reported in [12], [13].

A-1.2 FDI DESIGN PHILOSOPHY

The design of a practical FDI system requires consideration of several

issues:

1. Performance of the detection system as measured by the
detection time and detection accuracy (correct detections
and false alarms).

2. Robustness, i.e., relative insensitivity of the FDI system
performance to parameter variations and modeling errors or
uncertainties.

3. Computational complexity as measured by storage requirements
and computation time.

One could imagine formulating an overall robust FDI system design problem

which uses detailed dynamical models and which accounts for model uncertain-

ties. This alternative, however, is of conceptual value only as such a problem
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is far more complex than can be solved practically as well as being more com-

plex than is necessary to obtain a practical design. A second approach -

which, in some sense, is the default approach used in most top-down attempts

at FDI design - is to synthesize an FBI system based on a nominal model,

neglecting model uncertainties. One then evaluates FDI performance in the

presence of model uncertainties and then modifies the design to improve per-

formance e.g., one adds hypotheses corresponding to model errors in order to

alert the FDI system to the fact that such uncertainties must be distinguished

from failures. This more or less trial and error approach has obvious draw-

backs in terms of providing very little in the way of a concrete methodology

and, more importantly, the designs obtained in this manner are often unwieldy.

This is because various "bells and whistles" are generally added to alert the

FDI system to the fact that part of the system may be in error. Consequently,

it is not a simple manner to check all possible "what-if" scenarios in order

to troubleshoot possible robustness problems.

The third approach to robust FDI system design is motivated by a desire

to overcome the limitations just mentioned by taking uncertainty into account

at the start in order to obtain as simple an FDI system as possible and that

makes optimum use of the best information available (here simplicity is impor-

tant not just for computational reasons but, more importantly, because simply

structured systems are far easier to troubleshoot in order to pinpoint poten-

tial weakpoints and performance-limiting issues). This approach, which can

be thought of as the decentralization of the FDI process, is based on the con-

cept of identifying only those parts of the system model that are known with

greater certainty and then design the system based primarily on the certain

parts. The key idea here is that in such a design one can focus information
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for a particular failure mode using only those parts of the model which pro-

vide the best "failure signature-to-model uncertainty ratio" for this failure.

This decentralized approach is in marked constrast to a centralized FDI design

based on one complete model, say using a Kalman filter, in which failure in-

formation and all sources of model uncertainty are diffused through the entire

set of residuals. Consequently, when information collection (as in Fig. A-

1-2) is performed for such an approach, one will, in general, be mixing to-

gether high quality and low quality information and the result may be a loss

in robustness. Another major advantage of the decentralized approach is that

it results in an FDI system in which the computations required to detect and

isolate individual failures are typically far simpler than in a centralized

approach. Furthermore the decentralized structure allows greater flexibility

in designing an architecture for its implementation than a centralized FDI

design. Finally, because parity relations are explicitly chosen for partic-

ular purposes (e.g., detecting a particular failure), detection logic is ex-

tremely simple.

For the reasons just outlined we have taken as the basis of our approach

the design of robust residual generation and information collection systems.

This approach was, in essence, used in the successful F-8 sensor FDI project

(11] and in the theoretical work by Chow and Willsky [12] and Lou, Willsky,

and Verghese [13] which formed the foundation upon which the work in the

present project has been built.

A-1.3 OVERVIEW OF THE DESIGN APPROACH

In the next two sections, we describe the major analytical constructs

that are needed in our approach. We preface that development here with a

brief overview of the major concepts behind the approach. The first part of
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our design methodology is to identify those portions of the system dynamics

that are known with the most certainty, as the use of parity checks based on

these portions of the dynamics will be of great value in minimizing false

alarms. Thus the first problem is to obtain a rank-ordered list of parity

relations, where the ranking is in terms of some "robustness metric" that

quantifies how close to zero each parity check is under normal conditions

given the presence of model errors and noise.

The second problem is coverage - that is, assessing the ability of

relations identified in the first step to detect a specified set of failure

modes (each of which is also modeled with an allowance for errors in the model

used) and the possible augmentation of this set with additional relations that

are useful in detecting particular failure modes not well-covered by the

initial group of relations. Let us note two aspects of this problem. The

first is that it requires a second metric that measures the ability of a

particular relation to distinguish between normal conditions and a particular

failure mode (i.e., to give decidely larger values under the particular

failure than under normal conditions) given the presence of model error and

noise. Again this metric can be used to rank-order relations with respect to

their usefulness for detecting particular failures. The second point is that

the relations added at this stage are less reliable than the first ones ob-

tained, in that they may have larger values when no failure has occurred.

They may be needed, however, to achieve the desired coverage (i.e., to achieve

a specified probability of detection for all failures). Note also that the

metric used should provide a guide to the minimum magnitude of a particular

failure that can be reliably detected (i.e., to achieve a specified probabil-

ity of false alarm).
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The final step in the design is concerned with the problem of distin-

guishability: given that a failure has occurred, can we determine which

failure mode has occurred. Here again we need a metric that measures the

ability of a parity relation to distinguish a particular failure mode from an

alternative set of possible events corresponding to one or more of the other

failure modes. Note again that if additional relations ar needed, they will

be inherently less reliable under normal conditions. However, at this stage

we can, if necessary, avoid the impact such relations would have on false

alarm rate by using a two-level structure. Specifically, the relations deter-

mined in the first two stages are sufficient for detection of all failures,

but may not be able to isolate all of them. Thus, one could use these rela-

tions to detect and trigger the use of additional relations for isolation

only.

For the most part we have discussed the residual generation phase of the

FDI system. However, the same ideas are also of value in designing the in-

formation collection phase, i.e., in determining the data length required to

achieve desired performance levels and in specifying the details of how suc-

cessive residuals are accumulated. In the next two sections, we describe

the metrics we have considered and indicate how they are used in the design

of robust FDI systems. We also provide a brief discussion of the interpreta-

tions of parity relations as reduced-order models and the use of our metrics

to assess the robustness of other FDI systems.
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A-2. ROBUST PARITY (RESIDUAL) GENERATION METHODOLOGY

As we stated in Section 1, the key to robust FDI is the "pulling apart"

of the most reliable of the available redundant relations among the measured

variables. In this section, we provide a precise definition and a unified

view of redundancy, and develop a methodology for generating robust redundancy

relations in the presence of model uncertainties. We will begin our discus-

sion of redundancy with static perfectly known systems with no noise.

A-2.1 REDUNDANCY AND PARITY RELATIONS: STATIC PERFECTLY KNOWN SYSTEMS WITH
NO MEASUREMENT NOISE [14], [15]

Suppose that the redundant measurements can be modeled by the measurement

equation:
y = Cx (A-2-1)

where y is an m vector of measurements, C is the mxn measurement matrix of

rank r and x is the n vector of state variables. In static systems, one can

interpret redundancy relations in four equivalent ways as follows.

A-2.1.1 Projection Matrix Interpretation

The unique minimum norm, least squares solution of Eq. A-2-1 is given by

" 0^x = C y (A-2-2)

where C^ is the generalized (Moore-Penrose) inverse of C. We can view the

estimate in Eq. A-2-2 as the best linear unbiased estimate with infinite prior

covariance for x. The residual vector, y is given by
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V = 7 - Cx = (Im-CC
f)y = Pcy (A-2-3)

where Pc is the mxm projection matrix, with the following properties:

1. Pc spans an (unobservable) subspace that is orthogonal to the
(observable) subspace spanned by the rows of C. That is,

P .C = (l -CC )C = C - CC C = 0 (From Moore-Penrose inverse
property) . (A-2-4)

Also, the residuals satisfy the relation:

P y = 0 - » - x matches the measurements y exactly

2. Rank of Pc = m - rank of (C) = m - r.

3. The rows of the projection matrix, Pc provide m-r=t independent ,
algebraic relationships among the m measured variables. Since
these relationships are algebraic, we call them parity checks of
order 0 (or 0-th order parity system). The t independent rows of
Pc are the t parity vectors of the Oth order parity system. Note
that the parameter synthesis approach of [16] is a Oth order
parity system.

4. The projection matrix Pc is idempotent and symmetric, i.e.,

P =P 2

c c

A-2.1.2 Singular Vector Interpretation

Consider the singular value decomposition (SVD) of the measurement matrix C

C = U Z VT (A_2_5)

where
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U = mxm matrix of left singular vectors

£ = mxn matrix of singular values

V = nxn matrix of right singular vectors

The matrices U and V are orthonormal with the following properties:

T T
UU = U U = Im

T T
VV = V V = I

n

When rank [C] = r, the SVD (Eq. A-2-5) can be rewritten explicitly as:

(A-2-6)

t r
C = m [ Uj : U2 ]

n-r r

0

0

0

~z
T

Vl

T
V2

n-r

(A-2-7)

where

TT

Using Eq. A-2-8,

T

C = 0

(A-2-8)

U-2-9)

Eq. A-2-9 says that the t left singular vectors corresponding to zero singular

values of C are the t independent parity relations:

Cx = 0 (A-2-10)
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where y = [yiW2***'Jt]T* Th6 columns of Uj are the t parity vectors

ul» U2»***»ut; we call DI the parity check matrix. A remarkable property of

the parity vectors uj_ is that they form an orthonormal set of vectors in the

measurement space, i.e., they are as separate as possible.

u.u. = 0 for all i (A-2-11)

Remark

by

The projection matrix, Pc and the t left singular vectors, U^ are related

Pc ' Ul Ul •

This can be seen as follows:

PC - im - cc

since

u2
T -

Cf = V2 E'
1 U2

T and U*

u2

Example 2.1: Consider a dual redundant sensor system where signal of sensor 2

is related to the signal of sensor 1 by a scale factor a. That is,

yi

Ly2^

a. Projection Matrix Approach

C x ; Rank [C] = r = 1 .

l+a2
— 1
l+a2 J

I - CC =

a^

l + a2

-a

1+^

-a

l+a2

1

l+a2

Rank [P] = m-r = 1
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Thus, Pc defines a single parity check equation

ui = a yi -72 = 0 .

b. SVD Approach

The SVD of C is

C =

a •

'l+a2 .

The left singular vector corresponding to the zero singular value is:

ul •
-i

The parity check equation u. y = 0 becomes:

= 0

It is easy to see that P = u.u .
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A-2.1.3 Eigenvector Interpretation

Another interpretation of parity vectors, that will be useful in later

sections, is that they are the eigenvectors of CCT. This can be seen by con-

sidering CCT in terms of the SVD as:

T T T 2 T
CC = U Z V VZU = U E U

T 2
+ CC U = U Z

T 2
CC u = o. u. ; i = l,2,...,m .

Thus, the left singular vectors u^ are the eigenvectors of CCT and the parity

vectors are the eigenvectors of CCT corresponding to zero eigenvalues. Since

tr(CCT) is a measure of energy in the measured signals, parity vectors can be

thought of as ̂ he directions of least energy. This observation leads us to a

stochastic interpretation in terms of minimum entropy, whenever the state x is

random. We explore this interpretation next.

A-2.1.4 Minimum Entropy Interpretation

Entropy is a statistical measure of uncertainty [17], As we will now

argue, the entropy concept can be used as a suitable criterion for parity

selection. In particular, a parity check can be thought of intuitively as a

variable which, under unfailed conditions, takes on as close to a specified

deterministic value (typically zero) as possible. The less randomness there is

in a parity check, the more useful it is for detecting failures. Thus, if we

view entropy as a measure of uncertainty, a meaningful parity selection crite-

rion is to choose parity relations which minimize the entropy (uncertainty) of

y. Since this criterion is equivalent to minimizing variations of y in the

transformed domain (i.e., parity space), it is reasonable to expect that the

transformed measurements (i.e., parity relations) will have clustering
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properties (i.e., in example 2.1, parity check y = 72 ~«yi " 0, is clustered

around the origin).

To prove the minimum entropy interpretation of parity relations and to

provide connections to the eigenvector interpretation, assume that x is

Gaussian with zero mean and covariance, E , i.e., x ~ N (0,E). We assume that

E > 0. The basic idea of minimum entropy approach is to select a parity

transformation
T

V = G y (A-2-12)

such that the entropy of parity relations, y is minimized. In Eq. A-2-12,

y is an m vector, y is a t vector of desired number of parity relations and

G is an m by t parity check matrix. To avoid trivial solutions G=0, we impose

the orthonormality constraint on G:

GTG = It . (A-2-13)

Note that the covariance of y is CECT, and this will be invertible if and

only if C has full row-rank. In this case there are no perfect parity checks

as discussed in the preceding sections (where y = 0 under unfailed condi-

tions), but what we wish to choose are parity checks so that the uncertainty

in y is as small as possible. If C has rows that are linearly dependent, then

there are perfect parity checks, as discussed in the preceding subsections,

corresponding to the eigenvectors associated with the zero eigenvalue of CECT.

If one wishes to construct additional parity checks, then one again must set-

tle for some level of uncertainty. These can be constructed using the proce-

dure we now describe but first removing the dependent rows of C, thereby

producing a matrix C with the same rank as C. For these reasons, in the re-

mainder of this section, we assume without loss of generality that the rows of

C are linearly independent.
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The entropy of w is given by

Hy(t) = - / p(y) fn p(p) du (A-2-14)
U

where we have indicated the explicit dependence of Hy on the number of parity

T T
relations, t. Since y is Gaussian with zero mean and covariance matrix G CEC G,

H (t) = - £n(2re) + - to det (GTCECTG) . (A-2-15)

Thus, entropy Hy(t) is a function of the covariance function of p. The opti-

mum transformation matrix G is given by the following theorem.

Theorem 2.1

The entropy function Hy is minimized by taking the columns of G to be the

t normalized eigenvectors associated with the smallest t eigenvalues of the

covariance matrix of y, CEC^*

Proof;

Entropy Hy(t) in Eq. A-2-14 is minimized with respect to G by forming the

augmented Lagrangian function:

Hp = - (*n2ire) + - An det (Ĝ CIĈ G] + - tr [[Ĝ -Î -r] (A-2-16)

where F is the matrix of Lagrange multipliers. Near optimal G* we have, for

small AG

AH' = - £n det(G*+AG)T CZCT (G*+AG) - - £n det (G*TCZCTG*)

1 r r * T * * T * x n
+ - tr [((G +AG)1 (G +AG) - G G ) r] (A-2-17)
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Using (I + A)"1 = I - A, and in det (I + A) = tr(A), we have the first order

condition:

AH' = tr [AGT{CZCTG* (ĉ czcV)"1 - G* r}] = o . (A-2-18)

(Here, we are using the fact that G*TCZCTG* is invertible. This will be the

case if C has full rank.) In order to satisfy Eq. A-2-18 regardless of AG, we

need
T * *T T * —1 *

CZC G (G CZC G ) = G T . (A-2-19)

Premultiplying Eq. A-2-19 by G*T and using G*TG* = It, we have F = It. Using

T = It, Eq. A-2-19 can be rewritten as

T * * , *T T *x
CZC G = G -(G CZC G J . (A-2-20)

From Eq. A-2-20 it is clear that the columns of G* are the eigenvectors of

CZCT (in this case note that G*CZCTG*T is diagonal), and thus G* whose columns

consist of t eigenvectors of CZC^ is a stationary point of the entropy func-

tion. It is immediate, then, from Eq. A-2-15 that the minimum is achieved by

choosing the eigenvectors corresponding to the t smallest eignevalues of CZC1 .̂

Remarks

1. The minimum entropy result we just obtained provides us with a con-

venient interpretation in terms of eigenvector and eigenvalue analysis of the

covariance function of y: the parity vectors are the eigenvectors of the

covariance function of y corresponding to the smallest eigenvalues. This

observation, and the minimum entropy interpretation enables us to extend the

parity space concepts to dynamic and stochastic systems. More importantly,

this result says that we can work directly with the experimentally obtained
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covariance data to generate the parity relations, if a model of the system is

not available.

2. Since eigenvectors corresponding to the smallest eigenvalues of the

covariance matrix are the directions of "near perfect" correlation, minimum

entropy transformation provides the "most certain" or deterministic relation-

ships among the measured variables, i.e., relations with least variability or

relations having clustering properties. Thus, the eigenvalues associated with

parity vectors are measures of their certainty (or "robustness").

3. The use of minimum entropy criterion to feature selection process

in pattern recognition literature is well known [17]. The criterion is used

because of the clustering effects it produces on the data, i.e., the parity

check values are as close to a specified set of deterministic values as

possible.

4. Note that if x is equally likely to be in any direction, i.e., E=otl,

the parity vectors correspond to eigenvectors of CC^**», i.e., when we have no

a priori information about the relative scaling of components of x, we recover

the results of the preceding subsections.

A-2.2 REDUNDANCY AND PARITY RELATIONS: STATIC PERFECTLY KNOWN SYSTEMS WITH
MEASUREMENT NOISE.

Consider a measurement system of the form

y = Cx + v (A-2-21)

where x is a Gaussian state vector with zero mean and covariance, Z; and v is

a zero mean, Gaussian noise process with covariance R, which is uncorrelated

with the original process, x.

