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Abstract—Carrier-sensing multiple-access with collision avoid-
ance (CSMA/CA)-based networks, such as those using the IEEE
802.11 distributed coordination function protocol, have experi-
enced widespread deployment due to their ease of implementation.
The terminals accessing these networks are not owned or con-
trolled by the network operators (such as in the case of cellular
networks) and, thus, terminals may not abide by the protocol rules
in order to gain unfair access to the network (selfish misbehavior),
or simply to disturb the network operations (denial-of-service
attack). This paper presents a robust nonparametric detection
mechanism for the CSMA/CA media-access control layer de-
nial-of-service attacks that does not require any modification to
the existing protocols. This technique, based on the -truncated
sequential Kolmogorov–Smirnov statistics, monitors the successful
transmissions and the collisions of the terminals in the network,
and determines how “explainable” the collisions are given for such
observations. We show that the distribution of the explainability
of the collisions is very sensitive to changes in the network, even
with a changing number of competing terminals, making it an
excellent candidate to serve as a jamming attack indicator. Ns-2
simulation results show that the proposed method has a very short
detection latency and high detection accuracy.

Index Terms—Carrier-sensing multiple-access with collision
avoidance (CSMA/CA), denial-of-service (DoS) attack, IEEE
802.11, Kolmogorov–Smirnov (KS), media-access control (MAC),
sequential detection.

I. INTRODUCTION

T HE carrier-sensing multiple-access with collision avoid-
ance (CSMA/CA) protocol relies on the random defer-

ment of packet transmissions for contention resolution and effi-
cient use of the shared channel among nodes in a network [1].
Being a completely distributed algorithm, its correct operation
assumes that all nodes obey the protocol. However, wireless de-
vices can easily modify their software parameters to gain unfair
access to the network (selfish misbehavior), or simply to prevent
other nodes from accessing it (denial-of-service (DoS) attack).
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Selfish misbehavior has been analyzed in the past [29],
usually under a game theoretic framework [2]–[4]. Selfish ter-
minals are necessarily exposed, as their objective is to increase
their own transmissions in the network, which makes their
traffic susceptible to statistical analysis and identification [1],
[5]. Media-access control (MAC) DoS attacks, on the other
hand, are stealthy by nature, as the attacker does not have to
reveal itself in order to perform the attack. More important,
MAC DoS attacks require very little power [6] as only spe-
cific portions of the other terminal’s transmissions need to
be targeted in order to succeed. Such jammers, which jam
the network with the knowledge of the target MAC protocol,
are known as protocol-aware jammers [7]. MAC DoS attacks
through intelligent jamming are, as a result, much easier and
more efficient to perform, and their impact on the network
performance is often catastrophic: an energy-efficient stealthy
jammer can disrupt selected control packets and reduce the
network throughput to zero. On the other hand, the random
operation of the CSMA/CA protocol, together with the nature
of the wireless medium itself, makes network conditions appear
different for different terminals [1]. Hence, it is difficult to
determine whether errors are caused by a surge in the number
of legitimate terminals (such as in hotspots), or by malicious
terminals. For simplicity, we assume that all transmission errors
are caused by simultaneous transmissions of other terminals
(legitimate or misbehaving), so in effect, all errors are caused
by collisions. Our model can easily be extended to consider
other error causes, such as poor channel conditions.

While research on DoS attacks to 802.11 networks is active
and prolific, most works focus primarily on attacks related to
user authentication and network disconnection [8], [9], rather
than on throughput-reduction attacks [10]. And of those con-
cerned with throughput, they mainly focus on physical RF jam-
ming in order to provoke bandwidth exhaustion [11], [12]. In
this paper, we deal with MAC vulnerabilities [13] and, in partic-
ular, those related to intelligent jammers (i.e., jammers that op-
erate using knowledge of the MAC layer protocol). Some partial
solutions have been proposed in the literature but they have been
proved unsuccessful so far. In particular, [14] and [15] propose
modifications to the IEEE 802.11 distributed coordination func-
tion (DCF) that account for an increase in the number of colli-
sions in the network. While such approaches can detect some
attacks, the modification of the protocol requires an update of
the IEEE 802.11 installed base, making it difficult to deploy.
Other related works, such as [6], [7], [16], and [17], rather than
trying to identify attacks, explore methods to perform more ef-
ficient attacks. We will use some of these efficient attacks as
benchmarks for performance evaluation of our detector.
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In order to perform the detection of a jamming attack,1 we
first show that it is possible to determine the probability that a
terminal is contributing to an observed collision by tracking its
successful transmissions. We then introduce the concept of ex-
plainability of a collision (i.e., the probability that a collision
can be explained by the events observed in the network). We
show that the distribution of the explainability of the collisions is
very sensitive to jamming attacks. Finally, we propose detecting
a jamming attack by detecting the event that the distribution of
the explainability of the collisions deviates significantly from
that under normal operating conditions, using a robust nonpara-
metric Kolmogorov–Smirnov detector.