As before, we seek a parity transformation matrix G to minimize the

entropy of parity relations, u ° GTy given by
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H = - in (2ne) + - to det [GT(CECT + R) G ] . (A-2-22)

As before the entropy function Hy is minimized by forming the transformation

matrix G from the t normalized eigenvectors associated with the smallest

eigenvalues of the covariance matrix, (CEĈ -fR).

Remarks

1. The minimum entropy orthonormal transformation G also minimizes the

scatter (dispersion measure) given by

d^2 = tr (E {y y1}) = *r (GT(CECT + R)G) . (A-2-23)

2. In the statistical literature, the use of eigen analysis to charac-

terize features is also referred to as factor analysis or principal component

analysis (PCA) [18], PCA has been used in model order reduction problems [19],

system identification [20], and image processing [21].

3. A nice property of the parity relations n is that they are component

wise uncorrelated, i.e.,

E P̂j} = 0 for all i * j, i,j = l,2."t . (A-2-24)

Under Gaussian assumption, the components are independent as well.

4. When measurement noise is present, the minimum entropy transformation

G provides parity relations that are as orthogonal as possible to both the sig-

nal and the noise processes.

5. In pattern recognition literature [17],[22], it is a common practice

to use the autocorrelation function of the measurement process y, which is also

the covariance matrix of y under the zero mean assumptions on x and v. The

autocorrelation function approach has the important interpretation that the

parity vectors are the directions of least energy.
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A-2.3 REDUNDANCY AND PARITY RELATIONS: STATIC UNCERTAIN SYSTEMS WITH
MEASUREMENT NOISE

Consider a static, uncertain measurement system

v = c
£
x + V£ (A-2-27)

where the measurement matrix Cg takes on values from a finite set of L models,

i= 1,2,»**,L; v^ is a zero mean, white-Gaussian noise process with covariance

R£ under the model hypothesis £; x is an n-dimensional state vector with zero

mean and covariance E^ under model hypothesis I. In addition, the a priori

probability that the Jl-th model is correct is, P^. Note that the probability

density of y is a sum of L Gaussian densities:

p(y) = E P£ NtO.C^E^
1 + R£) . (A-2-28)

Our objective is to find the minimum entropy parity transformation such that:

V = G y (A-2-29)

subject to the normalization constraint:

T
G G = It . (A-2-30)

The entropy of y for a given model hypothesis £ is

= - (£n2ire) + - to det (GT(C E C T + R )G) . (A-2-31)

The average entropy of u over the range of model hypotheses is the weighted

sum of conditional entropies given by Eq. A-2-31. That is,

H"(t) = £=1 ?* V' (A~2

where we have shown the explicit dependence of H,, on the desired number of
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parity relations t. Proceeding as in the proof of theorem 2-17, the minimum

entropy parity transformation G* satisfies the nonlinear equation:

G*F = Z Pz (C IZ1C*+ R£) G* (G*T(CJIZJICJI
T+ R^G*)"1 (A-2-33)

where T is the matrix of Lagrange multipliers. Pre-multiplying Eq. (A-2-33)

T T
by G* , and noting that G* G* = It, we have T = It. Thus, the optimal parity

check matrix G* satisfies the nonlinear matrix relationship:

* r T •> * /• *T /• T •> * •>-!
G = Z P (C Z C + R J G [G (C Z C + R JG J . (A-2-34)

£=1 * * * * * *** *

A simple successive substitution scheme can be employed to solve for the

optimal minimum entropy parity transformation matrix. At iteration i, the

idea is to find G(i) via *

*=1 (A-2-35)

The algorithm starts with an initial G(0) and iteratively updates till

HOC1-) - G(*~!) H is small with respect to some suitable norm. However, if we

approximate the density function of y (or u) , which is a sum of L Gaussian

densities with a single Gaussian density having the same mean and covariance

an important simplification arises. That is, we approximate

Z P^ N(0, C£ZAC£
T+ R£) ~N(0,C) (A-2-36a)

*Alternatively one can use conjugate gradient method to solve for G using
a modified form of Eq. 2-34 as the descent direction.
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where

Z P. (C0E.C0 + R.) .a a SL (A-2-36b)

With this assumption, we can state Theorem 2.2.

Theorem 2.2 Assumption 2-36 implies that an optimal choice of G is the t
**. *N.

eigenvectors of C corresponding to the smallest t eigenvalues of C.

Proof; Same as Theorem 2.1.

Example 2.2

Consider the dual redundant measurement system with three uncertain

measurement matrices

i
.8

Pl - P2 = P3 = ; ; Rl - R2

Using the Gaussian sum approximation,

,1 0

0 .1
; Z£-l.

C =
1.1 I

1 1.13

Minimum eigenvalue » .12

Eigenvector = [.714 - .7]

The robust parity vector is illustrated in Fig. A-2-1,

A-27



\PARITY VECTOR

\

R-1800

Figure A-2-1. Illustration of Robust Parity Vector in Static
Uncertain Systems
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A-2.4 REDUNDANCY AND PARITY RELATIONS: LINEAR DYNAMIC AND STOCHASTIC SYSTEMS
WITH MODEL UNCERTAINTY

A-2.4.1 Problem Formulation

Consider a linear time-invariant, discrete-time stochastic system model

= A£ x(k) + D£ w(k) (A-2-37)

y(k) - C£ x(k) + v£(k) (A-2-38)

where the system parameters Ag, D£, CjjJ take on values from a finite set of L

models, Jl=l,2,«»*,L ; x is an n-dimensional state vector with zero mean and

steady-state covariance matrix, E£ under the model hypothesis £ ; y is the

m-dimensional output vector; w is an n^ dimensional, zero-mean, white-Gaussian

noise process with covariance matrix Q ; and v^ is an m-dimensional, zero-

mean, white-Gaussian noise process with covariance matrix R£. In addition,

the a priori probability that the Jl-th model is correct is P£ .

Following [12], [13], we define a parity check of order p as a linear com-

bination of the lagged and present values of the output over a window of size

p such that the parity checks have small values if no failure occurs. Let
rp

(k) = [yj(k), y2(k), •••, v^Ck), •••, yt(k) ] denote a t-vector of such

parity relations. Then, the parity relation Wj.(k) is related to the lagged

and present values of the outputs by:

; i=l,2,.-.,t (A-2-39)

where Y (k) and g. , the i-th parity vector, are

& (y(k-p), y(k-p+l), ..-, y(k)) (A-2-40a)

T A
gi = (SiO» Su» '••» gip) • (A-2-40b)
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We also write

y(k) = G1- Yp(k)

where

= [gj, g2, •••, gt]

(A-2-41a)

(A~2-41b)

The window of outputs Yp(k) satisfies a linear relationship of the form:

Yp(k) = Mp£ x(k-p) wp(k) (A-2-42)

where wp(k) and Vpĵ (k) are lagged and present values of the process noise and

measurement noise processes over a window of size p:

wp(k) S [w(k-p), , -.., w(k)] (A-2-43a)

-P>» v(k-p+l), .... v(k)] (A-2-43b)

is the p-th order partial observability matrix given by

Mr a (p+l)m by n matrix

IIp£ is the extended process noise matrix of the form

(A-2-43c)
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0 0

0 0

»D« 0

0 0

0 0

0 0
• •

• •

a (p+l)m by (p+l)nw matrix .

(A-2-43d)

Note that the probability density of Yp(k) is a sum of L Gaussian densities:

p(Yp(k)) = Z P£ N(0, C£)

where C is the autocovariance function (ACF) of Y conditioned on the factx p

that the model hypothesis is i. In the steady state, C is given by

c = M .z MM + n no n „ + R .9. pi a i pi^p pi pi (A-2-45)

where

R = diag (R ) a (p+l)m by (p+l)m matrixp *• x

Qp = diag (Q) a (p+l)nw by (p+l)nw matrix

0 = A E A + DOo
1 i i i i i

(A-2-46a)

(A-2-46b)

(A-2-46c)

Using Eq. A-2-46c, repeatedly, it is easy to see that C is a (p+1) by

(p+1) block Toeplitz matrix of the form:
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0£

l£ (H

c

c
(A-2-47a)

C£ A

1=0

(A-2-47b)

where Z^ is the steady-state covariance matrix of the state x(k).

Our objective is to find the t best parity relations that are maximally

insensitive to model uncertainties and the process and measurement noises. We

discuss two robust redundancy metrics that accomplish this objective.

A-2.4.2 Covariance Based Robust Redundancy Metric

In [13] a "robust redundancy metric" is proposed that is a weighted

average of the trace of the covariance of p(k) under various model hypotheses,

£=1,2,'",L :

J(p,t) = Z P tr [E (y(k) yT(k)}]
1=1

(A-2-48)

where E^ denotes expectation conditioned on the Jl-th model hypothesis (note

also that x(k), w(k), v(k), and hence y(k) are zero mean). In Eq. A-2-48, we

have indicated the explicit dependence of J on the order of the parity

relations, p, as well as the desired number of parity relations, t. Using
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Eq. A-2-4la and performing some algebraic manipulations, we have the following

minimization problem for the optimal choice of the (p+l)m by t parity

transformation matrix G :

min J(p,t) = min tr (G CG) (A-2-49a)
G G

subject to

T
G G - It . (A-2-49b)

The constraint in Eq. A-2-49b is included to avoid the trival solution of G=0.

In Eq. A-2-49a, C is the average ACF of Y over the set of uncertain models,

£=1,2, •••,!. and is given by

L
C = T. P£ C£ (A-2-50)

£=1

where C is the ACF of Y conditioned on model £, defined in Eqs. A-2-45 -
* r

A-2-47. The optimum transformation matrix G is given by the following

theorem.

Theorem 2.3: The robust redundancy metric J(p,t) is minimized by taking the

columns of G to be the t normalized eigenvectors associated with the smallest

t eigenvalues of the average ACF C of Eq. A-2-50.

Proof ; Form the augmented Lagrangian function:

T Ttr [GCG + (GG - it) r] (A-2-si)

where T is the t by t matrix of Langrange multipliers. The graident of J*

with respect to G is given by

VGJ' =2 (CG + GF) (A-2-52)
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At the optimum G*, the gradient is zero. Using this condition and the

constraint Eq. A-2-49b, we have

- ft L *N. ifc -

r - -(G CG ) . (A-2-53)

Using Eq. A-2-53 in Eq. A-2-52, we have

/N. * A &T/V A

CG = G (G CG ) . (A-2-54)

Equation A-2-54 implies that the optimum parity transformation matrix G* is

formed by taking the columns of G* to be the t normalized eigenvectors
*w

associated with the smallest eigenvalues of the average ACF C.

The results of Theorem 2.3 provide us with an important interpretation of
*N.

parity relations. Since the parity vectors g^ are the eigenvectors of C asso-

ciated with the minimum eigenvalues, the parity checks ui(k) of order p cor-

respond to "near perfect" correlation among the output variables over a window

of size p . In addition, since the eigenvalues are measures of signal energy

along the directions represented by the eigenvectors, the parity vectors g^

can be thought of as the "directions of least output energy." Moreover if
**

the eigenvalues \± of C are ordered according to size

Xl < X2 < '" < X(p+l)m (A-2-55)

then with the columns of G* chosen as the eigenvectors corresponding to the

smallest t eigenvalues, the optimum values of the robust redundancy metric is

* t
J (p,t) = Z X . (A-2-56)

i=l 1

That is, the first column of G*, g , is the most robust parity check and \i is

its measure of robustness, g2 is the next best parity check with \2 as its
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measure of robustness, and so on. Thus J*(p,t) has the interpretation as the

overall robustness measure, if one were to use the t best parity relations of

order p. Since the X^ are increasing, the general shape of J*(p,t) as a

function of p and t is as shown in Fig. A-2-2. What this curve provides us is

a summary picture of the level of robustness in a particular set of parity

relations. Intuitively, for a given p, a good choice of t would be near the

"knee" of the curve (i.e., at values of t at which At+j begins to increase

more dramatically), although the value of t also depends on the number of

failure modes that should be detected and isolated (see Section A-3).

VALUE OF
OPTIMUM

REDUNDANCY
FUNCTION,

J*(t)

INCREASING p

NUMBER OF PARITY RELATIONS, t

R-1802

Figure A-2-2. Illustration of the Robust Redundancy Function
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Another potential use of the robust redundancy curve is in the design

process. Specifically, different sensor complements (i.e., different choices

of the measurement matrix C^ in Eq. A-2-38) will in general have different re-

dundancy characteristics. By comparing their robust redundancy curves one can

determine a useful measure for the relative merits of alternative sensor sets

in terms of the likely FBI algorithm performance that would result in each

case. Also it is worth noting that in the development in [13], the parity

vectors are interpreted as the left singular vectors of a scaled and extended

observability matrix rather than the eigenvector interpretation presented here.

Our interpretation of parity check generation in terms of eigen-analysis of

the average ACF function allows us to work with experimentally-obtained

covariance data, if a model of the system is not available. In addition, as

will be discussed in the following, our results provide an important link

between parity check generation problem and the results in autoregressive (AR)

spectral estimation [23]-[25], system identification [20], model order reduc-

tion [19] and the feature extraction problems in pattern recognition [22],

A-2.4.3 Entropy Based Redundancy Metric

An alternative metric for robust redundancy can be derived based on the

concept of entropy. As discussed in Section 1, a parity check can be thought

of as a signal that takes on values as close to a specified deterministic

value (typically zero) as possible under normal system operation. The less

randomness there is in the parity check, the more useful it is for detecting

failures. Thus, a meaningful parity selection criterion is to choose parity

relations û (k) such that they have minimum entropy. We use a weighted

average of the entropy under various model hypotheses £=1,2,»»»,L as our

robust redundancy metric:
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VP'° = ̂  P*HpU (A-2-57)

where H^U is the entropy of y(k) conditioned on model £. Since p(k) is
T~

Gaussian with zero mean and covariance G C G under the assumption of model £,

Hy|£ ±S Siven by

H^ = - £n (2 ne) + - £n det (GT££G) (A-2-58)

Thus, the optimization problem is to minimize Hu(p,t) in Eq. A-2-57, with re-

spect to the parity transformation G , subject to the normalization constraint

GTG=lt. The result is given by Theorem 2.4.

Theorem 2.4; The entropy function Hp(p,t) is minimized by a parity transfor-

mation matrix G* that satisfies the nonlinear equation:

* * , *T~ * >-l
P C G (G LC G } (A-2-59)

1=1 * * *

Proof; Same as Theorem 2.1.

A successive substitution scheme can be used to solve for the optimal

minimum entropy parity transformation. However, if we approximate the density

function of Yp(k) (or u(k)), which is a sum of L Gaussian densities, by an

equivalent single Gaussian density with the same mean and covariance, as in

Eq. A-2-36, an important simplification arises. That is,

= 0 (A-2-60a)

cov |p(k)} = GT ( I P C ) G = GTCG (A-2-60b)
£=1
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The optimum parity transformation is given by the following theorem.

Theorem 2.5; The Gaussian sum approximation implies that an optimal choice of

G is the set of t eigenvectors of the average ACF C corresponding to the t

smallest eigenvalues.

Proof; Same as Theorem 2.1.

The result of Theorem 2.5 says that the implicit probabilistic assumption

made in the work of Lou, Willsky and Verghese [13] is precisely the Gaussian

sum approximation (Eq. A-2-60) and that their metric provides robust parity

relations with respect to the "average" model defined by the approximation in

Eq. A-2-60.

Example 2.3: The F-100 Engine Example

In order to determine the optimally redundant parity vectors under normal

(unfailed) conditions, we used the linearized system matrices A and C from the

simplified nonlinear simulation of Ref. [26] at power lever angles (PLA) of

60°, 65° and 70°. The control is assumed to be zero for simplicity. As will

be illustrated subsequently, the effect of control on parity generation can be

included into the parity generation technique in a straightforward manner.

The three sets of system matrices A and C, shown in Table A-2-1, exhibit a

significant change in parameters. In this example, state dimension, n-4 and

output dimension m=5. The four state variables are:

xj o NI Fan speed (RPM)

X2 = N2 Compressor Speed (RPM)

X3 = TT410 Burner exit slow response temperature (°K)

X4 = TT4.510 Fan turbine inlet slow response temperature (°K)
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TABLE A-2-1. SYSTEM MATRICES A AND C AS A FUNCTION OF POWER LEVEL ANGLES
(PLA)

PLA-degrees

60°

65°

700

Matrix

A

C

A

C

Coefficient Values

-5.133
-0.298
-0.0034
.0284

1.000
0.000
0.150
0.302
-1.344

-4,827
-0.0623
-0.0362
.0007

1.000
0.000
0.195
.309

-1.328

-4.549
-0.0966
-0.0386
-0.0229

1.000
0.000
.233
.3433

-1.309

4.750
-2.982
-0.00013
-0.0290

0.000
1.000
0.906
0.007
-0.447

4.749
-2.887
-0.0013
-0.029

0.000
1.000
0.878
.0077

-0.411

4.749
-2.795
-0.0013
-0.029

0.000
1.000
.851
.008

-0.379

-0.323
1.244
-0.639
-0.0413

0.000
0.000
-0.013
-0.023
-0.226

-0.310
1.195
-0.639
-0.0438

0.000
0.000
-0.0109
-0.022
-0.229

-0.2969
1.147
-0.638
-0.046

0.000
0.000
-0.0092
-0.021
-0.233

1.408
-3.341
.0033

-1.918

0.000
0.000
-0.0124
-0.0195
.0148

1.353
-3.131
.0026

-1.918

0.000
0.000
-0.011
-0.0183
-0.0122

1.299
-2.928

.002
-1.918

0.000
0.000
-0.0098
-0.0172
.0100
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The five sensor outputs are:

yi = NI Fan speed (RPM)

Y£ = N£ Compressor speed (RPM)

Y3 = PT4 = Burner pressure (N/m̂ )

¥4 = PT6 = Augmentor pressure (N/m2)

Y5 = FTIT = Fan turbine inlet temperature (°K)

Our objective is to find a single set of 5 parity relations that are

linear combinations of present and past sensor outputs, for the three dif-

ferent operating conditions, PLA = 60°, 65° and 75°. If we can successfully

design such a set for these three widely differing operating conditions, it is

anticipated that the parity vectors for smaller uncertainties (approximately

±3°PLA) around a single operating point will be substantially robust. As-

suming E£ = I and R£ = 0 for S, = 1,2,3 operating conditions, the optimal ro-

bust redundancy function, J*(p,t) is computed for various values of t and

p = 0,1,2,3 and plotted in Fig. A-2-3. It is clear that a complete set of

five robust parity relations can be obtained by using parity orders of at most

2. The parity transformation matrix, G associated with the 5 parity relations

is shown in Table A-2-2.
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2.4.4 Complements

The parity check generation methodology discussed in subsections A-2.4.2

and A-2.4.3 has important implications in autoregressive spectral estimation

[23-25], system identification and model order reduction [19,20], Some of

these issues, as well as frequency domain interpretations of parity relations,

are discussed below.

Parity Relations as Reduced Order ARMA Models

Recall from Eq. A-2-39 that the component i of u(k) can be written as:

p

P.OO = E g.Ao^PtJ) = g4
TVk> > i=l>2,-",t

j=0 J P

where g^ is column i of G . We say that the parity relation is strictly of
T

order p if g^ * 0 . Consider such a relation and denote the components of

Sip by

gip = [gipl* gip2> •"» gipq* •"• gipnJ - (A-2-61)

Assuming, without loss of generality, that gipq * 0, then component q of out-

put vector, yq(k), can be predicted from yq(k-l), yq(k-2), •••, yq(k-p) and

other output components yr(k), yr(k-l), •••, yr(k-p), r*q using the i-th

parity relation as:

gipq

-! p-1 p m
y (k-p+j) + S Eg
<1 -«=n r^i 1JrJ-0 r-1

(A-2-62)

where the superscript i denotes that yq is predicted using the i-th parity

relation. There are two important interpretations of Eq. A-2-62. The most

obvious is that the right-hand side of Eq. A-2-62 represents a synthetic
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measurement of the q-th output that can be compared to yq(k) to generate (a,

scaled version of) the parity relation ŷ (k) . Thus Eq. A-2-62 can be inter-

preted as a prediction filter and leads to a generalization of the concept of

parameter synthesis, discussed in [16] and successfully applied in [4], where

the generalization stems from allowing the right-hand side of the prediction

system in Eq. A-2-62 to have memory. The second interpretation of Eq. A-2-62

is as a reduced order ARMA model for yq(k). That is, yq(k) is expressed in

terms of its own lagged values and of the present and past values of the re-

maining output components yr, r=l,2,«»«,m, r#q, which are treated as external

inputs, and a noise process "i(k), i.e.,

y (k) = —
gipq

r*q

p-1 p m
£ g.i y (k-p+j) + E i

j-o ijq q j-o i-i
r"q

(A-2-63)

This method of obtaining reduced order ARMA models has similarities to the

work in [19], [20].

Parity Relations as Prediction Error Filters

From Eqs. A-2-62 and A-2-63, it is clear that the parity relation vi(k)

can be regarded as a (weighted) one-step prediction error filter (PEF) of

order p, since

Vk) = gipq [yq(1° - yqi)(k>] • (A-2-64)

Since the PEF has finite memory, ui(k) is also referred to as a finite memory

(FM) parity check [12]. PEF interpretation of parity relations is shown in

Fig. A-2-4. PEFs have been studied extensively in the AR spectral estimation
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literature [23]-[25]. Our method of obtaining PEF coefficients is akin to

Pisarenko's harmonic retrieval method discussed in [23]-[25]. However, unlike

the approches of spectral estimation literature, the parity space approach

does not fix the dimension of u(k) and, hence, the dimension of the PEFs a

priori. The number of parity relations, t is chosen to minimize the cost

function (Eq. A-2-48 or Eq. A- 2-57) while satisfying the FDI requirements (see

Section 3). In addition, in computing the prediction error for yq(k), all

other output components yr(k), r#q are treated as known inputs to the ARMA

model. Finally, model uncertainty is taken into account explicitly in com-

puting the average ACF that forms the basis for designing robust parity coef-

ficients, whereas the covariance based PEFs treated in the spectral estimation

literature assume a perfectly known model.

Parity Relations as Moving Average (MA) Filters

The window of observations Yp(k) can be written in the frequency domain

as
Y(z) = ̂ (z) y(z) (A-2-65)

where y(z) is the z transform of the output, y(k); and ̂ (z) is a (p+l)m by m

matrix of delay elements given by

- ^ '

Then, the parity che'ck vector y(k) can be written in the frequency domain as:

T T
U(z) = G Yp(z) = G (z) y(z) (A-2-67)

where

G (z) = G Am(z) (A-2-68)
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If we partition the (p+l)m by t parity transformation matrix G as

GT = [GQ
T G^ ..... Gp

T] (A-2-69)

where each Gj is an m by t matrix given by

(A-2-70)

The m dimensional column vectors gjj , 1 < i < t are defined in Eq. A-2-61

Using the definition of /̂ (z) in Eq. A-2-66, we have

T — (n-i ) T
G z ̂ P J;y(z) = G'CZ) y(z) .

j=0
(A-2-71)

Thus, the parity transformation is a set of t moving average (MA) filters of

order p (in m dimensional space), as shown in Fig. A-2-5.

m vector y(z) GT(z)
p
E

j=0
-> y(z) t vector

Figure A-2-5. Parity Transformation as a Moving Average (MA) Filter
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A Frequency Domain Algorithm for Parity Transformation

The MA filter interpretation provides us with a method for computing the

parity transformation G in the frequency domain. In the steady state letting

r I(DN _T/ j UK t 1 u-v
p(ej ) = G (ej ) y[ej ) (A-2-72)

z = e , we have

where G(e ) is an m by t impulse response matrix. If we let * ( oj) be the

average power spectral density (PSD) matrix (which is a real function of o>)

over all possible model hypotheses, then the autocovariance related criterion

in Eq. A-2-48 becomes:

-1 2ir
J(p,t) = tr [(2ir) / *u (u) du] (A-2-73)

Equation A-2-73 is derived by using the property that the average auto-

T^
covariance function (ACF) of p(k) , G CG and the PSD * (u>J are Fourier trans-

form pairs. The average PSD matrix * (<D) is given by

L
Po *„.<») (A-2-74)*

where *yjj,(oj) is the PSD of p(k) under model £ and is related to the PSD of the

output process *y£(a>) via

«wt(») = G
T(eja)) »yJl(M) G(?

a)) (A-2-75)

The PSD of the output process is related to the system parameters under model

I and is given by

« - t (A-2-76)

Equation A-2-73 must be minimized subject to the constraint:
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/ G (e3 ) G(e"J ) dw - 2ir It (A-2-77)

It is easy to see that the best choice for G(eJU)), (although not necessarily

causal), at frequency co is the set of t eigenvectors corresponding to the

smallest t eigenvalues of the average PSD $y( u>) given by

L
*y(u>) = Z p^ *y£(<") (A-2-78)

An approximate algorithm for obtaining a pth order MA filter is as follows:

a. Divide the interval [0,2ir] into p equal segments, and let

2ir
o>j = j • — 5 j = 0,l,2,'--,p

P,

b. Evaluate $ (w) for each £ = 1,2,...,L and the t orthogonal eigenvecyx.
tors, G corresponding to the smallest t eigenvalues of the average PSD $ (oo.).

J J J

Denote them by X.(u.), i=l,2,«»»,t. Scale each eigenvector by X. * (u.).

c. Normalize each column of G so that

P T
Z g g = 1 ; i-1,2, •••,?

A—n -J -"-J

where g^j is the scaled version of the i-th column of Gj (an m vector). The

resulting normalized Gj provide the desired MA filter coefficients. The pro-

cedure is only approximate since GJS are computed from only a finite set of

ui's. However, it has the advantage that the eigenvalue - eigenvector decom-

position of an m by m matrix, Gj, need be performed (p+1) times rather than

the eigenvalue - eigenvector decomposition of a (p+l)m by (p+l)m matrix as in

Eq. A-2-49. Since the approximation method is computationally efficient, it
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is not necessary to restrict the value of p to small numbers. An alternate

method is to find Gj , j = 0,1,2,«»«,N (N » 1) using the eigenanalysis and

then perform inverse FFT to find the impulse response matrix G. One drawback

of this approach is that the resulting G need not be nonanticipatory [20],

Another major advantage of the MA filter interpretation of parity rela-

tions is that it provides us with a general method for generating parity vec-

tors by weighting frequency ranges of interest. Suppose, W(z) represents such
*x

an m by m weighting filter so that the transformed output y(z) is given by

9(z) = W(z) y(z) (A-2-79)

For a given W(z), we want to find a pth order parity transformation (i.e., an
T «•

MA filter) so that u(z) = G (z) y(z) has minimum autocovariance or minimum
<N.

entropy. It is easy to see that the eigen analysis of the average PSD of y(k) ,

* (<u) at <*).= = j • - for j = 0,1,2,»««,P provides us with (approximate) p-th

order MA coefficients, G . , where * (ui) is given by

%(<"> =W(eja)) *yU) W(2
W) (A-2-80)

Generalization of Levinson Filter

If, instead of G^G = 1^ , we impose a constraint on the coefficients

multiplying y(k) as

T
p pG G = \ (A-2-81)

, = tg1n» g?n'***' gt-J (A-2-82)

is an mxt matrix, then we obtain a generalization of Levinson filter. Note

that the Levinson filter imposes the constraint Gp=Im. The constraint in
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Eq. A-2-81 says that we require the best t relations of the m vector output

that minimizes the robustness metric in Eq. A-2-49. The optimal G is given by

the following theorem.

Theorem 2.6

The robustness metric (Eq. A-2-49) is minimized subject to the constraint

in Eq. A-2-81 by choosing the columns of G as the set of t eigenvectors of
A

the matrix C given by

where

o ~ -i N
P

[ C , C „, •••. C, 1 an m by pm matrixL p—1 > p—2. 1 J

(A-2-83a)

(A-2-83b)

P-1

*. T
co ci •

*<* /N.

ci co •
. .
. .

. .

^ ^

C c ., \j n
 m

L_ p-1 p-2

•• C T

• • c T

~

" co

an mp by mp matrix (A-2-83c)

/S. /N.

where C~, C., •••, C are the average ACFs defined in Eqs. A-2-47 and A-2-50.

That is,

PC, ; 0 < i < p (A-2-83d)

The remaining G are given by

r *T *T *T T -1= -G N 0 ,
P P P-1 (A-2-83e)
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Proof: The augmented Lagrang!an function is

* ̂  t9Ty ^rJ ' (p , t ) = tr [G^CG + (G iEE iG - Ij.) r]

where r is a t by t matrix of Lagrange multipliers and

E =

0 0 ••• 0

0 0 ••• 0
•

•

•

0 0 .-. I

a (p+l)m by (p+l)m matrix

The optimality condition VQJ' = 0 at the optimal G* gives

^ * T * *
CG + E E G T =0

or in expanded form

r~ — •

0 . N
p-1 p

N T g

— P OL

_ .̂

Vi

-S-

0

0

* *-v
where

A . *T *T * T

(A-2-84)

(A-2-85a)

(A-2-85b)

(A-2-86)

Equation A-2-85b implies that

and

** -1 *
G . = - 0 . N G
p-1 p-1 p p

T " ~ * * *
N G .-I-C..G = - G Tp p-1 Op p

(A-2-87)

(A-2-88)
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T *Using the constraint G G = I , r is evaluated as

* *T ~ *
F = ~ Gp C0 Gp (A-2-89)

A

where C is defined in Eq. A-2-83a. Equations A-2-88 and A-2-89 provide the

desired result that the optimal G is formed from the set of t eigenvectors
A

of CQ corresponding to its smallest t eigenvalues. Once G is computed, G _.

is evaluated from Eq. A-2-86. It is worth noting that the matrix C~ arises

prominently in the inversion of block Toeplitz matrices [27].

A Recursive Expression for the Time Window of Measurements

We can derive a recursive expression for Yp(k) from the system equations

(Eqs. A-2-37 and A-2-42) whenever the system is observable. When Mp£ has full

column rank, i.e., rank [Mp̂ ] = n under model hypothesis £, then Eq. A-2-42

can be rewritten as:

x(k) = v tvk> - v vk) •
where T is the generalized inverse of M given by

T . = (M 0
TM J"1 M 0

T .
pfc *• pg, plj pi

Using Eq. A- 2-90 in Eq. A-2-37, we have

vk+i) - A* v vk) i = cT
Pi v vk+i) - ̂  ^ v w

P
(k)

+ tTP£
 V
P£

(k+1) - A£ TP£
 V
P£

(k) 3 + °£ W(k) • (A-2-92)

Since Eq. A-2-92 is in the form of a linear least-squares estimation problem

for noise processes, Ref. [28] uses it as a basis to identify the noise
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statistics (i.e., mean and variance of w and v). It may be noted that a

direct recursive expression for Yp(k) can be obtained from Eqs. A-2-37, A-2-42

and A-2-90 as:

Yp(k+l) = Mp£ A£ Tp£ Yp(k) + Mp£

-Mp£ A£ Tp£ vp£(k) ] . (A-2_93)

The advantage of Eq. A-2-92 over Eq. A-2-93 is that the estimation equation is

of dimension n only (rather than (p+l)m of Eq. A-2-93).

Extension to Include Control Signals

We can easily extend the parity generation approach to systems involving

control variables u(k). Formally, assume that the system dynamics are given

by

x(k+l) = A£ x(k) + B£ u(k) + D£ w(k) (A-2-94)

y(k) = C£ x(k) + F£ u(k) + v£(k) (A-2-95)

where x(k), W£(k) , vA(k) and y(k) are as defined in Eqs. A-2-37 and A-2-38.

u(k) is an nu vector of control variables. As before, in order to generate a

pth order parity relation > we form a window of observation Yp(k) , satisfying

Yp(k) = Mp£ x(k) + Tpi Up(k) + np£ wpi(k) + v£(k) (A-2-96)

where Y (k), M , n , w (k) and v (k) are as defined in Eqs. A-2-40 and A-

2-42. Th

given by

2-42. The control related matrix, r and extended control vector U (k) are
r ** tr
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0

0

(A-2-97a)

[u(k-p) u(k-p+l) ... u(k)] . (A-2-97b)

Depending on whether the control signals are accessible for measurement or

not, we can formulate two parity generation problems.

Problem 1; (Control Signals are not Accessible for Measurement)

Find a (p+l)m by t orthonormal parity transformation matrix G such that

r T~ itr[G CGj is minimized, where

L

t l p (A-2-98)

The average ACF C can easily be evaluated, once the ACF of U denoted by C

under each of the model hypotheses £, £=1,2,...,L is known. The solution of
*v

this problem involves finding the t eigenvectors of C corresponding to the t

smallest eigenvalues.

Problem 2; (Control Signals are Accessible for Measurement)

Find a (p+l)(m+nu) by t orthonormal parity transformation matrix G such

that trfG C G] is minimized, where C is the average ACF of the augmented
^ Sk J St

vector of outputs and control variables Y (k) given by
pa

[Yp(k) Up(k)]
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(A-2-99b)

The average augmented ACF C is of the form:

where

C Cyu

C C
yu u

(A-2-99c)

cyu ~ (A-2-99d)

L
E P. C

£=1 * l
(A-2-99e)

The solution of problem 2 involves finding the t eigenvectors of C corres-
a

ponding to the t smallest eigenvalues.

It may be noted that the key to the solution of problems 1 and 2 lies in

the computation of the ACF of U (k) under each model hypothesis I, C . The

ACF of U (k) can, for example, be obtained in one of the following three ways:

a. u(k) is given by the feedback control law:

u(k) = k x(k) .
P (A-2-100)

b. u(k) is given by the proportional-integral feedback control law:

k-1
u(k) = k y(k) + k E y(i)

1 L i=0
(A-2-101)

c. u(k) is an unknown, but bounded function or equivalently, Up(k) has

known autocovariance function, C under each model hypothesis £.
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A-2.5 SUMMARY

In this section, minimum entropy concept was used to provide a unified

view of parity generation encompassing static and dynamic systems with and

without noise and model uncertainty. Using this concept, an explicit non-

linear equation (Eqs. A-2-34 and A-2-59) is derived for the robust parity

transformation matrix, G in the presence of model uncertainties. In order to

simplify computations, we have approximated the sum of Gaussian densities with

a single Gaussian density with the same mean and covariance. This assumption

led to a simple interpretation of G in terms of the eigenvectors corresponding

to the smallest t eigenvalues (t = required number of parity relations) of the

weighted sum of covariance matrices under various model hypotheses. This

result was contrasted with the previous results of Chow, Lou, Willsky and

Verghese [12],[13]. In addition, we derived a frequency domain algorithm to

compute the parity transformation and have provided numerous interpretations

of parity relations. Some of these interpretations are as follows:

1. For a deterministic system with no model uncertainty, the parity
relations lie in the unobservable subspace under normal system
conditions. That is, the range space of parity vectors is ortho-
gonal to the range space of the observability matrix.