The remainder of this paper is organized as follows. Section II
describes the CSMA/CA protocol and its vulnerability to DoS
attacks, and formulates the detection problem. In Section III,
we characterize the operation of the IEEE 802.11 DCF pro-
tocol under “normal” operation and introduce the concept of
explainability of collisions. We propose our MAC DoS detec-
tion algorithm in Section IV. Ns-2 simulation results are given
in Section V. Finally, Section VI concludes this paper.

II. CSMA/CA PROTOCOLS AND PROBLEM FORMULATION

While the techniques presented in this paper apply to any
CSMA/CA protocol, we will focus our attention, without loss
of generality, on the IEEE 802.11 DCF protocol.

A. IEEE 802.11 DCF

The IEEE 802.11 DCF protocol is a CSMA/CA protocol that
defines two distinct techniques to access the medium: 1) the
basic access and 2) the RTS/CTS access [18].

In the basic access, the terminals implement a two-way hand-
shake mechanism. A terminal senses the channel to be idle be-
fore starting a transmission. If the channel is idle, then the ter-
minal is allowed to transmit. If during this sensing time, the
channel appears to be busy at any time, the terminal defers the
transmission and enters into the collision avoidance (CA) mode.
In CA mode, the terminal generates a random backoff interval
during which it waits before attempting another transmission.
This random backoff is used to minimize the probability of col-
lision between terminals accessing the medium. The idle time
is slotted, and the terminals are allowed to transmit only at the
beginning of the slot time.

The random backoff timer is uniformly chosen between
, where is called the contention window and satisfies

, where and are called
the minimum and maximum contention windows, respectively.
At the first transmission attempt, is set to . The
backoff timer is decremented while the channel is idle (i.e., it
only counts the idle time). If at any time the channel is sensed
to be busy, the backoff timer is paused until the channel is
sensed to be idle again. When the backoff timer reaches 0, the
terminal then transmits. Following the successful reception
of the data, the receiving terminal transmits an ACK to the
transmitting terminal. Upon reception of the ACK, the backoff
stage is reset to 0 and . If the source terminal does
not receive the ACK after a timeout period (ACK timeout) or

1For the rest of the text, we would refer to “jamming” as MAC jamming at-
tacks.

it detects the transmission of any other frame in the channel
(collision), the frame is assumed to be lost. After each unsuc-
cessful transmission, the value of is doubled up to a maximum
of , where is usually referred to as
the maximum backoff stage [19]. In the sequel, we will con-
sider the standard IEEE 802.11 DCF with and

.
The RTS/CTS access is similar to the basic access, but it

makes use of a four-way handshake protocol in which prior
to data transmission, a terminal transmits a special short re-
quest-to-send frame (RTS) to reserve the transmission and re-
duce the cost of collisions.

B. Vulnerability of IEEE 802.11 DCF to DoS Attacks

An intelligent jammer transmits with the knowledge of the
protocol [7], distinguishing between the control packets and
the data packets by analyzing the length of packets and the
interpacket timings. In particular, an attacker can easily cor-
rupt those frames for which their exact transmission times are
known: CTS/RTS frames, ACK frames, and DATA frames [6].
An attacker only needs a small portion of the energy of a packet
to corrupt it. Unfortunately, the repercussion of the attacker is
not limited to the lost frame. Due to the distributed operation of
the CSMA/CA protocols, a node being jammed will defer the
transmission of its next frame following the multiplicative de-
crease algorithm. A terminal undergoing a few successive jams
would virtually stop transmission. This is a strong incentive not
only for malicious attacks, but for selfish misbehaving nodes
that can “clear” the network for its own legitimate transmissions,
without having to reveal their wrongdoing.

To illustrate the effect that an intelligent attack has on IEEE
802.11 DCF, let us consider an IEEE 802.11 DCF network with
15 terminals where only one external terminal jams the CTS
frames. We consider two types of jamming: 1) random uniform
jamming in which the jammer corrupts every CTS frame with
certain probability and 2) ON–OFF jamming, in which an attacker
starts jamming with certain probability, always corrupting the
next five CTS frames. Fig. 1 is obtained by using the ns-2 sim-
ulator and shows the normalized throughput of the jammed net-
work compared to the energy spent by the jammer, also mea-
sured in throughput (i.e., the amount of time it spends corrupting
frames). It is seen that a jammer has an incredible impact on the
network utilization, virtually driving throughput to zero while
using an energy of three orders of magnitude less than that of a
legitimate terminal.

C. Problem Formulation

While preventing jamming attacks is not possible, the detec-
tion of such attacks is of paramount importance. Upon detection
of a DoS attack, the network should have a mechanism to in-
form the terminals and the neighboring access points about the
threat in order to take appropriate actions. For example, the com-
promised access point may be turned off to prevent other user
from logging. In the case of multihop systems, such as wireless
mesh networks, the detection of jamming attacks is important in
order to reroute the traffic avoiding the compromised areas. The
specifics of such mechanisms, however, fall outside the scope
of this paper.
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Fig. 1. Throughput of an IEEE 802.11 DCF in the presence of just one “intel-
ligent jammer.”