2. The parity relations can be viewed as reduced order ARMA models
of individual outputs.

3. Parity relations can be interpreted as the prediction error
filters (PEFs) that arise in the spectral estimation literature.

4. Parity relations correspond to near perfect correlations among
measured outputs.

5. Parity relations are the directions of least energy.

6. Parity relations have minimum entropy (or the greatest certainty
or robustness).
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A-3. REDUNDANCY RELATIONS FOR ROBUST FAILURE DETECTION AND
ISOLATION

A-3.1 PROBLEM DESCRIPTION AND MOTIVATION

The methods of Section A-2 do not take any specific failure mode into

account but are aimed at selecting a set of robust parity relations that pro-

vide the smallest values for certain metrics under normal operating condi-

tions and model uncertainty. However, the presence of robust redundancy in

the sense of the previous discussion does not guarantee that all the failure

modes can be detected and distinguished. In addition, the information about

the presence or absence of a particular failure mode generally accumulates

over time. Failure decisions making use of a time sequence of parity rela-

tions and/or measured system outputs will have lower error probabilities than

"single-shot" decisions, if the proper use of failure information is made.

In this section, we develop statistical distance-based criteria for optimally

robust,parity generation for the detection and isolation of specific failures

and for the information collection phase of the FDI system.

The statistical distance based criteria serve four major roles in our

robust FDI formalism. First, if the failure modes are strongly observable (in

the sense of achieving a prescribed probability of error for a specified

detection delay) through the use of the robust parity relations generated in

Section. A-2, then the robust FDI criteria of this section specify the optimal

method of combining the parity relations over the detection window. That is,

information collection can be conceptualized as the generation of a single
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detection parity check (or "detection decision statistic") from the robust

parity relations of Section A-2. Second, if certain failure modes are not

strongly observable through the robust parity relations, then the robust FDI

criteria of this section can be used to generate detection parity checks

("detection decision statistics") from the system output. The parity checks

so generated are not optimally robust in the sense discussed in Section A-2,

but are sensitive to a particular failure mode. Third, if one or more failure

modes are not distinguishable through the robust parity relations and detec-

tion parity checks, the robust FDI measures can be used to generate isolation

parity checks ("isolation decision statistics") that are most sensitive to

distinguish the particular pair or pairs of failure modes. In this case, the

operation of an isolation parity check is triggered by the corresponding

detection parity checks. Finally, the statistical distance measure introduced

in this section provide bounds on the probability of error, and, hence, can be

used to evaluate the effectiveness of alternative FDI schemes in terms of

their ability to detect and isolate various failure modes. Thus, the measures

of this section provide a unified methodology to devise a "divide and conquer"

approach to the robust FDI design problem. In this section, we restrict our

attention to the second and fourth roles, viz., the generation of detection

parity checks from the window of system measurements, Yp, and the evaluation

of alternative FDI schemes. However, the theory is applicable for the other

two applications mutatis mutandis.

The specific problem we consider here is the choice of parity checks for

the robust detection of a particular failure mode. We assume that the system

model under normal operation is
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x(k) + DN£ w(k) (A-3-1)

y(k) - C x(k) + v(k) (A-3-2)

while the system model under failure is

x(k) + Dp£ w(k) + dp(k) (A-3-3)

x(k) + vp(k) + bp(k) (A-3-4)

where dp-(k) and bp(k) account for additive failure effects (e.g., biases,

drifts). In this case, we would like to find parity checks y(k) that result

in maximally dispersed statistics under failed and normal modes of system

operation.

Ideally, the optimum parity relations are those that minimize the proba-

bility of making erroneous decisions. However, in most situations an analytic

expression for the probability of error is difficult to derive, and, even if

it can be found, the expression is too complicated for optimization. There-

fore, it is useful to search for criteria that are easier to evaluate and

optimize and that are, in some sense, related to the probability of error.

Statistical distance measures such as the I-divergence, the J-divergence, and

the Bhattacharyya distance between two probability distributions under two

hypotheses (normal and a failure mode or two different failure modes) provide

such easily computable criteria. These distance measures have found wide

applicability in several areas of systems engineering, and most notably in

pattern recognition [17], [22], control systems [29]-[31], communications [32]

and information theory [33], [34], They also have a long history and utility

in statistics [35]-[39], In this section we propose criteria based on

A-60



J-divergence and the Bhattacharyya distance to generate parity relations to

achieve maximum discrimination among failure modes. Before, we solve the

parity generation problem, we provide a brief background on the distance

measures and some of their useful properties.

A-3.2 THE DIVERGENCE AND THE BHATTACHARYYA DISTANCE MEASURES

J-divergence is a measure of dissimilarity between two hypotheses or

probability distributions. To introduce the concept of J-divergence, consider

two hypotheses N (normal) and F (failed), and let y be a t vector of parity

relations. We denote by p( u/N) and p( u/F) be the two conditional probability

density functions of \i under normal and failed hypotheses respectively. Then,

the discriminating information for hypothesis F over hypothesis N is given by

the log likelihood ratio, LpNJ

p( U/F)
LFN = to - • (A-3-5)

p(

The average discriminating information for hypothesis F is defined by

P(U|F)
lFN(P,O = / P(u|F) to - dp (A-3-6)

^ P(U|N)

where we have shown the explicit dependence of the average discriminating

information on the order and the number of parity relations. The distance

measure Ip^ is often called the Kullback-Leibler (K-L) information measure or

the I-divergence. The discriminating information for hypothesis N versus

hypothesis F is given by the log likelihood ratio:

to - = - LFN (A- 3-7)
p(y/F)
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The average discriminating information for hypothesis N is given by the K-L

measure :
p( M/N)

iNF(P.t) " / P(y/N) to - dy . (A-3-8)
V P(U/F)

Note that IFF = INN = 0. However, in general, the I-divergence is not

symmetric, i.e.,

XFN * V ' (A-3-9)

The total average information for distinguishing hypothesis F from hypothesis

N is the J-divergence, first introduced into the statistical literature by

Jeffreys [40,41]. The J-divergence is defined as the difference in the

average values of the log likelihood ratio:

P(H/F)
JFN(P.O = / [P(H/F) - P(U/N)] *n - dy . (A-3-io)

v P( U/N)

It is easy to see from Eqs. A-3-6 and A-3-10 that

= IFN(P»O + iNF(P.t) . (A-3-11)

Thus, the J-divergence is a symmetrized form of I-divergence. The J-divergence

satisfies several useful properties.

1. JFN > 0 for F*N

2. JFF - JNN = o

3. JFN - JNF

4. JFN is additive for independent measurements, i.e., divergence based

on t independent measurements (e.g., components of p) is equal to the sum of

the t divergences based on each measurement separately.
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m
JFN(y1U2,...,Ut) = £ JFN^\^ * (A-3-12)

However, J-divergence does not satisfy the triangular inequality required of

a metric:

JFN + JNF' * JFF* in general . (A-3-13)

Finally, the Bhattacharyya distance, BFN, is defined as the negative log

of the Bhattacharyya coefficient, PFN»

0.5
PFN = I [p(p|F) P(y|N] dy (A-3-14)

v

-*n PFN • (A-3-15)

Since / p(u/N)dn = / p(y/F)dp = 1, Bhattacharyya coefficient may be regarded
V V

as the cosine of the angle between the two vectors p(p/F) and p(p/N) in the

space spanned by the parity vector y. Thus, PFN is a measure of correlation

between the distributions of jj under hypotheses F and N. Therefore, the

Bhattacharyya coefficient, PFN lies between 0 and 1, and the Bhattacharyya

distance, BFN is bounded by 0 < BFN < •• Note, in particular, that

PFF = PNN = 1 an<* %F = BNN = 0. As with the J-divergence, Bhattacharyya

distance need not satisfy the triangular inequality required of a metric.

Example 3.1

Evaluate I-divergence, J-divergence and the Bhattacharyya distance for a

Gaussian random vector u of dimension t characterized by the following two

distributional parameters under two hypotheses F and N.

Ep)» p(u/N) « N(ikj
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where we have assumed nonzero mean, UN f°r U under hypothesis N, for the sake

of generality. The logarithm of the likelihood ratio, denoted by Lp-jj, is

-1 A - T -1
LFN = - £n det (EjjEp )+-(U~U N) Z^^ (u - Ujj)

- - (M - Up) Zp" (u-Up). (A-3-16)

The I-divergence is I = / p(u/F)L_N du and has the form:

XFN = " 2 ̂ det ̂  ZN 1 + 2 "

(A-3-17b)

1 _i i
- £n det (ZF Z J + - tr
£. £.

* (A-3-17b)

The J-divergence is given by Jp^ = IFN + ^NF and has the explicit form:

JFN = ; tr t^F * ZN^ ̂N^ ZF^ + (EN1+ *? ̂  ̂ " ~^ &t ~ ~^^ (A-3-18a)

- tr [ZF ZN + ZN ZF + [Zp + Zjj (A-3-18b)

The Bhattacharyya distance, BFN can be determined, after some tedious

computations, as

-2
(A-3-19)
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Two special cases are of particular interest.

Case 1. Equal covariances under two hypotheses F and N: Ej- =

The I-divergence in this case is symmetric and is given by

1 _ — T-.1-.

(A-3-20)

The J-divergence is

- -J -1,-
JFN = LyF ~ V E l^F ~ V = 2 XFN • (A-3-21)

r- - 1 -1 (- - 1It may be noted that the term Ipp - it$)Z (vf - \ay) is the Mahalanobis

generalized distance. The Bhattacharyya distance in this case is

l _ — —i — — FN
BFN = a ̂ UF " "N^ ("F " W = "7" ' (A-3-22)

Case 2. Equal means under two hypotheses, UF=WJ« The I-divergence, the J-

divergence and the Bhattacharyya distance are given by

I to det ^ZF ̂ ) + i tr (EF ^N1) * \ (A-3-23)

(A-3-24)

(A.3,25)

-1
Note in particular that when II Ep EJJ -1^0 is small with respect to any suitable

norm, the I-divergence has a simpler form. In this case, note that
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XFN ' - I *n det

;*n det «** ̂  - V + xt) +;tr

Expanding the £n term up to second order, we have

1
 rr_ -1 T >|2-|

" ~ tr [[ZF IN - ItJ ] . (A-3-26)

Thus, IFN > 0 for all Ep * ZN-

A-3.2.1 Relationship Between Distance Measures and Probability of Error

The J-divergence and the Bhattacharyya distance measures are important in

their own right, but their value is enhanced by the fact that they provide

bounds on the probability error (misclassif ication) in statistical hypothesis

testing problems. In the binary hypothesis testing problem, let u^ = (y(l)

u(2) , . . . ,u(k) ) be the time-sequence of parity checks, each parity check y(i)

being a t dimensional vector. Let p( ŷ /F) and p( y^/N) be the probability

density functions of yk under hypotheses F and N, respectively; and 6p,

6[j(=l-6p) be the a priori probabilities (based on mean-time-between-failures

of components) that the system is failed and normal, respectively. Then, the

probability of error of the maximum a posteriori (MAP) decision rule is Pe(k)

and is given by

Pe(k) = / min (6F p(i*/F)f 6N p( yk/N) ) dyk (A-3-27)
yk
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The multi-dimensional integral in Eq. A-3-27 is extremely difficult to eval-

uate, even with numerical integration. For this reason, the J-divergence and

the Bhattacharyya distance are used in signal selection problems of commun-

ication theory and in feature selection problems of pattern recognition,

because they provide the following bounds on Pe(k) [32-34].*

0.5 - 0.5 (1 - 4 6N6F PpN(k))°*5 < Pe(k) < (S^p)0*5 PFN(k) (A-3-28)

0.5 min (6N6F) exp (-JFN<k)/8) < Pg(k) < (^}°'5 (jpN(k)/4 }~°'25

(A-3-29)

with upper bound in Eq. A-3-29 valid only for Gaussian statistics. In Eqs.

A-3-28 and A-3-29, PpN(k) is the Bhattacharyya coefficient and JpN(k) is the
k

J-divergence based on p :

P 00 - / (p( uk/F) -p( wk/N) ) * dpk (A-3-30)
FN pk.

. * /ir^
JFN - / (p(uk/F) - p(uk/N)) «n — dyk . (A-3-31)

v p(UK/N)

When the signal to noise ratio is high (i.e., as Pe-K)), it is stated in Ref.

[32] that

*n P (k) - £n p (k) = - B (k) as P 00+0 (A-3-32)
e r IN r ii e

where Bp[}(k) is the Bhattacharyya distance between the probability

distributions p(yk/F) and p(pk/N).

*Note that, in the subsection, we have suppressed the dependence of p, J and I
on the order of parity relations, p and the number of parity relations, t for
convenience of notation.
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A-3 .2.2 Asymptotic per Sample Distance Measures

As the number of samples of parity checks, k-n», the asymptotic per sample

I-divergence is

fFN = Jim C XFN(k) (A-3-33)
k->-°° k

where
k p(vk/F) k

IFN(k) - / p(y /F) £n - • dw . (A-3-34)
Wk p( yk/N)

It is shown in Ref . [33] that I is given by

l /2n (tr[%i^) v(u) " ztJ " to det ^UN(U)

(-MF(U)) -̂ (ui)) *~, (w) (Updo) --̂ (o)))} do) (A-3-35)

where * r-(u) an<i * M^W^ are c^e s?ectral density matrices of residuals under

the failed and normal hypotheses, respectively. In addition, UF(<*>) are the

discrete Fourier transforms of yp(k) and K,(k), respectively. The asymptotic

per sample J-divergence is evaluated as JpN = IpN + INF« Similarly, the

asymptotic per sample Bhattacharyya distance is given by

l / n ^

- (HU) - - ( a . ) ) [ ( t d o ) (A-3-36)

1 '~ do) --PL(U)))} doo
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Interestingly, Eqs. A-3-35 and A-3-36 are valid even if the deterministic mean

components yjj and yp are functions of frequency, u. This generality allows

us to consider a variety of bias, ramp and other periodic failure modes.

However, asymptotic measures are of limited utility in FDI, where one is

interested in the transient effects of failure modes.

A-3.2.3 Relation to Fisher Information Matrix (FIM);

In parameter estimation problems (i.e., a continuum of hypotheses), it

turns out that the I-and J-divergence measures, as well as the Bhattacharyya

coefficient, p (or equivalently, the Bhattacharyya distance, B) are related to

the Fisher information matrix (FIM). The use of FIM for optimal input design

for system identification, and for the design of insensitive feedback control

laws is well known [42],[43]. This relationship provides additional motiva-

tion for the use of divergence measures and the Bhattacharyya distance

measures for parity generation. To show this relationship, consider the

Bhattacharyya coefficient between p( yk/9) and P(yk/9+A9), denoted by p0,e+A9

is:

P = / (p(yk/9).p(yVe+A9)) ' dyk (A-3-37)
9.9+A9 yk

The Fisher information matrix, Fg, on the other hand, is given by

F6 = / (— &n p(y k /9 ) ) (-- to p( yk/9) ) p( yk/9) dyk (A-3-38a)

= / (— p(y k / 9 ) ) (— p(y k /9 ) ) p(y k /9) dyk (A-3-38b)
uk '89 89

To exhibit the relationship between Eqs. A-3-37 and A-3-38, we expand

p(yk|9+A9) to second order using Taylor series:
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T* 3 1 T Ji 2

p(yk/9+A6) = p(yk/6) + A9 • — p( yk/ 6) + - A9 — - p(yk/9) + o f l l A 9 H 3 ) (A-3-39)
36 2 362

32
where - p(yk/9) is the Hessian of p( yk/ 9) with respect to 9 and D. D is the

392

Euclidean norm. Using Eq. A-3-39, we can evaluate Pete+A9 to second order as

[ p ( P / 9 ) +
yk

P9.9+A9 = / [p(Pk/9) + - A9 — p( yk/ 9) + A9 — p(y k /9 )A9
2 39 39

1 T /i'O ^ T ""1

- - A9 (— p(y k /9) l (— p(y k /9) (p( uk/ 9) ) A9J dpk (A-3-40)
8 39 39

Note that / p(yk/9)dpk = 1, and also the second and third terms integrate to
Uk

zero, and Eq. A-3-40 reduces to
1 T

P9.9+A9 =1 A9 Fe A9 (A-3-41)
8

Thus, in a local sense, we have the following: small Bhattacharyya

coefficient, p implies larger Bhattacharyya distance, which in turn, implies

larger information content in yk to distinguish (or identify) 9.

Similarly, one can show that the I-divergence, for small parameter

variations, is given by
1 T

I9.9+A9 = ~ A9 F9 A6 (A-3-42)

and the J-divergence is given by

T
J9,9+A9= A9 F6 A9 (A-3-43)

The relations (Eqs. A-3-41 - A-3-43) imply that 1-p, I and J satisfy metric

properties of topology locally (but not globally). They also imply that if

the two hypotheses F and N differ by a small amount, the Fisher information

matrix provides a convenient measure of distinguishability.
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A-3.2.4 Distinguishability of Hypotheses (Failure Modes)

In the zero mean case, i.e, UF(<D) = PN( w) =0, in Eq. A-3-36, it is shown

in Ref. [34] that the Bhattacharyya coefficient ppfj(k)-K) (and, consequently,

the probability of error, Pe(k)+0) as long as the asymptotic per sample

Bhattacharyya distance "Bpjj of Eq. A-3-36 is nonzero. A necessary and suf-

ficient condition for Bp^ = 0 is that the eigenvalues AI, i = 1,2 ..... t of the

generalized eigenvalue equation:

V(u>) gi = Xi *uN(u)) gi ; i=l>2>'">t (A-3-44)

satisfy

AI(UJ) = 1 almost everywhere on u e [0,2ir] . (A-3-45)

Equation A-3-44 provides a simple check on the "discriminability" (or distin-

guishability) of two hypotheses for a given residual generation mechanism.
c-

Looked another way, it also tells us that as long as the Bhattacharyya dis-

tance, Bpfl is nonnero, one can devise parity relations that achieve discrim-

ination between two hypotheses. However, this analysis does not address the

4-ssue of speed of such discrimination, which is discussed next.

A-3.2.5 Speed of Discrimination

It is also shown in Ref. [34] that, for stationary dynamic models, the

Bhattacharyya coefficient ppu(k) (and hence Pe(K) ) tends to zero exponentially

with the number of observations, k, and that the rate of covergence is

governed by the asymptotic per sample Bhattacharyya distance, Bpfj, as

exp |-o(k) - k¥FN} < PFN(k) < exp (<x(k) - k ¥FN} (A-3-46)
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where a(k) is any function that satisfies lira k~l o(k) -»• 0 and Bpjj was defined
k-»-<»

earlier in Eq. A-3-36. Since ppjj(k) provides an upper bound on the probabil-

ity of error (see Eq. A-3-38), we can compute a lower bound on the detection

delay, k<j. For a desired probability of error, Pedes

kd > * £n

In addition, Eq. A-3-46 says that a parity generation mechanism that has lar-

ger asymptotic per sample Bhattacharyya distance Bp-fj is likely to be an

exponen- tially faster discriminator of failed and normal modes than one with

a smaller distance. Second, when a decision statistic is being designed, the

bounds in Eqs. A-3-28 and A-3-29 provide a means to select the required data

collection window for a given probability of error. Specifically, if we view

the data collection process as part of the parity check generation process,

i.e., we are generating parity checks of relatively high-order p, then p

should chosen so that

PFN(P.t) - (VF)~°*
5 • Pedes (A-3-48)

where we have shown the explicit dependence of the Bhattacharyya coefficient,

p on the order and number of parity relations p and t.

A-3.2.6 Divergence and the Bhattacharyya Distance in Uncertain Models

When the model parameters are uncertain as in Eqs. A-3-1 through A-3-4,

we define the I-divergence, lFN(P>t), as the average discriminating infor-

mation for failure hypothesis F with respect to hypothesis N over all possible

models, £ = 1,2,«««,L. That is,

A L

IFN(p,t) = £ P£E£ {!FN(p,t)/£} (A-3-49)
)6= J.
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where iFN/fcCP^) is tne I-divergence between hypotheses F and N conditioned on

model £. Letting Ep^ and EN^ be the steady-state covariances of u(k) under

hypotheses F and N, under model i, and yp^ and ^£ be the corresponding means,

we can compute IpN/fcCP^) from Eq. A-3-17 as:

0 =- t o d e t E + t r

(A-3-50)

Similarly, the J-divergence is given by

L

(A-3-51)

where JpN/fcCP*1) is obtained from Eq. A-3-18 as

(A-3-52)

In a similar vein, the Bhattacharyya coefficient PFN(P»O is given by

L
PFN(P,t) = E P£ PFN/£(P,t) (A-3-53)

where PpN/A(P,t) is given by [22]

det
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A closed form expression for BpN(p,t) = - An pFN(P»t) is not possible, since

ppjj(p,t) in Eq. A-3-53 is a sum of exponential terms. However, since - £n x

is a convex function of x, we can use Jensen's inequality [22] to obtain an

upper bound on Bpjj(p.t):
Li

BFN(p,t) < E P£ BFN/£(p,t) (A-3-55)
Jt~ A

where BpN/£(p,t) is obtained from Eq. A-3-19 as

with the following identifications*

"F» " "»« (A-3-56)

If we make the Gaussian sum approximation in Eqs. A-3-49 - A-3-56, then

the I-divergence lFN(P»t)> tne J-divergence JFN(P»t) and the Bhattacharyya

distance BpuCp.t) (approximately) reduce to Eqs. A-3-17 -A-3-19, respectively,

L

I Po LF2. (A-3-57a)
A=l * * *

EN = P£ EN£ (A-3-57b)

L

Jl P£ ̂ £ (A-3-57c)

L

^ P£ ̂ N£ (A-3-57d)
£=1

*The approximation stems from the neglect of mean related term in the
covariance of the Gaussian sum approximation, i.e., Eqs. A-3-57a and A-3-57b.
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A-3.2.7 Extension to Multiple Hypotheses

If there are more than two hypotheses H e H (e.g., HQ = N, HI = F, H

F* etc.), then it appears that the following average J-divergence and the

Bhattacharyya coefficients are suitable measures :

J(p,t) "I I fy 6H, JHH.CP.O (A-3-58)
HeH H1 eH

p(p,t) "I I 6H 6H« pHH'(p.t) . (A-3-59)
HeH H'eH

In the multiple hypothesis case, it is known that the total error probability

Petot and the pair-wise error between hypotheses H and H
1 , denoted by PeHH1 »

given by Eq. A-3-27 are related by the inequality [44]

petot < ~ I I peHH' • (A-3-60)
2 HeH H' eH

Since the Bhattacharyya coefficient PHH' provides an upper bound on the

probability of error (see Eq. A-3-28), we have

petot < ~ I I «H «H« PHH' - (A-3-61)
2 HeH H1 eH

1
In addition, since 611611' < ~ , we have

2

petot < 7 I I PHH' • (A-3-62)
4 HeH H' eH

The average measures have limited practical utility in our decentralized FDI

approach. We use pairwise measures to generate the multilevel parity

generation scheme discussed in Section A-l and subsection A-3.1.
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A-3.3 PARITY GENERATION TO MAXIMIZE THE DIVERGENCE MEASURES AND BHATTACHARYYA
DISTANCE

In this subsection, we use the divergence and the Bhattacharyya distance

based measures to generate parity relations for the system described by

Eqs. A-3-1 through A-3-4 to detect a failure. The key idea here is to gener_

ate the parity transformation matrix G that maximizes separation between

normal and failure modes of system operation, i.e., to find parity checks that'

are representative of the dissimilarities between normal and failure modes.

Using the Gaussian sum approximation embodied in Eq. A-2-60; letting C

and Cp denote the average ACF counterparts of Eq. A-2-60, and Y p denote the

mean of Y under failure hypothesis (note that Y N= 0 by assumption), we

have

EF = G 5F G (A-3-63a)

ZN = G GF G (A-3-63b)

G Y
PF (A-3-63C)

^J = pN = ° (A-3-63d)

Assuming, without loss of generality, that the failure occurred at k-p, Y „ is

given by

V = rp
 d
pF
(k) + V(k) (A-

where T can be evaluated directly from the system matrices {C ,A } and prior

probabilities, P as:
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I p

£=1
(A-3-65a)

0

CF£

CF£AF£
•

CF£AF£

o ... o

o ... o

C F £ ° - °
•

• • • Cp o 0

(A-3-65b)

dTF(k) = [d(k-p) d(k-p+l) ... d(k)] a (p+l)n vector

bTp(k) = [b(k-p) b(k-p+l) b(k) ] a (p+l)m vector .

We can explicitly evaluate the divergence measures and the Bhattacharyya

distance (Eqs. A-3-17 and A-3-19) in terms of G, CN> Cp and Y p as:

1 _T
- Y
2 PF V " 2

fGT£

i
- tr
2

(A-3-66)

JFN(p,t)

tr (A-3-67)
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1 T~ r°*5r T~ i°*5
2
 n e LI N > ^ F J

/ T~ ^°»5/- T~ .0.5
(G\G) (Ĝ G) 12}

[GT(CN + Cp) G/zf
1 GTYpF (A_3_68)

The general optimization approach for all distance measures involves a

gradient-type scheme. However, in two special cases, which are of consider-

able interest in the FDI problem, the optimization provides explicit solu-

tions. The general problem can also be solved suboptimally. We will discuss

these next.

A-3.3.1 Detection of Bias Failures of Known Magnitude

In this case ^ = Ay , DN- = DFJI for all £ . This implies that the

average ACFs CF = C = C , and the distance measures (Eqs. A-3-66 - A-3-68)

are scaled versions of the Mahalanobis distance [17]:

i VT

The optimal parity relation to maximize the criterion in Eq. A-3-69 is given

by the following theorem.

*The approximation CF=CN comes from neglecting the mean related term in the
covariance of the Gaussian sum approximation.
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Theorem 3.1; There exists a single best parity relation (i.e., t=l) that

maximizes Eq. A-3-69 and is given by

= gl Yp(k) = *PF V̂10 ' (A-3-70)

The parity transformation G* is

„-!
= = pp

* „-! _
G = g = C Yp (A-3-71)

and the optimal distance measure is

W"'0 - { -OP'*' = 4 VP'0 - { ?JF ̂  V ' (A-3-72)

Proof ; The I-divergence measure lFN(p>t) in £q. A-3-69 can be written as a

trace functional

W1*'0 = ~ " ̂ °T e G)"1 ^ V ^pF GJ * (A-3-79)

The optimal G* satisfies the gradient relationship:

— -T * ., *T -. * ,.—1
0 ' Vra - V V G (G c G 3 l

^ * , *T ̂  *.-i *T _ _T * , *T ̂  * _i
- C G (G C G ) G YpF YpF G (G C G ) = 0 . (A-3-74)

^-1 *T ̂  *
Pre-multiplying and post-multiplying Eq. A-3-74 by C and G C G , we have

the simplified relationship:

^-1 - -T * * , *T ~ * .-i *T _ _x *
C YpF V G " G (G ° G ] G YPF YPF G ' <A'
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, *T ̂  *._i *T _ _T *
It is well known [22] the the product (G C G J G Y p Y p G can be

diagonalized by an orthonormal matrix ¥ such that

, *T ~ *.-i *T _ _T *
(G C G ) G Ypp Ypp G f = f At . (A-3-76)

Using Eq. A-3-76 in Eq. A-3-75, we have

6~X YpF Y?F G* * = G* * At . (A-3-77)

*
Since a t by t orthonormal matrix does not change IFN, we can include Y in G .

Since Eq. A-3-77 is an eigenvalue equation, we conclude that the optimum parity

*
transformation G is achieved by selecting the t eigenvectors corresponding to

the largest eigenvalues of C Y p Y p . However, the rank of C Y p Y p is

one, therefore, we obtain a single best parity relation (i.e., t=l). Indeed,

the largest eigenvalue is

-T „-! -

Vax = YpF C YpF • (A-3-78)

Equation A-3-78 is obtained by noting the fact that rank of C Y p Y is one

(i.e., it has a single non-zero eigenvalue), and that the trace of a matrix is

the sum of its eigenvalues:

tr (C^ YPF
 5JF) -

 YJ>F ̂  Y
PF • (A-3-79)

Using Eq. A-3-78 in the eigenvalue equation

5 YpF Y^F gl = Y^F e YpF gl ' (A-3-80)
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Clearly, the optimal gi is given by Eq. A-3-71. The optimal distance measure

in Eq. A-3-72 is obtained by substituting Eq. A-3-71 in Eq. A-3-69.

The parity relation ŷ (k) can be thought of as an approximate whitener

followed by a correlator, as shown in Fig. A-3-1. The approximation stems from

the Gaussian sum approximation in Eq. A-3-60. The parity relation (Eq. A-3-70)

is precisely the decision statistic obtained when we consider the problem of

detecting known signals with (p+1) observations in a zero-mean colored noise

**. —with autocovariance function C and signal mean Y F • To show this relation-

ship, consider an observation model:

z(r) = sq(r) + n(r) ; q = 1,2,0 < r < p (A-3-81)

where n(r) is a zero mean Gaussian noise process. The autocorrelation func-

tion of (n(0)"-n(p)) is 5. We let

s^r) = 0 (A-3-82)

s2(r) = yF (k-p+r) (A-3-83)

where y (k-p+r) is the average output over all models £=1,2,••«,!. under fail-

ure hypothesis. Then, the optimum likelihood test is to decide s. if and only

if:

Zp > " + I (Spl e"X Spl - Sp2 e"1-SP2^ (A-3-84)

where n is the threshold that is a function of prior probabilities, and costs

associated with false alarms and missed detections. Spj, Sp2 and Zp are

extended observations of length p, defined by
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y(k) A(z) =
Z-P+1

c 2

i

"WHITENED" s*
' fr~{

Yp(k) V-

Figure A-3-1. Whitener-Correlator Interpretation of Detection Parity
Relation

T A
Spl ~

[z(0)

[0

(p)j

o]

=

(A-3-85a)

(A-3-85b)

(A-3-85c)

The left hand side of Eq. A-3-84 is precisely the information collection

phase that we alluded to in Section 1. Thus wi(k) obtained from the diver-

gence and the Bhattacharyya distance based measures is already accomplishing

the parity generation and information collection phases of the FDI process.

A-3.3.2 Detection of Noise Variance Changes and Scale Factor Failures

This case corresponds to the situation where the noise processes have

different covariances under all failure modes and uncertain models, but the

additive disturbances, dp(k), and the bias term, bp(k), are zero. As a re-

sult, Y (k) = 0 and (L * C . With this simplificationj maximization of the

J-divergence and the Bhattacharyya distance yield identical optimal parity
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transformations G, while the transformation that maximizes the I-divergence is

different. The optimal G is given by the following theorem.

Theorem 3.2: The J-divergence and the Bhattacharyya distance are maximized if

the columns of G are chosen to be the t eigenvectors of C Cp corresponding to

the eigenvalues A for which

-1 -1
V"Xr q+Xq > q-l,2,-«-, (p+l)m ; r=l,2,.»«,t (A-3-86)

while the I-divergence is maximized if the columns of G are chosen to be the t

normalized eigenvectors associated with the t largest eigenvalues of C C .
N F

The optimal distance measures for the selected parity relations are:

* i t r -1 ^
JFN(p,t) " ~ £ lXr

+Xr ~2) (A-3-87a)
2 r=l

* l c ,0.5 -0.5
B (P,t) = - Z to (X + X 12 (A-3-87b)

2 r=l

* t

I" (p.t) = - I (A - to A - 1) . (A-3-87c)
2 r=l r

Proof: We will consider each measure, in turn.

a. Maximization of J-Divergence

The gradient expression for the J-divergence of Eq. A-3-67 when Y =0 is

given by

- Cp G (G
T CF G}~

1 (GT CN G) (G
T ep G)'

1

+ Cp G (G
T CN G)'

1 + CN G (G
T Cp G)"

1 . (A-3-88)
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Pre-multlplying Eq. A-3-88 by C , post-multiplying by (G CN G), and setting

the gradient to zero, the optimum G* satisfies the relationship

*̂ ""i /^ *c w ., w 1 /«w ft x^l f ft A ^ » .
CN Cp G - G (G CN G ) (G CF G ) . (A-3-89)

*T ^ *-.-! *T ~ *..
As before, (G C G J [G C G J can be diagonalized via an orthonormal

transformation ty as:

, *T ̂  *s-l , *T ~ *.
(G CN G ) (G Cp G ) ? = * At . (A-3-90)

Using Eq. A-3-90 in Eq. A-3-89, we have the eigenvalue relationship:

,v-l * *
CN

 C
F G * - G If At .

Since any orthonormal transformation does not change the J-divergence , we can

include V into G*. Therefore, optimum G* should consist of the eigenvectors

of C~ C . Also, note that the eigenvalues of (G C G )~ (G C G ) in

„-! ̂
the t-dimensional subspace are the same as the t eigenvalues of CN C in the

original subspace. Then J (p,t) becomes

JFN(p,t) = - I (Xr + X~
l - 2) .

*• =

Therefore, in order to maximize J (p,t), we choose G to be the t normalized

eigenvectors of C C corresponding to the eigenvalues X for which
IN r r
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b. Maximization of Bhattacharyya Distance

The gradient expression for the Bhattacharyya distance of Eq. A-3-68, when

Y =0 (to within a scale factor), is given by

T ~ s°»5, T - ,-0.5 x ~ v-°'5, T ~ ^«5i
N G) (GT CF G) - (GT CN G) (G

T Cf G) ] .