Obviously, a jamming attack will result in an increase in the
number of collisions observed in the network. However, be-
cause, in general, it is not possible to identify specific collisions
caused by a jammer, our approach is to observe the variability
in the distribution of the collision, differentiating between
“normal” and “abnormal” (jamming) operation. Specifically,
let be a sequence of observations related to the
operation of a CSMA/CA network (we discuss the specific
observations we propose in Section III). We consider two
hypotheses: 1) hypothesis corresponds to the network per-
forming normally (i.e., no jamming attack) and 2) hypothesis

corresponds to the case where the network is jammed.
Hence, we have the following hypothesis test, as shown in (1)
at the bottom of the page, where and are the probability
distributions of the observations when the network is operating
normally and when the network is being jammed, respectively.

Note that there may be other causes of transmission errors
(i.e., collisions) that are not necessarily caused by jamming,
such as poor channel conditions or the presence of hidden ter-
minals. However, the occurrence of such events can be easily
factored into by, respectively, estimating the average number
of transmission errors for a given received signal-to-noise ratio
(SNR), and estimating the average impact of hidden terminals
in collisions.

III. STATISTICAL ANALYSIS OF COLLISIONS

UNDER NORMAL OPERATION

From the point of view of an IEEE 802.11 DCF terminal, time
can be slotted into variable length slots. Specifically, one time

Fig. 2. Sequence of states in the network between two consecutive successful
transmissions S of terminal n.

slot will either correspond to a fixed length idle slot, a transmis-
sion slot, or a collision slot. Transmission and collision slots
have variable length depending on the length of the packets
being transmitted and whether the RTS/CTS mode is enabled.

One logical choice of the observations in (1)
is the collision probability observed in the network. However,
the collision probability in IEEE 802.11 DCF is a function of
the number of competing terminals,2 and hence a change in the
collision probability may be caused by a change in the number
of terminals in the network, and not (necessarily) by a jamming
attack. Moreover, and as we will see in Section IV, the collision
probability is not very sensitive to a jamming attack, especially
for a high number of competing terminals. Hence, the collision
probability may not be a good indicator for a jamming attack.
In what follows, we present an alternative characterization of
the “normal” operation of an IEEE 802.11 DCF network that 1)
does not depend directly on the observed collision probability
and 2) is more sensitive to the presence of jammers and, hence,
offers improved detection capabilities.

A. Contribution of a Terminal to a Collision

Consider an IEEE 802.11 DCF network with competing
terminals as described in Section II-A, and consider the state of
the network between two consecutive successful transmissions
of terminal . Since the backoff timers are decremented only
during idle slots and not during transmissions of other terminals,
without loss of generality, we can ignore the transmission slots
of terminals other than . Then, the sequence of states in the
network between two consecutive successful transmissions
of terminal will have the form depicted in Fig. 2. Assume that

collisions occur between the two transmissions of terminal ,
denoted by , and define the corresponding idle slot
sequence as (i.e., there are idle slots between
the consecutive collisions and ). We want to determine
the probability that terminal has participated in each collision

based on .
Define a binary random variable with if

terminal contributed to collision , and oth-
erwise. We call the sequence a collision
codeword. We are interested in calculating the probabilities

, where

2The number of competing terminals is the number of terminals that have
something to send at a particular time, not the total number of terminals regis-
tered, for example, to an access point.

choose
normal operation
abnormal operation–i.e., jamming

(1)



350 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 3, NO. 3, SEPTEMBER 2008

denotes the conditional probability. Denote and
as the window size and the backoff counter3 of the terminal
after collision , respectively. Initially, after a successful
transmission, the terminal has a window size of and
a backoff counter of . The terminal randomly selects
the backoff time of before attempting the next
transmission. Then, the probability that the terminal contributed
to collision is

(2)

If , the terminal would increase the window size to
and would again select a backoff time of .

On the other hand, if , the terminal does not change
the backoff window size, so , and sets . By
the memoryless property of the uniform distribution, if

, then we have . So, if
, it is equivalent to terminal randomly picking a new

backoff time . We see that the state of the
terminal after the collision depends only on the state of the
terminal after the collision slot and the number of idle slots

between the collisions and .
Generalizing, after collision , let the current window size

of terminal be and let the backoff counter be the
number of idle slots since the last transmission attempt (i.e., the
number of idle slots since the last event ). We say
that the state of terminal is . Then, at collision

, we have

(3)

When , terminal would update its state to
, where is the max-

imum window size allowed by the protocol (e.g.,
in the standard IEEE 802.11). On the other hand, if , ter-
minal would update its state to .
Finally, after the last collision , the probability of the terminal
having a successful transmission after idle slots is given by

(4)

Note that this is equivalent to having a trailing bit in
the collision codeword.

We can use the aforementioned probabilities to construct a
trellis similar to that of a linear block code. To illustrate the
construction of the trellis, consider the example in Fig. 3 that
shows the state of the network between two transmissions of
terminal 1. We observe two collisions and the idle slot
sequence . Also note that there are two
transmissions from other terminals denoted as (or busy slots)
that are ignored for the purpose of terminal 1’s trellis construc-
tion. After the first successful transmission, the state of terminal
1 is . Then, . If

, then the terminal would double its maximum window
size and set . On the other hand, if ,
then the terminal would keep and set . This

3The backoff counter keeps track of the number of idle slots since the last
attempted transmission.

Fig. 3. Trellis corresponding to the idle slot sequence ft ; t ; t g = f1; 5; 8g.

would continue until the next successful transmission is encoun-
tered. Note that the trellis can be pruned if a certain branch has
probability 0; for example, if .

From the trellis that is shown, we can compute the probability
of each codeword for terminal by multiplying the transition
probabilities along the corresponding path in the trellis. For ex-
ample, in Fig. 3, we can calculate the probability of the collision
codeword as

(5)

Finally, we can estimate the probability of individual bits by
marginalization as

(6)

The computation of the marginal probabilities in (6) can be effi-
ciently implemented by using the forward–backward algorithm
[20].

Algorithm 1: Monte Carlo approximation of the marginal
probabilities in (6)

1) Let be the sequence of idle slots since the
last transmission of (see Fig. 2). Let denote the number
of Monte Carlo iterations.

2) Denote by the number of occurrences of .
Set .

3) Denote as the number of valid samples.

4) for do
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5) Set .

6) Set .

7) for do

8) if then

9) This codeword is not feasible. Drop the sample.

10) break

11) end if

12) if then

13) .

14) . .

15) else

16) .

17) . .

18) end if

19) end for

20) if then

21) This codeword is not feasible. Drop the sample.

22) else

23) .

24) Set .

25) end if

26) end for

27) Finally, the value of (6) can be obtained by

Approximation of : Note that the total
number of nodes at the th stage of the trellis is, in the worst
case, . However, in “normal” operation of IEEE 802.11
DCF, and with a number of competing terminals ranging from
1 to 25, we observe from ns-2 simulations that the chance of
having is only about 0.9%. As an indication, the for-
ward–backward algorithm for (6) takes less than 3 s in decoding
codewords with length 20, and a few milliseconds for decoding
codewords of length 15 and lower using a standard desktop
PC. However, when a jammer is present, the codeword lengths
increase and the exact computation of (6) becomes intractable.
In those cases, a simple Monte Carlo approximation can be
used, as shown in Algorithm 1.

Also, it is important to note that the Hamming weight of
the codewords (i.e., the number of terms that
are equal to 1) is proportional to , where is the
probability of collision [e.g., estimated as (11)] (i.e., the code-
words are sparse). We can exploit this fact when using the Monte

Carlo approximation by discarding codewords whose Hamming
weights are much larger than . Finally, if the codeword
length is much larger than 20, it is safe to ignore the codeword
because it is very unlikely that the collisions were produced in
a “normal” operation of the network. This simplification, while
favoring the case of a jammer being present, does not impose a
great penalty because such a large codeword is a very rare event,
and is indeed most likely caused by “abnormal” conditions in
the network.

Validating : We can use the values
in (6) to estimate the other properties of

an IEEE 802.11 DCF network. Consider a network with
competing terminals. We observe the network for a certain
period of time and observe collisions . Denote

as the actual number of terminals that partici-
pate in the collision . Then, the collision factor, defined as the
average number of terminals that participate in the collisions
in the network [1], is given by . While the
values and, hence, the collision factor can only be di-
rectly measured in simulations, in a real network, only the idle
slot sequence is relevant.4 to collision can be
measured. Then, to estimate , we estimate
given in (6), and use the following estimator:

(7)

Fig. 4 shows the estimation of the collision factor given in
(7) compared to that obtained in ns-2 using the simulation pa-
rameters described in Section V-A. We can see that when the
number of competing terminals is small, there is some uncer-
tainty about the contribution of terminals to collisions. However,
as the number of terminals in the network increases, the estimate

perfectly matches the exact value. With being a physical ver-
ifiable property of the network, the accuracy of the estimation
confirms that our analytical formulation of is
sound.

Some Notes on : The quantity
depends only on the number of idle slots

between successful transmission of terminal
. It is important to note that the values of are

observable by any terminal in range without collaboration
from other stations.5 Moreover, the values of do
not depend on the transmissions nor the state of the measuring
station and, hence, can be calculated, for example, by a station
that never transmits. This property allows the introduction of
specific-purpose “black-box” detectors, without modification
of existing terminals or access points, allowing the introduction
of the DoS detector in existing IEEE 802.11 deployments.