(A-3-91)
Optimal G* satisfies either

~-l ~ * * , *T »> * .-i , *T ~ *.
CN CF G = G (G CN G ) (G CF G ) (A-3-92)

or
"ft A f*.

(CN - CF) G =0 . (A-3-93)

* *
The term G of Eq. A-3-93 cannot be optimum, because this makes G =0 and B™=0

(unless C =C , in which case it is indeterminate and a meaningless problem).

*
Since Eq. A-3-92 is the same as Eq. A-3-89, G should consist of normalized

eigenvectors of CN C . In terms of eigenvalues of C\, C , the Bhattacharyya

distance is given by

i t .0.5 -0.5
B™(p,t) = - Z £n X +X /2 I .
FN 2 r=1

 L r r J

Since in. x is a monotonic function of x, BpN(p,t) is maximized if we select G

to be the t eigenvectors of C C corresponding to the eigenvalues X for

which

0.5 -0.5 0.5 -0.5
X + X > X + X ; q=l,2, •••,(p+l)m ; r=l,2,«««,t
r r q q

_i 0. 5 _0. 5 2
Noting that Xf + Xr = (x + X ) -2, we immediately see that the Bhattacharyya

distance and the J-divergence yield identical parity transformations.
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c. Maximization of I-Divergence

The gradient expression for the I-divergence of Eq. A-3-66 when Y „ = 0 is

given by:

, ,"+ ** s* \ ^ f+ f\ (x* ̂  ** f* \ A (' *\ ̂  f*

'N
•- /• ^ r >
C G (G S G) CF G (G CF G) G CN

(GT C Gf1 + C G (GT CF G)"
1

- CN G (G
T CN G]"

1(G£ CF G)(G
T CN G}'

1 . (A-3-94)

At the optimum G*, we have

«.—1 «. * * *T «. * i *T />. *
CN Cp G * G (G CN G ) (G Cp G ) . (A-3-95)

Using the same argument as before G is chosen from the eigenvectors of CN C .

The value of the I-divergence in terms of the eigenvalues of CN C is given by

t

r=l

Since X > in X for all X > 0, !„„(?,t) is maximized by selecting G to ber r r rN

the t normalized eigenvectors of C\, C corresponding to the t largest

eigenvalues.

RELATIONSHIP WITH OTHER MEASURES

For the scale-factor failures, a variety of criteria similar to the

I-divergence have been used in the literature. We will discuss four such cri-

teria here. First in [13] a robust redundancy metric is used for detection,

J}, that involves maximization of the difference in the covariance of parity

relations under failed and normal hypotheses:
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J^p.t) = tr [G (Cp-y G] (A-3-96a)

subject to
T
G G = Ifc . (A-3-96b)

Thus, if we interpret tr(G C G) as a measure of "failure signature" strength

under failed hypothesis and tr(G CNG) as a measure of noise strength, the

criterion in [13] corresponds to maximizing the difference in energies between

the failed and normal modes of system operation. In this case, the optimal

parity transformation G is given by the t eigenvectors of (C -CN) corre-

sponding to the largest t eigenvalues of (C -C ) .

A second criterion is related to maximizing the difference in entropy of

parity relations under failed and normal system operation:

i .~-l~ .
J2 = HF(p,t) - lyp.t) - - to det (CN CF) . (A-3-97)

This criterion has precisely the same optimal parity transformation G* as that

obtained by maximizing the I-divergence. This criterion is used extensively,

albeit in an ad hoc manner, in feature selection problems [22].

A third criterion is related to maximizing the signal strength subject to

a constraint on the noise strength in the parity relations. The objective

function is to maximize

J3 = tr (G
TCpG) (A-3-98a)

subject to

tr (GTCNG) = i . (A-3-98b)
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Here, tr(G C G) is a measure of the detection capability of the parity rela-

tions and tr(G C G) is a measure of the false alarm probability. It can be

shown that the optimal parity transformation G is the same (except for a scale

factor) as that obtained by maximizing the I-divergence.

Finally, continuing on our signal strength and noise strength interpreta-

tion of tr(G CpG) and tr(G CNG), respectively, a natural criterion is to

choose G to maximize the signal to noise ratio:

tr IG C G J

J4 = . (A-3-99)

tr (GTCNG)

This is a very difficult measure to optimize. However, it is stated in [22]

that the eigenvector solution obtained for the I-divergence criterion provides

near-optimal solutions for this problem as well.

A FREQUENCY DOMAIN ALGORITHM

As is the case with the robust parity checks of Section A-2, the AR fil-

ter interpretation of parity relations and the asymptotic per sample distance

measures of Eqs. A-3-35 and A-3-36 can be used to devise a frequency domain

algorithm for the parity generation, whenever the normal and failure modes

result in stationary models. We illustrate the frequency domain algorithm for

the I-divergence measure. Similar algorithms are obtained for the J-diver-

gence and the Bhattacharyya distance measures.

The asymptotic per sample I-divergence in the equal mean case, i.e., when

Y ^(k) = Y M(k) = 0, is obtained from Eq. A-3-35 as
pF pN
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. 2ir _ * 1 T *
IpN = (4ir) • / {tr[G (ju>) *yNU) G (ju>)) (G (jo>) *yF(u>) G (Ju))]

- in det [(G(joj) *yN(u) G*(j ui) )~
X (GT(j 01) *yp( u) G*(JUJ))]} (A-3-100)

An approximate algorithm for obtaining a p-th order parity relation is as

follows:

a. Divide the interval [0,2n] into p equal intervals and let

2*
= r — ; r = 0,l,2,«««,p

P

b. As in Section A-2, evaluate *yn( w) and $yp( to) at 1% and the t

orthogonal eigenvectors, gir, 1 < i < t of dimension m corresponding to the
-1

t largest eigenvalues of $yN(<%) $yF(a)r)*

Gr = [glr'g2r'"*'gtr] an m bv t matrix. (A-3-101)

c. Normalize each column of g r̂ so that

where g^r is the i-th column of Gr. The resulting normalized g£r vectors pro-

vide the (p+l)m by t parity transformation matrix G.

As in Section A-2, the result can be expanded to any order p with a

linear growth in computation time.
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A-3.3.3 General Failure Modes

The general case where a failure manifests as a bias and scale factor

change requires a gradient scheme for optimization. However, suboptimum

procedures can be generated following the approach proposed for feature

selection problems [22].

MAXIMIZATION OF J-DIVERGENCE

In the general case, when means and covariances are unequal, we could use

the following suboptimum procedure to maximize the J-divergence (Eq. A-3-67).

a. Form the eigenvectors of C C . Let F be the set of eigenvectors

and d = F Y F . Let q-th component of d be d . It is well known that F

can be selected such that it simultaneously diagonalizes £„ and C_ [22] as
N F

F CN F
T = I F CF F

T = A . (A-3-102)

b. Choose the columns of parity transformation G to be those t columns

of F for which

(l + jf1) d2 + X + A"1 > fl + X"1) d2 + X + X"1 for allv r ' r r r x 11 q q

q = l,2,"',(p+l)m , r=l,2,--»,t . (A-3-103)

The divergence for t selected parity relations becomes

v t, -1^ 2 -1j_.,(p,t) = ) i l l + X I d + X + X ~ 2 f TA-^—ini">fj^ * ' L . I V . •£ J Y j* |. J. \n j 1UH^

This approximation works well when the divergence term related to the mean can

be expressed by a small number of t eigenvectors chosen according to Eq.

A-3-104. Alternatively, when the mean related term is dominant, we can select
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the first parity relation according to Eq. 3-70 with C = [6 + C~ ]/2, and the

„-! ~
remaining (t-1) parity relations from the eigenvectors of C C corresponding

to the eigenvalues satisfying Eq. A-3-86. However, we lose the orthogonal

property of the columns of G.

MAXIMIZATION OF THE BHATTACHARYYA DISTANCE

In the general case, when means and covarances of Yp are unqual under the

two hypotheses, a suboptimum procedure for choosing parity relations to

maximize the Bhattacharyya distance (Eq. A-3-68) is as follows:

a. Form the eigenvector matrix F of C C such that

F CN F
T = I ; F Cp F

T = A

Let

b. The columns of G are selected to be the columns of F for which

1 -12 ,0.5 -0.5, i . ._i , 0.5 -0.5
- (l+Xr) V + *n (Xr + Xr ) > - (l+Xq) *dq + £n (Xq + Xq )

for all q = 1,2, « • .,(p+l)m ; r = l,2,-»»,t . (A-3-105)

The Bhattacharyya distance for the t selected parity relations becomes

WP'0 = ; I ^l+^f1 dr + to (C^ Xr°'5/2) ' (A-3-106)
' r=l i

As with the divergence, this approximation works well when the term related to

the mean can be expressed by a small number of t-eigenvectors chosen according

to Eq. A-3-105. When the mean vector is dominant, we select the first parity
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relation according to Eq. 3-70 with C = [CN + £p]/2, and the remaining (t-1)

~-l ~
parity relations as the eigenvectors of C Cp corresponding to the eigenvalues

satisfying Eq. A-3-86. However, the columns of G are not orthogonal in the

latter case.

MAXIMIZATION OF THE I-DIVERGENCE

In the general case, the maximization of the I-divergence in Eq. A-3-66

follows the procedure outlined below.

a. Form the eigenvector matrix such that

F CN F
T = I ; F Cp F

T = A

Let
d = F Y

PF '

b. Choose the columns of G as those columns of F for which

d^ + \r - £n \r > d
2 + X - in X for all

q = 1,2,. ...(p+Dm ; r = l,2,.",t . (A-3-107)

The I-divergence for the t selected parity relations is

l t
XFN(p>t) = ~2 I K

 + X
r
 + to Xr ~ ̂  ' (A-3-108)

As with the divergence and Bhattacharyya distance this approximation works

well when the term related to the mean can be expressed by a small number of

eigenvectors chosen according to Eq. A-3-107. Alternatively, when the mean

related term is dominant, we select the first parity relation according to

Eq. A- 3-70 with C = [6 + C ]/2 and the remaining (t-1) parity relations as

~-U
the eigenvectors of CN C corresponding to the largest (t-1) eigenvalues.

However, the columns of G are not orthogonal in the latter case.
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It should be noted that the single failure results presented in this section

are also applicable to multiple failure modes, if we treat all the failure

modes besides the one we wish to isolate as uncertain normal-mode behavior.

A-3.4 EVALUATION OF ALTERNATIVE FDI SCHEMES

As discussed in Section A-l, a measure of effectiveness of an FDI is its

ability to focus information among its residuals. That is, the effectiveness

of an FDI system is related to its ability to "collect" relevant failure in-

formation quickly and accurately. Our information distance measures based on

the I-divergence, the J-divergence, and the Bhattacharyya distance provide

convenient tools to evaluate the effectiveness of alternative FDI schemes.

In this section, we evaluate two different FDI schemes: one based on Kalman

filter (KF) generated residuals and the other based on the parity space

approach.

Consider a Kalman filter based on nominal system parameters (A0, CQ, DQ,

Q0» RQ)» Let the innovation representation of the system be given by

x(k+l) = Aokx(k) + Kf(k) v(k) (A-3-109)

A

v(k) = -CQx(k) + y(k) (A-3-110)

where

Kf(k) = A0Z0(k|k-l) cj (C0Z0(k|k-l) cj + Rj"
1 (A-3-111)
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E0(k+l|k)

Kf(k) RQ K

50k = ̂  " Kf(k) C0 (A-

v(k) = Filter residuals (A-3-114)

A

x(k) = Predicted state estimate . (A-3-115)

Suppose, we have an innovation sequence from the Kalman filter:

, v(2), ..-, v(N)] (A-

where we have assumed, without loss of generality, that the sequence starts at

time step k=l. Consider a similar sequence of parity relations generated from

the parity space approach:

UN = [y(D, U(2), •••, u(N)J . (A-3-117)

Let the corresponding decision statistics (e.g., weighted sum-squared resi-

duals, whitener-correlator , etc.) for detecting a failure F be Sf(v̂ ) and

Sp(wN)» respectively. Then, the J-divergence and/or the Bhattacharyya distance

of Sf(vN) between failed and unf ailed modes of system operation, and similar

distances for Sp(v̂ ) provide measures for evaluating the two FDI schemes, in

terms of their ability to distinguish the two hypotheses. We will illustrate

the evaluation procedure for the whitener-correlator and the weighted sum-

squared residual decision statistics. The evaluation procedure can be

extended to multiple hypotheses in a straightforward manner.
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A-3.4.1 Evaluation of Whitener-Correlator Decision Statistic

Assume that the Raiman filter based and the parity space based residuals

be accumulated over time via a linear algorithm:

N ? T
Sf (v ) = I tC(k) v(k) (A-3-118a)
£ k=l r

N
(P ) - I WXk) y(k) (A-3-118b)

p k=l p

where Wf(k) and Wp(k) are selected to minimize some detection criterion. The

problem is to evaluate the average distance measures over all uncertain models

SL = 1,2,«»«,L between the conditional distributions p(Sf/F) and p(Sf/N) for

the Kalman filter based FDI scheme and p(Sp/F) and p(Sp/N) for the parity

space based FDI scheme. These measures are given by

where the superscript i (=f,p) denotes that the evaluation is being made for

filter based or parity based FDI schemes, respectively. The conditional dis

tance measures based on model I is:
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; 1=f »P (A-3-122)

(i) _ 1
JFN/Jl ~ 2 L~2 2 ~

°Fi£ aNi£

2 1 1
(~2~ + -2~"̂  5 1=f'P (A-3-123)
°Ni£ °FiJl

-
FN/£ 2 2 2

°NiJl

; 1=f'P (A-3-124)

2 2
where a . and a . are the variances of the decision statistic under failed

JNX JC

and normal hypotheses, respectively for the filter based or parity based FDI

scheme under model i. Similarly, SF- , and SN- . are the corresponding mean

values.

EVALUATION OF MEAN AND VARIANCE OF DECISION STATISTICS

The mean values of the decision statistics are given by

T -
I Wf(k> vF£(k) (A-3-125)

k=l
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where

{v(k)/F} . (A-3-126)

The mean v_.(k) can be evaluated from the 2n-dimensional augmented system of

equations (see Eqs. A-3-3, A-3-4, A-3-109).

~x(k+l)
A

x(k+l)
=

A 0"

Vk)CFZ A0k

x(k)
A

x(k)
+

"D

0
w(k) +

j."

0
dF(k)

F

Kf(k)
[v (k) + b (k) ] (A-3-127)

x(k)
.
x(k)

vp (k) + bp(k) (A-3-128)

Denoting x (k) = (x(k) x(k)), Eqs. A-3-127 and A-3-128 can be rewritten as
Si

xa(k+l) xa(k) + Da£ w(k) + Ba£ dF(k)

(A-3-129)

VF£(k) ' Ca£ Xa(k) (A-3-130)
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where A . , D 0 , B , K 0 and C 0 have obvious definitions from Eqs. A-3-127£1 X 3Jt 3-X- elJt S JC

and A-3-128. Mean ~̂ F»(k) and its covariance fip«(k) can be evaluated from Eqs.

A-3-129 and A-3-130 as

*a(k) + bF(k) (A-3-131a)

°F£(k) = Ca* Wk) C* + RF£ (A-3-131b)

where

x(k+l) = A(k) xa(k) + Ba dp(k) + Ka(k) bF(k) (A-3-132a)

AL(k) + DaA ̂  °L (A-3-132b)

Similarly, one can compute vNp(k) and ̂ n(k) for the normal mode. The

2
variance of the decision statistic O^. is computed from

wf(k)

N N _' T -T

(A-3-133a)

= I I Wj(k) [Et{v(k) v
1(j)/F} - vF̂ (k) vp£(j)]Wf(j) .

(A-3-133b)
2

When v(k) sequence is uncorrelated, avf. takes a simple form:

2 V UT,V, 0 , ,- l W£U; "p^Ck) Wf(k) . (A-3-134)
k=l
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However, v(k) is correlated in uncertain systems and, therefore, we must eval-

uate the cross-correlation terms of the form E£ (v(k) vT(j)/F). The computa-

tion of the cross-correlation term proceeds as follows. From Eqs. A-3-129 and

A-3-130, we have

where

(v(k) vT(j)/F}

Ca£Za(k)

•at(k,J)

a£

(A-3-135)

> k

Similar expressions can be obtained for the normal mode of operation by re-
_ 2

placing subscripts F£ by N£ in Eqs. A-3-131 through A-3-135. Once (SFf£, opf )

and , CW-) are obtained, it is a simple matter to compute the distance
-

measures in Eqs. A-3-119 through A-3-124. It is straightforward to evaluate

- 2
§„ and o^, for the parity space based decision statistic in Eq. A-3-118bFp£ Fp£ r * r -i

The result is

(A-3-136)

Fp£

j ^ (A-3-137)

Although a little tedius, the mean term Y F«(k) and the correlation term can

be computed from Eqs. A-3-3 and A-3-4 in a straightforward manner. Similar

expressions hold for the normal mode of system operation.
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A-3.4.2 Evaluation of Weighted Sum-Squared Residual (WSSR) Decision
Statistic

The WSSR statistic for the two approaches is given by

M N T 1
Sf(v ) = I v(k) Wf

X(k) v(k) (A-3-138)
k=l

N N T -1
S (y ) = I U (k) W (k) y(k) . (A-3-139)
F k=l v

For a given failure mode F and model £, the statistics in Eqs. A-3-138 and A-

3-139 have non-central chi-squared distribution. However, for the number of

samples N > 15, the statistics in Eqs A-3-138 and A-3-139 are approximately

Gaussian. The computation of mean values is relatively easy:

N r -1 - - T
SFf* = E tr LWf (k) ("FfJ (k ) + VFf? ( k ) V Ff / k ) ) J (A-3-140)L ± A* * ~ ±. C ± Ht L ±. Xf 1, ± A*

k=l

N -1 T T
• I tr K <k) G Eo lY

D(k> Y (k)/F}G] (A-3-141a)
k_ 1 * "* r *

""" A

N T
I tr [Wp

x(k) G1 (Cp(k) +Ypp(k) YpF(k))G] . (A-3-141b)
~~

The computation of covariance proceeds as follows:

(A-3-142a)

. (A-3-142b)

A-100



We now compute the mean-squared value required in Eq. A-3-142:

E, {S?(vN)/F} = E. { I I vT(k) W^Ck) v(k) vT(j) W'̂ j) v(j)/F} .
1 r * k-l j=l r

(A-3-143)

In order to evaluate the expectation in Eq. A-3-143, we need the result of

Theorem 3.3.