4Denote S and S as two consecutive successful transmissions of ter-
minal n, and let fc ; c ; . . . ; c g and ft ; . . . ; t g be the sequence
of collisions and the sequence of idle slots in the network, respectively, between
transmissions S and S . We say that ft ; . . . ; t g is the sequence of
idle slots that are relevant to collisions fc ; c ; . . . ; c g. While each colli-
sion in the network may have a different relevant idle sequence, we will gener-
ically refer to it as ft ; . . . ; t g.

5See [1] for a detailed discussion as to how the values of ft ; . . . ; t g can
be collected in an 802.11 network.
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Fig. 4. Estimation of the collision factor � via (7).

B. Explainability of Collisions

Next, we consider the combined contribution of all the termi-
nals in the network to a collision , and we will use it to deter-
mine whether the collision is a legitimate one or it is abnormal,
such as in the case of a jamming attack.

Consider an IEEE 802.11 DCF network with competing
terminals, and let be the sequence of collisions
in the network over a period of time. We can use (6) to cal-
culate the probability that each terminal
contributed to each collision , where refers to
the idle slot sequence relevant to collision . When there is no
jammer present in the network, a collision event is defined as

(8)

where is the indicator function. In practice, since are
not observable, we define the explainability of collision as

(9)

(i.e., the probability that there are at least two terminals con-
tributing to collision ).

To illustrate the procedure to calculate , consider the se-
quence of network states depicted in Fig. 5. For each terminal
in the network, we calculate the probabilities

Fig. 5. Example of calculating e(c ). The conditionals on the relevant idle slot
sequences ft ; . . . ; t g are not shown for brevity.

that the terminal had participated in collision . In order to
calculate these probabilities, we use either the forward–back-
ward algorithm or Algorithm 1 between each consecutive pair
of successful transmissions of terminal . This calculation is si-
multaneously performed for all terminals competing in the
network. Then, for each collision for which all of the prob-
abilities are known, we use
(9) to calculate its explainability . The process is detailed
in Algorithm 2. Note that the algorithm proceeds sequentially,
updating the values of the probability that a terminal con-
tributed to the collisions observed in the network since its last
successful transmission. The algorithm cannot calculate
until the contributions of all competing terminals to collision

are obtained.

Algorithm 2: Calculation of collision explainability

1) Observe the network until a successful transmission from
any terminal is observed. Let that be a transmission from
terminal .

2) Denote as the sequence of collisions and
as the sequence of idle slots observed in the

network since the last successful transmission of terminal .

3) Use (6) to calculate the contribution of
to the collisions (i.e.,

).

4) For those collisions for which all
of the are known (where is the
number of competing terminals in the network), calculate

given by (9).

5) Go to Step 1).

Fig. 6(a) and (b) shows the cumulative distribution functions
(cdf) of obtained by Algorithm 2 in ns-2 using the simula-
tion parameters described in Section V. Note that as the number
of competing terminals in the network increases, the percentage
of collisions that can be explained simply by observing the se-
quence of idle slots in the network increases, and for ,
virtually all of the collisions can be explained with a probability
of at least 0.5. Also, for , there is a significant percentage
of collisions that are perfectly explainable (i.e., ) and,
hence, there is a jump in the cdf at . The increasing
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Fig. 6. Distribution of the explainability of the collisions e(c ) in IEEE 802.11
DCF calculated using Algorithm 2. (a) For the number of competing terminals
between 2 and 8. (b) For the number of competing terminals between 9 and 20.

accuracy in the prediction of the collisions accounts for the re-
sults obtained in Fig. 4, where we see that accurate estimations
can be obtained by using (6). This is a remarkable result, con-
sidering that the actual transmissions of the terminals (i.e., the
values of ) are not known.

Sensitivity of to Jamming Attacks: Ideally, if the trans-
mission times of all terminals were known, the quantities

in (9) would suffice to determine whether a collision is
caused by a jammer. On the other hand and under normal pro-
tocol operation, the explainabilities have the distribution
shown in Fig. 6(a) and (b), and some collisions can be explained
better than others. More important, the distribution of is
an excellent indicator of the normal protocol operation for a
given number of competing terminals. Fig. 7(a), obtained in ns-2
using the simulation parameters specified in Section V, shows
the change in the cdf of for a number of competing ter-

Fig. 7. Effect of a jammer in the network. (a) cdf of collision explainability
e(c ). (b) cdf of the number of idle slots between collisions.

minals and , when there is no jammer in the
network, and when there is an attacker present in the network
jamming randomly as few as 1% of the frames. There are two
important aspects to note: 1) the cdf of may significantly
change its shape in the presence of a jammer and 2) the cdf of the
explainability of collisions changes dramatically even for a very
small percentage of corrupted frames as we can see in Fig. 7(a),
for the case of a jammer corrupting only 1% of the CTS frames.
This contrasts with the effect that jamming has on the distri-
bution of the frequency of the collisions that as we can see in
Fig. 7(b), does not experience a significant change under light
jamming, and is almost unnoticeable for the case of .
Hence, the quantities are excellent candidates to serve as
jamming attack indicators.

IV. MAC DOS DETECTOR

In the previous section, we have shown that the distribution
of can be used as observations [i.e., in (1)] for the de-
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tection of a jamming attack. However, Algorithm 2 assumes that
the number of competing terminals in the network is known,
which is generally not the case. In this section, we first show
how to keep track of the number of competing terminals, and
then we show how to implement a robust MAC DoS detector.

A. Tracking the Number of Competing Terminals

The problem of estimating the number of competing termi-
nals (i.e., the number of terminal that have something to send)
in an IEEE 802.11 DCF network has already been studied [21],
[22]. Previous works base their estimations on the assumption
that there is a functional relationship between the number of
competing terminals and the collision probability, as was first
shown in [23]. Unfortunately, in the case of a MAC jamming
attack, that functional relationship is no longer valid, because
a jammer would cause an increase in the number of collisions
without affecting the number of competing terminals. Instead,
we propose here to estimate by direct observation of the suc-
cessful transmissions of the terminals in the network: if a suc-
cessful transmission of a terminal is observed, the terminal is
definitely competing. However, after a successful transmission
is observed, the event of the terminal ceasing to compete (i.e.,
having no more data to send) is not observable. If a certain
amount of time has passed since the last successful transmis-
sion of a terminal and a new successful transmission has not
occurred, it might be because the terminal has indeed emptied
its buffers, or because it is experiencing heavy collisions. In
what follows, we propose a method to estimate how long it is
necessary to wait after observing a successful transmission of a
terminal before concluding that the terminal is no longer com-
peting in the network.

Probability That a Terminal is Still Competing: Define a
random variable as the number of idle slots between suc-
cessful transmissions of a terminal. Let be the probability
that the terminal will suffer from a collision if it transmits
in the current slot. It is shown in [1] that in an IEEE 802.11
DCF with and , we have where

is the maximum allowable number of collisions, and
. Let be a sequence of

collision probability estimates obtained by

# of collisions
# of transmissions

(11)

The pmf of can be estimated by estimating and
the corresponding by using (11) and (10), as shown at the
bottom of the page, respectively, over several intervals and then
taking the average. The reader can refer to [1] for specific details
about the calculation and derivation of (10).

Let be the random variable denoting the number of idle
slots since the last successful transmission of terminal . Then,
the probability that terminal is still competing after idle slots
is given by

(12)

where is the event that a terminal is still competing, and
is the event that a terminal has ceased to compete. Note that

, where is the cdf of
. Also note that if terminal is not competing, then

. The probability (i.e., the overall
probability that after a successful transmission a terminal still
has data to send) depends on the movement and the trans-
mission pattern of the terminals for the specific application.
Finally, we decide that a terminal has ceased to compete after

idle slots after its last transmission where is such that
is the desired false alarm probability, and

.
We assume that the arrival and departure rate of a terminal in

the network occurs in a time scale that is orders of magnitude
greater than the time between two consecutive successful trans-
missions of a terminal (e.g., milliseconds in an IEEE 802.11b
network). For our problem, we chose a false alarm probability
of , and we also assume that if a terminal has just
transmitted, it is very likely that it will still have data to send,
and set , which corresponds to a terminal sending
on average 100 frames before ceasing to compete. Note that a
conservative large prior does not reduce the accuracy of
the estimation as long as the aforementioned assumption holds
true, but instead it adds delay to the decision. However, note that
decision speed is not a concern because the calculation of the
values is always delayed until the next suc-
cessful transmission of terminal is observed. Also, the number
of idle slots to wait before making a decision is never greater

(10)
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Fig. 8. Probability P (t) that a terminal is still competing after t idle slots
since its last successful transmission.

than . Fig. 8 shows an example of (12) for an IEEE 802.11
DCF network with two and ten terminals.

The algorithm to calculate the number of competing termi-
nals for Algorithm 2 proceeds as follows. Denote as the
total number of terminals that have been observed transmit-
ting in the network in the past, and let be the number of
idle slots since the last successful transmission of terminal .
Initially, . Then, for each terminal
and as increases, one of the following two events will occur
first: either there is a new successful transmission from terminal

, or , where is selected as indicated before. Let
be the sequence of collisions in the network since

the last successful transmission of terminal . If a successful
transmission occurs first, then it is obvious that terminal was
competing at collisions . If, on the other hand, we
have first, then terminal was not competing at col-
lisions . The total number of competing terminals
can then be computed by counting the number of terminals that
were competing at each collision .