Theorem 3.3 - Let x^ and X£ be Gaussian random vectors of dimension n with

means x. and x~. Their covariances are E, and Z~> and the cross-covariance

between x and x2 is l.̂ . Then

*P T* — T rm, _X —

E |x1 A Xj x2 B x.} = (xj A Xj x2 B x2)

+ 2 tr (A L B E)

+ tr (A Zj) tr (B E2) . (A-3-144)

Proof ; Note that

T T n n n n
Xl A Xl X2 B X2 = J. I j. X aij bto Xli Xlj X2£ X2m - (A-3-145)

i *~ i j ~" i x~" l in™* i

In order to evaluate the expectation of Eq. A-3-145, we need to find the ex

pectation of the product of four non-zero mean Gaussian random variables,

E {x x x x- }. To compute this expectation, we define

vT = (vx v2 v3 vj = (Xlix1;j x2£x2m)

T
a) = M o> «i» co .
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Let the covariance of v be Zv and is of the form

12im

12jm

12i£

°12im °12jm

2JU

2mm

The characteristic function of v is

T
oj) = E {exp (-joj v)}

Using the fact that v is normal, we have

From the property

T_ i T
= exp (-j oj v - - oo Z wj

*(oo)
9oj

= E (A-3-146)

we have

lij * °12U °12jm+ °12im °12j£ ' (A-3-147)
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Using Eq. A-3-147 in Eq. A-3-145, we have

T T n n n n _ _
{ I i i r* r* r* r* f

E v A v v " R - v l — \ \ \ \ a "K Iv -v v v
1 ** •* - A.— O A— J / / / [^ « • • • Wfl L 1 4 1 * OO

i=l 1=1 £=1 m=l

°2Xm + °12i£ °12jm + °12im

T _ _T
= lxi A Xj x2 B x2J

+ tr (A Z B Z2)

+ 2 tr (A E12 B E 2̂) .

Using the result of Theorem 3.3 in Eq. A-3-143, we have

(vN)|F} = [I tr
k

(I tr [Ŵ 1

k r

2 II tr [W'̂ k) [E£{v(k) v
T(j)|F}

J k

vT(k)|F}

(A-3-148)

The required cross-correlation terms are defined in Eqs. A-3-129 through A-

3-135. The computation of mean and covariance for the normal mode KF based

FD1 scheme and similar quantities for the parity space based FDI scheme is

straightforward. Thus the statistical distance measures, Introduced in this
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section for parity optimization, provide convenient measures for the eval-

uation of alternative FDI approaches as well. Note, in particular, that the

evaluation measures are nonstationary and, hence, we have a mechanism to

determine how fast failure information is being accumulated in various FDI

schemes.
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APPENDIX B

ROBUST ACCOMMODATION

Our general methodology and specific analytical results have focussed on

robust failure detection and isolation (FDI) as the most important aspect of

the overall FDIA problem. In this appendix, many of these results are inter-

preted and extended to solve the robust accommodation problem.

The sensor accommodation problem is one which ultimately must include the

performance goals and trade-offs of the entire system under consideration.

Excellent examples of these kind of considerations are given in [3] and [11].

One appealing means of accommodating sensor failures involves the estimation

of the variables which are no longer available. This method is employed in

[3] and [11], however control system modifications are also required because

of the inaccuracies of the particular estimation algorithm which was employed.

As in the case of FDI, modeling errors play a large role in the ultimate

performance of any estimation algorithm. Therefore, estimators employed in

accommodation algorithms should be designed for insensitivity to modelling

errors where possible.

The first step in designing any estimation algorithm is the determination

of a model for the desired variables.

Consider the discrete time state space description,

x(k+l) - A x(k) (B-l)
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y(k) = C x(k) + n(k) (B-2)

Input terms in B-l and B-2 can be included in the results which follow and

similar results derived.

In Section 4 and Appendix A, we discussed the formation of parity checks

based on such models that take the form v(k) = GYp(k) , where Yp(k) is a p-

window of m dimensional observations, y(k), and G is the tx(p+l)m parity check

matrix. Furthermore, we showed how each parity check (which is normally a

zero mean white noise sequence) could be interpreted as either an ARMA model

of the ith element of y(k), y^ , or as a state space model of a p-window of

When modeling errors exist in the parameters (A,C) of Eq. B-l, the robust

parity checks can be interpreted as robust ARMA or state space models for

yi(k) . These can then be used in an estimation algorithm as described below.

In order to estimate sensor values both during no-failure and with a bad

sensor, we can design an estimator which is; 1) robust to modeling errors by

using parity checks as ARMA models, and 2) uses only those sensors which are

validated by the FDI algorithm. Let the parity check which is used for

estimating yi be written in terms of the yi ARMA model;

P P
yi(k) = I UL yi(k-j) + I I wj y*(k-j) (B-3)

j=I **i j=0

Then, during normal operation, we have a closed loop estimator for all sensor

values y^, i=l ..... N-sensors;

K[yi(k) - 7i(k)] (B-4)
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where
_ P P

= I «j yi(k-j) + I I yj y*(k-j) (B-5)

j=l £41 j=0

When sensor y^ is identified as failed we must change the estimates for all

sensor values. For y^, we perform the "open loop" scheme,

P P P
yi(k) - I wj yi(k-J) + I I PJ y£(k-J) (B-6)

J-l Att. J-0

For y$ such that i=H we use ABMA models (parity checks) for y% that don't

include yj in a closed loop estimator of the form (2) and (3), or, use the

s*

open loop estimate for y^ in computing y$.

Although the interpretation of parity checks as robust ARMA models can be

utilized in forming models for various estimation algorithms, a more direct

solution to the problem of finding robust ARMA models for the measured vari-

ables can be developed. Consider the state space description

x(k+l) = A x(k) (B-7)

y(k) - C x(k) (B-8)

with p(A = A£, B = B^) = p±, and suppose we wish to find a pth order AR model

for the vector y(k);

P
y(k) = I *j y(k-j) (B-9)

J-l

where 4 is an mxm matrix.
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As in our approach to parity generation, we would like a metric which is

related to estimation accuracy and is easily optimized by choice of the $4.

Consider the mean square estimation error defined by

J-=E£||y(k) - y(k)||
2 (B-io)

where the ||*|| operator is the standard Euclidean distance.

Rewriting Eq. B-10 in terms of the state variable x(k-p) using B-7 and

B-8, we have,

P P_ D-J 2
] x|| } (B-ll)

Since we are interested in solutions which are independent of the state,

x, the problem of choosing <&j reduces to,

min E£ { ||C£A£ -

*J

(B-12)

The expectation operator can be taken inside, the gradient with respect to

taken and set equal to zero yielding the following.

Let,
p-1
I
P-2

(B-13)

ith row of (B-14)
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A A
* - 1*11*2|•••!*?]

 =
(B-15)

Define,

EX. (B-L6)

(B-17)

Then the solution which minimizes D-12 is given by the equation

C" * = i> (B-18)

which is easily solved for ̂  providing C is nonsingular. When no modeling

errors are present, C is less then full rank implying that more than one

solution to D-18 is possible.

Finally we note that the above result is strongly related to the Levinson

filtering algorithm [17] which utilizes the assumption of stationarity to

derive a statistically based metric that results in linear equations for the

AR coefficients and are based on the Toeplitz autocovariance matrix of the

sequence y(k).
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APPENDIX C

SOFTWARE DESCRIPTION

The robust FDI software is designed to be used for the development and

evaluation of detection algorithms for sensor failures in dynamic systems. It

was developed on ALPHATECH's VAX 11-750, in VAX-11 FORTRAN-77.

The software consists of four separately executable programs: 1) DESIGN

computes parity check vectors, by one of several methods, from the dynamic

system matrices; 2) PARCEV evaluates the parity check vectors for their abil-

ity to distinguish sensor failures from each other and from no failure; 3)

KFRES evaluates the ability of a Kalman filter to distinguish sensor failures

from each other and from no failure; and 4) SIMULATE simulates the states,

controls and outputs (sensor measurements) of the dynamic system over time,

including sensor failures if desired, and computes residuals, using parity

vectors or a Kalman filter, in order to detect and identify sensor failures.

The software is modular and well-commented for easy modification, checks for

faulty input data that would otherwise cause a program to crash, and alerts

the user to problems encountered during execution, such as an attempt to

invert a singular matrix. Each program is now discussed in detail.

C-l. PROGRAM DESIGN

The dynamic system equations underlying all of the robust FDI software

are of the form:

x(k+l) = A x(k) + B uW (C-la)
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y(k) = C x(k) + D u(k) + v(k) (C-lb)

ut(k) = / qi • N(0, 1) (C-lc)

with white noise vectors:

where _x is the state vector, _u is the vector of controls, y_ is the output vec-

tor; A, B, C and D are the system matrices; j^ is the measurement noise covar-

iance vector, and jj is the control noise covariance vector. In order to make

use of these equations, several parameters must be defined. First, the dimen-

sions of the system are needed: the number of states NS, the number of con-

trols NC, and the number of outputs NO; these parameters determine the sizes

of the system matrices and noise vectors, as well as the state, control and

output vectors. Also, the order NP of the desired parity check vectors, which

determines the time window length to be used in residual generation, must be

specified. Finally, the number of system models NL is needed; this refers to

the fact that randomly perturbed system matrices, A#, BJJ,, Cjj,, and D£ are com-

puted from the true matrices for £ = 1, •••,NL, where, for example

A£ = A + SA (C-2a)

and 6A is a matrix of zero-mean Gaussian perturbations. Each system model has

an associated probability P£ of being true, such that:

NL
£ P£ = 1 (C-2b)
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In program DESIGN, the formation of parity vectors from the system

matrices and noise vectors proceeds in two steps: first, a composite system

matrix C0 is formed; and second, the parity vectors are computed from the Co

matrix. Each of these two steps may be performed by two different methods.

The C0 matrix may be formed by either the Null Space method or the Auto-

Correlation Function method; while the parity vectors may be computed by

either the Robust Residual method or the Robust Detection method. Each of

these methods is described below.

Both methods of computing the Co matrix begin by forming two matrices M

and r^ from randomly perturbed system matrices, as follows:

(C-3a)

C£B£

NP-1

0

0

NP-2 NP-3
B£

•«• 0

•.. o

0 (C-3b)
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If the Null Space method is being used, the matrix N£ is then formed:

N,
r

i
(C-Aa)

and Co is computed by the following sum:

NL
C = E P.

T
(C-Ab)

If, however, the Auto-Correlation Function method is used, then Co is set

equal to the Auto-Correlation Function matrix (ACF), which is computed by a

more complicated procedure. First, the output and control noise covariance

matrices are set:

R 0 0 ••• 0

0 R 0 •• • 0

0 0 R ••• 0 (C-5a)

0 0 0 ••• R

c =
u

o ••• o

(C-5b)
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where Rp contains NP+1 copies of R, Cu contain a NP+1 copies of Q, and

Q = diag [ £ ] (C-5c)

diag [ r ] . (C-5d)

Next, for each system model I, the following discrete time Lyapunov equation

must be solved for C^ , the state covariance matrix:
X.

(C-6)

Then, the output covariance matrix (cv ) and the cross-covariance matrix7£

(cvu ) can be computed:

MOC M + r0c r + RA x £ £ u £ p (C-7a)

C = r.C (C-7b)

Finally, the Auto-Correlation Function matrix can be formed;

NL
ACF = E P • y£ yu£ (C-8)

£=1

and the Co matrix may be set equal to the ACF matrix.

Once the Co matrix has been formed, using either the Null Space or the

ACF method, the parity vectors may be computed in two ways. Under the Robust

Residual method, the eigenvalues (Aj) and normalized eigenvectors (w-j) of C0

are computed, and the eigenvectors with smallest eigenvalues are used as
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parity check vectors. If the Robust Detection method is used, then for j =

!,•••,NO the vector bj must be formed as

Ij = £J (C~9>

£

0

where bj contains NP+1 copies of the unit vector £j in the j-th direction of

size NO, and NIH-1 copies of the zero vector of size NC. Then, the parity

vectors and associated values are computed as follows:

uc'1 bj
o

(C-lOa)

Ai " wj Co (C-lOb)

Note that both _bj and wj have dimension (NP+1)(NO+NC) (like the dimensions of

the Co matrix). In both methods, small values of Xj indicate that residuals

computed from Wj will tend to be close to zero under normal operating

conditions.
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Another desirable feature of parity vectors is that they have a reason-

ably large "signal-noise ratio." The signal-noise ratio of a parity vector

is computed by DESIGN as:
T
w^ bj • BFMj

S/NI:J = -
J T
I w (ACF)

for each sensor output j = 1, •••,NO, where BFMj is the bias failure magnitude

for the j-th sensor.

The basic structure of subroutine calls by DESIGN is given in Fig. C-l,

although no attempt has been made to show multiple calls to the same routine,

and calls to standard library routines for matrix operations are not shown.

Table C-l gives a brief description of the purpose of each subroutine and

function (including library routines). The inputs and outputs to DESIGN are

described below.

A sample input file to DESIGN is shown in Fig. C-2. The first line of

data read in is for NS, NO and NC, the number of states, outputs and controls.

Next to be read in are NPMAX the maximum order of the parity checks, and

NP_ALL, a flag indicating whether to use all values of NP; if NP_ALL is true,

DESIGN computes parity checks of order NP = 0, •••, NPMAX. Then N_PAR_CHECK

specifies the number of parity checks desired; if the Robust Residual method

is used, these will be the ones with lowest eigenvalues; if the Robust Detect

ion method is used, they will be the ones of lowest order. (Usually, if the

Robust Detection method is used, N_PAR_CHECK should be set to (NPMAX-fl)NO in

order to print all of the parity checks generated.)
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Figure C-l. Subroutine Calls Made by Program DESIGN,
Excluding Library Routines

The next two lines of input data specify the generation of perturbed

system matrices and the methods of parity check generation to be used. First,

NL, TRUE_MODEL and SEEDO are read in. NL is the number of randomly perturbed

system models used (the models are assumed to have equal probability of being

correct, so P$, = 1/NL, for I = !,•••,NL). TRUE_MODEL is a logical variable

(true or false) indicating whether the first system model (fc=l) should use the

unperturbed, correct system matrices; if TRUE_MODEL is false, the matrices for

the first system model are randomly perturbed, as in the other models. SEEDO
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TABLE C-la. SUBROUTINES CALLED

Below la a

DESIGN, PARCEV,

Cures.

ACF_MAT:

OSVOC:

M_GAMMA:

OUTPUT:

PERTURB:

PLOT:

PROB-DIST:

RANPERT:

READIN:

READJCFR:

READ_PAR:

READ_SIM:

RNORM:

SN_RATIO:

SORT_STACK:

SPRT:

SYS_COVAR:

USSR:

brief description of the purpose of every subroutine called by

KFRES or SIMULATE. See Figs. 1 3. 4 and 6 for the call strue-

computes the Auto-Correlation Function (ACF) matrix
(see Eq. E-8)

LIKPACK library singular value decomposition routine
(used to compute eigenvalues and eigenvectors of
symmetric Co matrix)

computes the matrices H and T (see Eq. E-3)

writes the output files for DESIGN, including parity
vectors and signal-noise ratios

creates a perturbed version of the system matrices

ALPHATECH PLOT library routine that creates data files
for later plotting

computes the Bhattacharyya distance and correlation
between two multlvarlate Gaussian probability distributions
(see Eq. E-15)

function that computes a random perturbation

reads the DESIGN inputs from an Input file and echoes
to an output file

reads the KFRES input file

reads the PARCEV Input file

reads the SIMULATE Input file

returns a random number from a Gaussian normal distribution

computes the signal-noise ratios for the most recently
computed parity vector and each sensor output

sorts an array of real numbers, keeping an array
of Integers in parallel

computes sequential probability ratio statistics
(see Appendix B)

computes the covarlance of the Kalman filter Innovations
for a given (perturbed) system model (see Eq. E-21b)

computes weighted sum of squared residuals statistics
(see Appendix B)
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TABLE C-lb. LIBRARY ROUTINES

The following are library routines for matrix manipulation used by DESIGN,

PARCEV, KFRES and SIMULATE (not shown in Figs. C-l, 3, 4, and 6).