There are two potential sources of error in the aforementioned
procedure. First, the algorithm considers that a terminal starts
competing (i.e., performs its first transmission in the network)
the first time that a successful transmission from that terminal
is observed. However, the first transmission of a terminal may
not be successful. In fact, a terminal would undergo, on average,

collisions before succeeding for the first time. Second,
ifa terminal thathasstoppedtocompete,startscompetingagain in
less than idle slots after its last successful transmission, then the
algorithm may erroneously decide that the terminal did not stop
competing in the first place. Both type of errors are only relevant
if the departure and arrival rate of a terminal are on the same time
scale as that of two consecutive transmissions (e.g., milliseconds
in an IEEE 802.11b network), which is unlikely. Finally, note that
the presence of a jammer does not introduce errors, because the
algorithm takes into account the observed probability of collision
in the network: in the presence of a jammer, the observed proba-
bilities of collision would increase, and so the algorithm would
wait for more idle slots before concluding that a legitimate ter-
minal has ceased to compete.

B. Sequential DoS Detector

As we discussed in Section II-C, we are interested in de-
veloping a detector that can discriminate between “normal”
operation of the network characterized by a probability dis-
tribution , and “abnormal” operation characterized by an
unknown probability distribution . We will use the sequence
of explainability of collisions as our observation vari-
ables for the hypothesis testing problem defined in (1), so
that . Since the distribution

when a jammer is present is unknown, it is necessary to
use a distribution-free or nonparametric approach to perform
the detection. Hence, we employ the -truncated sequential
Kolmogorov–Smirnov (KS) test introduced in [1].

The K–S test [24], [25] is the most widely used good-
ness-of-fit test for continuous data. It is based on the empirical
distribution function (edf), which converges uniformly and
almost surely to the real population cdf (Glivenko–Cantelli
Theorem) [26]. The K–S test is the most powerful two-sample
test for which the distribution of the statistic is known, and we
use this property to design a sequential test based on it. The K–S
test compares the edf obtained from the data samples with
the hypothesized cdf , and determines whether ,

, or . For the jamming detection problem, we
use the following test:

choose
no jamming
jamming

(13)

Define as the cdf of the sequence of the explainability of
collisions in an IEEE 802.11 DCF network with competing
terminals when there is no jammer in the network (Fig. 6).
Then, for a given sequence of collisions in the network

, the distribution for the test in (13) is given by

(14)

where is the number of competing terminals in the net-
work at collision calculated using the procedure described in
Section IV-A. Note that the cdfs repre-
sent the normal behavior of IEEE 802.11 DCF when no jammer
is present, and can be calculated offline via simulations and pre-
loaded in the detector. , on the other hand, depends on the ac-
tual number of competing terminals for the observation period,
so it has to be calculated online. Also let be
the corresponding sequence of the explainability of collisions.
Then, the edf of the observations for the test in (13) is given
by

(15)

The K–S test statistic , defined as the maximum value of the
difference between the two cdfs

, can be calculated as

(16)
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Define

(17)

(18)

where is the number of samples (i.e., collisions) and is the
maximum stage of the -truncated sequential K-S test with a
probability of false alarm [1]. Then, at any stage of the K-S
test, the hypothesis is rejected if , where is given
by [27]

(19)

Finally, the algorithm for detecting the presence of a jammer in
the network is summarized in Algorithm 3.

Algorithm 3: Detecting jammer attacks using the
-truncated sequential K-S test with

1) .

2) .

3) .

4) Let be the last values returned by
Algorithm 2, and be the number
of competing terminals at each calculated as described
in Section IV-A.

5) Update with the new calculated number of competing
terminals using (14).

6) Update the edf with the observations
using (15).

7) Calculate the significance level of the stage as in (19).

8) if then

9) reject . The network is behaving “abnormally” (e.g.,
there is a jammer in the network).

10) else if then

11) do not reject . The network is behaving normally.

12) else

13) go to 2

14) end if

V. SIMULATION RESULTS

A. Simulation Setup

We consider the IEEE 802.11 DCF described in Section II-A
where a legitimate terminal uses and

. For all of the experiments in this paper as well as for
the figures in the previous sections, data are collected using the
ns-2 network simulator version 2.28 [28] and we implement the
detection algorithms using MATLAB. We modified the 802.11
implementation so that the nodes measure idle slots in the net-
work and estimate the collision probabilities. The simulated sce-
nario is an IEEE 802.11 network with one access point, and the
wireless terminals communicate via UDP with peers outside the

wireless network. One terminal (e.g., the access point) monitors
the transmissions from all of the other terminals and implements
the detection algorithm. The parameters used in the simulation
are typical for a 11-Mb/s 802.11b wireless local-area network
(WLAN). No packet fragmentation occurs and the nodes are lo-
cated close to each other to avoid capture or hidden terminal
problems. The propagation delay is 1 s. The packet size is fixed
with a payload of 1024 B. The MAC and PHY headers use, re-
spectively, 272 and 192 b. The ACK length is 112 b. The Rx/Tx
turnaround time is 20 s and the busy detect time 29 s. The
short retry limit and long retry limit are set to 7 and 4 retrans-
missions, respectively. Finally, the slot time is 20 s, the SIFS
is 10 s, and the DIFS is 50 s. We model the data arrival as an
ON–OFF process, where terminals alternate periods of transmis-
sion with periods of silence. Both the ON and the OFF times are
modeled after a Pareto(1.5) distribution with burst mean (ON) of
2 s and idle time mean (off) of 5 s.

We only consider the case of intelligent jamming [7] (i.e., the
jammer corrupts frames with the knowledge of the IEEE 802.11
DCF protocol). We consider two types of attacks: 1) -random
jamming, where the jammer corrupts the CTS frames in the net-
work with probability . We will use random jamming with very
low to measure the ability of the detectors to track very small
changes in the normal network conditions, for example, in the
case of a jammer that tries to avoid detection. A particular case
of this attack is full jamming, in which the attacker corrupts
every frame in the network . This attack would cor-
respond to a physical RF jamming attack. The full jamming at-
tack would serve as a benchmark for the speed of the detection
of worst-case scenarios and 2) misbehavior jamming, when one
of the terminals in the network deliberately selects a different
window size from that specified by the protocol in order to gain
unfair access to the network. Such a misbehaving node would
indeed cause the rest of legitimate nodes to observe more col-
lisions than expected. Note that the algorithm presented here
would be able to detect the abnormal behavior in the network
but is not designed to identify the misbehaving node.

For comparison, apart from the detector described in Algo-
rithm 3, we also consider a similar -truncated sequential K-S
detector that does not use the explainability of collisions as ob-
servations, but instead uses the distribution of the number of idle
slot between collisions in the network (i.e., how often collisions
occur). This comparison would allow us to determine whether a
detector based on the explainability of collisions is better suited
for this problem than detectors based on the frequency or prob-
ability of collisions.

B. Results

Fig. 9 shows the detection performance in the event of a
-random jamming attack, for both the 100- and 500-truncated

sequential detector based on the explainability of collisions,
and based on the distribution of collisions. As we can see, the
performance of the detectors, as expected, is very good for a full
jamming attack , only needing a few samples for the
detection. The sequential detector, based on the explainability of
collision, consistently outperforms the one based on the distribu-
tion of the collisions, needing, on average, a little more than half
of the samples. The 100-truncated detector is able to detect the
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Fig. 9. Number of samples and probability of detection (P ) of the detectors
when a p-random jammer is present and P = 0:01. (a) 100-truncated K–S.
(b) 500-truncated K–S.

presence of a jammer up to with . In order
to detect a 0.02-random attack with , it is necessary to
increase the truncation point up to 500. Note that a 0.02-random
attack would almost have no effect on the network performance,
and still, our detector would identify the attack in less than 100
ms in a standard IEEE 802.11b network, which is remarkable.

The superior performance of the detector based on the ex-
plainability of collisions is more evident when the attacks are
not uniformly distributed. Fig. 10 shows the performance of
the 1000-truncated detectors when there is a misbehaving node
in the network that selects different values of with

[1]. Note that the pattern of nonlegiti-
mate collisions caused by a misbehaving node are distributed
similar to the transmission pattern of a node (i.e., they follow

Fig. 10. Number of samples and probability of detection (P ) of the 1000-
truncated detectors when a node is misbehaving and P = 0:05.

the CSMA/CA multiplicative increase algorithm). Still, our
detector based on the explainability of collisions performs
considerably better than the one based on the distribution of
collision. We see that our MAC jamming detector is sensitive
to any cause of “abnormal” behavior in the network, making
it an excellent early-detection intrusion detection system, that
cannot only detect the presence of jammers, but also provide
input to other detectors, such as the misbehaving detector in
[1], to improve their performance.

Finally, Fig. 11 shows the ROC curve of the 500-truncated
detectors with when a 0.01-random attack is per-
formed. As we can see from the results, the detector based on the
explainability of collisions performs better than the one based
on the distribution of the collisions. The number of samples for
the detection of both random jamming and misbehavior stays in
the order of milliseconds for a standard IEEE 802.11b network.
Overall, the explainability of the collisions provides superior in-
formation about the network conditions and, hence, its use is not
limited to the attacks shown here.

VI. CONCLUSION

We have proposed a method for detecting the MAC layer DoS
attacks (i.e., jamming) in a CSMA/CA network, based on cal-
culating the probability that the collisions in the network can be
explained by simple observation of the events in the network.
The -truncated sequential K–S test is employed to determine
whether the samples are consistent with the hypothesis that the
network is operating normally. We apply the test to detect intel-
ligent jamming attacks in an IEEE 802.11 DCF network using
the ns-2 simulator. We have shown that the distribution of the
explainability of the collisions is an excellent indicator of the
presence of jammers and misbehaving nodes in the network, and
that it greatly surpasses the standard detectors that track changes
in the distribution of the collisions in the network. The proposed
technique is robust since it is able to detect any deviation from
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Fig. 11. ROC curve for the 500-truncated detectors when a 0.01-jammer is
present.

the “normal” operation of the network, and can operate without
modifying the protocol implementation.
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