DGECOM:

MADD:

MLINEQ:

MMUL:

MSUB:

RICDSD:

SAVE:

TRNATB:

LQGALPHA library
determinant of a

routine used to compute the
matrix

LQGALPHA library routine for adding two matrices

LQGALPHA library
(used for matrix

routine for solving linear equations
inversion)

LQGALPHA library routine for multiplying two matrices

LQGALPHA library routine for subtracting one matrix
from another

LQGALPHA library routine for solving Riccati equations

for copying a matrix into a part ofLQGALPHA routine
another matrix

LQGALPHA library
of a matrix

routine for computing the transpose

is the initial integer value of the random number generator seed. Next, the

logical variables ACF_FLAG and RD_FLAG are read in. ACF_FLAG indicates

whether to set the Co matrix equal to the Auto-Correlation Function (ACF)

matrix; if ACF_FLAG is false, the Null Space method of computing Co is used.

(The ACF matrix is computed in either case since it is needed to compute the

signal-noise ratio.) RD_FLAG indicates whether the parity vectors should be

computed by the Robust Detection method; if RD_FLAG is false, the Robust

Residual method of computing parity vectors is used.
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8.7840543E-03

1 .1503949E-04
0.9563294

2.9432282E-03
-2.1525344E-03
-2.4199684E-04
-1 .6600419E-05

O.OOOOOOOEiOO
O.OOOOOOOEiOO

-1 .<256ieiE-02
-2. 1574596E-02
2.4134478E-02

O.OOOOOOOEiOO
O.OOOOOOOEiOO
<.4308138E-03
1 .88S27*3E-CM

-3.4454153E-03

1 .l'1494'.7F.-03
1 .9434331E-04
1 . 1208000C-03
7.2799991E-03

2.2045214E-04
0.5334473E-OS
1 .4012145E-05
3.7904043E-05

O.OOOOOOOEiOO
O.OOOOOOOEiOO
< .4'.?04irr-o3
3. 17S8043C-03
1 .3030000C-0?

O.OOOOOOOEiOO
O.OOOOOOOEiOO
2.02G&349C- 03
2.714S33SE-04
3.I902435E-03

-3.4747955E-02
-1.2677514E-02
9.1238425E-04
3.7244--93E-03

O.OOOOOOOEiOO
O.OOOOOOOEiOO
-0. 71S474C

I . 2127A2
0..3<94?92

B.4414323E-03
2.6-H3030E--O.J
8.5322355E-04
2. 1532V44F.-0:<

O.OOOOOOOEiOO
O.OOOOOOOEiOO
0. 1494230
•1. 1060939E-02
0.284004C

Figure C-2. Inputs to Program DESIGN.
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The next two inputs are the noise parameters. Q is an NC-vector which is

the diagonal of the control noise covariance matrix; R is an NO-vector which

is the diagonal of the measurement noise covariance matrix. (Off-diagonal

elements of both matrices are zero.) BFM is an NO-vector which contains the

bias failure magnitude for each sensor; and DEL_T is the time increment.

The final inputs to DESIGN are the correct system matrices, A, B, C and

D, and the matrices containing the standard deviations of each element for

random permutation, DEL_A, DEL_B, DEL_C and DEL_D. Matrices A and DEL_A have

dimensions NS by NS; B and DEL_B are NS by NC; C and DELJC are NO by NS; and D

and DELJD are NO by NC.

The primary output file for DESIGN contains an echo of the input file,

and the parity check vectors and related information: the number of the par-

ity check (i=l N_PAR_CHECK), the order (NP), the eigenvalue (\i), and the

vector itself (wj). In addition, there is a secondary output file which pro-

vides some extra information. The secondary output file includes an echo of

the input file, the trace of the C0 matrix (for each NP), a neater version of

the parity vectors but with less precision, and, for each parity vector, the

standard deviation, the sums of the elements which will be used as coeffi-

cients of each sensor output, and the signal-noise ratios.

C.2 PROGRAM PARCEV

Program PARCEV evaluates a set of parity check vectors, such as those

generated by program DESIGN. PARCEV begins by forming a matrix containing the

parity check vectors being evaluated, as follows:
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w (C-12)

!?N_PAR_CHECK

Next, the Auto-Correlation Function Matrix (ACF) is formed, as in DESIGN (Eq.

C-8), and the covariance matrix of the parity checks is computed:

Cv = W • ACF • WT (C-13)

Then, for each parity check vector wj_, the sum of the coefficients of each

sensor output j are computed:

en = w« + wf + . . . + wi for i = 1,...,N PAR CHECK
J -^j -̂ NO+j -̂ NP.NO+j f -

j = 1 NO
(C-14a)

and from these coefficients, the expected, or average, residual vector is

formed, for each possible sensor bias failure, positive, negative or zero (no

failure), as follpws:

V.s == BFMj

ci,NO

, for j = -NO -1,0,1 NO

(C-14b)
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where:

BFM(_j) = -BFMj (C-14c)

BFM0 = 0 (C-14d)

For any pair of average residual vectors, the Bhattacharyya Distance,

which measures the distance between two multivariate probability distributions

of specified mean and covariance, can be computed:

- - * , - -Bij - - (vi - VJ)T [- (Cy! + Cvj)]'1 (\>i - Vj
8 i

(C-15a)

(Note that, in this case, Cv =CV = Cv, so the second term is always zero.)

Furthermore, the Bhattacharyya correlation between two sensor failure hypothe-

ses, and lower and upper bounds on the probability of error in distinguishing

between two hypotheses are computed as follows:

Pi-j = e-Bi:j (C-15b)

- (1- /l - Pij2) (C-15c)

(C-15d)

The structure of subroutine calls in program PARCEV is shown in Fig. C-3;

suboutines are described in Table C-l. The input file has precisely the same

format as the primary output file for DESIGN, so that it may be run immediate-

ly afterwards, if desired. The output file for program PARCEV contains an
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R-2138

Figure C-3. Subroutine Calls Made by Program PARCEV,
Excluding Library Routines

echo of the input file (i.e., the DESIGN output file), and the Bhattacharyya

Distances and correlations and lower and upper bounds on the probability of

error, for each pair of sensor bias failure hypotheses.

C.3 PROGRAM KFRES

Program KFRES evaluates the ability of a Kalman filter to distinguish

sensor failures in much the same way that PARCEV evaluates a set of parity

vectors for their ability to distinguish failures. It begins by computing,

for eacli set of perturbed system matrices A£, B£, Cjj, and D£ (for Jfc=l,... ,NL),

a set of composite matrices, formed from the perturbed and unperturbed

matrices as follows:
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= [D£ - D] (C-16a)

AKCjj A[I-KC]

(C-16b)

B

(C-16c)

(C-16d)

0

AK
(C-16e)

where K is the Kaltnan gain matrix.

Also, for each perturbation £, the base point errors are computed:

xB* = N(0,l) - — - XB , for j = 1 NS

o Pe

UB* = N(0,l) • • UB , for j - 1 NC

(C-17a)

(C-17b)

Pe
j* = N(0,l) - --- • yB , for j = 1.....NO (C-17c)
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where xjj, up and yp are the base point vectors and pe is the percent error for

base point perturbation. From the base point errors, the base point deviation

vectors are computed:

= [I - Ap] XB* - BJ^IB* (C-18a)

IB ~ (C-18b)

Next, for each possible sensor bias failure (i.e., for j = 0,1 NO),

the augmented state vector is computed from the composite perturbed matrices

and the base point deviations:

, J £ - [I -F t]-l + K (bj + 673*) + (C-19a)

where:

bj = BFMj ' ej (C-19b)

and ^j is a unit vector in the jth direction. The augmented covariance matrix

must be solved for in the following equation:

R K (C-20)

From the augmented state and covariance, the Kalman filter mean (or residual)

and autocovariance function are computed:

j

—H£ [Ca

-
(D£ Q

_ T _ T
] H£ +

- T _ T

£ + R) 6io

_ T
1 K]

(C-21a)

(C-21b)
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where i is the time lag (i.e., c^i* = cov [v**(k) vJA(k+i)T] ). Then, the

average residual and covariance over all perturbed models may be computed for

each sensor failure ( j=0,l, . . . ,NO) :

-- I vJ* (C-22a)NL ~

NL

_ (C-22b)
NL

From these, the Bhattacharyya distances and correlations, and lower and upper

bounds on the probability of error in distinguishing sensor failures, may be

computed as in program PARCEV (Eq. C-15).

The structure of subroutine calls in program KFRES is shown in Fig. C-4;

subroutines are described in Table C-l. The inputs to KFRES are the inputs to

DESIGN, with a few additions, shown in Fig. C-5. These include MAX_LAG, the

time lag used to compute the innovations covariance (i in Eq. C-21b); the

random number generation seed (KF_SEED) and percent error (PER ERR) used to

compute the base point errors; the base point vectors (XB, UB, and YB); and

the Kalman gain matrix (KG). The output file contains an echo of the input

file, the average residual vector an covariance matrix for each possible

sensor failure, and the Bhattacharyya distance and correlation and the lower

and upper bounds on the probability of error in distinguishing failures, for

each pair of possible sensor failures.
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R-2139

Figure C-4. Subroutine Calls Made by Program KFRES,
Excluding Library Routines

KFRES INPUTS

MAX LAG

KF SEED, PER ERR
700549 0.0

XB(NS), UB(NC), YB(NO)
0.8900504
0.5335010
0.8900504

0.7799951
0.6000000
0.7799951

KG (NS,NO)
1.487D-01 2.183D-01
7.242D-02 1.061D-01
4.811D-03 7.052D-03
5.883D-03 8.641D-03

0.1162586
-0.5000000
0.5165927

7.458D-02
3.635D-02
2.407D-03
2.950D-03

8.6679444E-02
0.6000000
0.3274180

1.428D-01
6.955D-02
4.614D-03
5.643D-03

O.OOOOOOOOE+00
-0.8392528

-2.716D-01
-1.323D-02
-8.793D-03
-1.075D.02

Figure C-5. Inputs to Program KFRES
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C.4 PROGRAM SIMULATE

Program SIMULATE simulates the states, controls and outputs (sensor mea-

surements) of the dynamic system described by Eq. C-l, including, if desired,

sensor bias failures in any or all sensors, each beginning at a specified

time. Two types of residuals are generated at each time step: robust parity

check residuals and Kalman filter residuals. In addition, the robust parity

check residuals are used to compute WSSR and SPRT statistics, in order to

detect, verify and isolate sensor failures. Before robust residual generation

begins, each parity vector w^ is divided into two parts: the first (NP+1)NO

elements become Wy , which is to be multiplied by the outputs window vector;

the last (NP+1)NC elements become Wy , which is to be multiplied by the con-

trols window vector.

The dynamic system simulation used computes the deviations of the state

( 6x), controls (6u) and outputs ( 6y) from a base point (xfc, uj>, £b) which is

consistent with the system matrices. The control and associated steady state

deviations are initialized as

6Ui(0) = /~q7~ N(0,l) (C-23a)

0̂  (C-23b)

and the deviations are simulated as in the dynamic system equations (Eq. C-l),

that is:

A Jx(k) + B ̂i(k) (C-24a)

f v(k) (C-24b)

6u(k) - ti (k) (C-24c)
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where the system matrices A, B, C and D, the white noise vectors _v and _n, and

the time increment At are as in Eq. 1.

During simulation, the control and output deviation vectors are stored

over time in window vectors, as follows:

•SyCk-NP)

<5y(k-NP+l)
•

•

•

Sy(k)

(C-25a)

<Su(k-NP)

6u(k-NP+l) (C-25b)
•

*

6u(k)

The robust residuals may be computed at any time step from the parity vectors

and the window vectors as

Y(k) WU pU(k) (C-26)

Under ordinary conditions, these residuals should be close to zero; large

residuals are indicative of sensor output failures or large modeling errors.

These residuals are then used to compute statistics to detect and identify

sensor failures, as described in the FD1 equations of Appendix B.

The Kalman filter residuals are computed by a simple Kalman filter, using

the unperturbed system matrices, as follows:
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_v(k) - 6y(k) - 5y(k) (C-26a)

where

6y(k) = C 6x(k) + D &i(k) (C-26b)

fix(k) = A jx(k-l) + B6u(k-l) (C-26c)

A

= 6 x(k) + K _y(k) (C-26d)

• ° (C-26e)

and K is the Kalman gain matrix.

The structure of subroutine calls in program SIMULATE is given in Fig.

C-6; Table C-l gives a brief description of the purpose of each subroutine

and function. The input and output files for SIMULATE are described below.

The input file for SIMULATE has the same format as the primary output

file for program DESIGN, with some additions, as shown in Fig. C-7. The first

of these is TMAX, the maximum simulation time (simulation begins at time

zero). The second input is PERTURB_FLAG, a logical flag (true or false) which

indicates whether or not to perturb the system matrices used in Eq. C-24.

Next is SIM_SEED, the initial integer value of the random number generator

seed, for computing Gaussian noise.

The next inputs specify sensor bias failures during simulation. First,

N_FAILURE is read in, which is the number of bias failures to occur. Then,

for each failure, the following are read in: FAILJTIME, FAIL_BIAS and

FAIL_SENSOR, which are, respectively, the time that the bias occurs, the

amount of the bias, and the number of the sensor in which the bias occurs.

Ordinarily, a bias should cause some of the residuals to become large,
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READ SIM

READIN

PERTURB

RANPERT

b
RNORM

PLOT

R-2140

Figure C-6. Subroutine Calls Made by Program SIMULATE,
Excluding Library Routines

beginning at the bias time. Following the bias failure inputs are the plot-

ting inputs. NR_PLOT gives the number of robust parity check residuals whose

simulated values should be stored at each time step in a data file, for later

plotting; PLOT_INDEX specifies which residuals (NR_PLOT of them) should be

stored in plot files; and KF_PLOT is a flag indicating whether or not to

create plot files containing the Kalman filter residuals. Next is KFG, the

Kalman gain matrix used in the Kalman filter .(Eq. C-26).

The final inputs to SIMULATE are used to compute the FDI statistics.

First, for each WSSR trigger statistic (NJWSSR of them), several quantities

are specified. TAU_WSSR is the time constant used in the low-pass filter for

the statistic; THR WSSR is the threshold for the statistic, above which
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•SIMULATE* IHF'UTS
TMAX

PERTURB.FUAO
2.0

T
— sin.seeo
37B217

N.FAKURE
I

FAIL-TlMEi FAIL.KIAS. FA1L.SEHSOR

1 .0

5.0E-3
t

NR_PLOTi FLOT.1HPEX<MR_PUOT)

2 3
KF_FLOT

1

F
KFG (MS.NO)

4.725D-02 6.44BP-02 2.076D-02
2.137D-02 2.7810-02 1.016D-02
1.00711-03 4.904D-04 1.133H-04
2.130D-04 -5.720D-04 -2.5780-04

USSR INPUTS

N.USSR

&.472P-02 -1.14611-01

2.0A7D-02 -3.842D-02
8.6&2D-04 -1.704D-03
S.l&OD-OS -2.75911-04

USSR « 1 (L-l)
TAU.USSR <L)

0.02
THR.USSR <L)

4.0

NUS.RES(L)i US.RESN(NUS_RES>L>

1
1

US.COV <«US.RES.NUS_RES.L>
1 .7877E-06

USSR I 2 (L«2)

|,,f.UTS

N.VCRIF, H.ISOL (N.SfRT = N.VER1F«H_ISOL)
10

VERIFY Cf'RT I 1 (L=l )
THR.SPRT (L)

20.0

KSF-.RES(L)> Sr.RESH<HSF_RES.L>
1
1

Sr.SlGl (MSr.RES.L)
3.4271E-03

Sf.SIC2 (MSr.RCStL)
O.OOOOE400

Sf'.COV (HSP.RESfHSf.K-CS.L)
1.7077C-OA
•-- VCklFY SI-R! « 2 <L'2>

Figure C-7. Inputs to Program SIMULATE
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is indicated a possible failure; NWS_RES is the number of parity check resid-

uals used in the statistic and WS_RESN specifies which ones; and WSjCOV is the

covariance matrix for the residuals used. Then, for each SPRT verify statis-

tic (N_VERIF of them) and each SPRT isolate statistic (N_ISOL of them), the

following are specified: THR_SPRT, NSP_RES, SP_RESN and SP_COV are analogous

to their WSSR counterparts; SP_SIG1 and SP_SIG2 are the expected values (sig-

natures) of the residuals used, under two different failure hypotheses. (See

Appendix B for a further explanation of the use of FDI statistics).

The output file for program SIMULATE contains an echo of the input file,

and an indication of when any FDI statistic passes its threshold, and when

(if ever) a sensor failure is identified. In addition, plot files are created

containing the parity check residuals, Kalman filter residuals, and WSSR and

SPRT statistics.
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