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Abstract
Background: Periodic phenomena are widespread in biology. The problem of finding periodicity
in biological time series can be viewed as a multiple hypothesis testing of the spectral content of a
given time series. The exact noise characteristics are unknown in many bioinformatics applications.
Furthermore, the observed time series can exhibit other non-idealities, such as outliers, short
length and distortion from the original wave form. Hence, the computational methods should
preferably be robust against such anomalies in the data.

Results: We propose a general-purpose robust testing procedure for finding periodic sequences
in multiple time series data. The proposed method is based on a robust spectral estimator which
is incorporated into the hypothesis testing framework using a so-called g-statistic together with
correction for multiple testing. This results in a robust testing procedure which is insensitive to
heavy contamination of outliers, missing-values, short time series, nonlinear distortions, and is
completely insensitive to any monotone nonlinear distortions. The performance of the methods is
evaluated by performing extensive simulations. In addition, we compare the proposed method with
another recent statistical signal detection estimator that uses Fisher's test, based on the Gaussian
noise assumption. The results demonstrate that the proposed robust method provides remarkably
better robustness properties. Moreover, the performance of the proposed method is preferable
also in the standard Gaussian case. We validate the performance of the proposed method on real
data on which the method performs very favorably.

Conclusion: As the time series measured from biological systems are usually short and prone to
contain different kinds of non-idealities, we are very optimistic about the multitude of possible
applications for our proposed robust statistical periodicity detection method.

Availability: The presented methods have been implemented in Matlab and in R. Codes are
available on request. Supplementary material is available at: http://www.cs.tut.fi/sgn/csb/
robustperiodic/.
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Background
Periodic phenomena are widespread in biology, includ-
ing, among others, membrane potential oscillations, car-
diac rhythms, smooth muscle contraction, calcium
oscillations, protoplasmic streaming, glycolytic oscilla-
tions, cAMP oscillations, oscillations in neuronal signals,
insulin secretion (pancreas), gonadotropic hormone
secretion, cell cycle, circadian rhythms, and ovarian cycle
(see e.g. [1]). Consequently, there are numerous biologi-
cal applications where periodicities must be detected from
experimental biological data. Because the data measured
from biological applications are inherently noisy and usu-
ally sparsely sampled, efficient algorithms are being devel-
oped to extract as much information as possible.

In the past few years there has been an explosion of avail-
able microarray gene expression data. Detecting periodic-
ity in gene expression is of great importance because it
indicates, e.g., cell-cycle regulation [2] as well as the effect
of circadian rhythms [3]. The significance of the detection
of cell-cycle regulated processes is further emphasised by
the linkage between cell-cycle and cancer (see, e.g., [4] and
[5]). To this end, microarrays have been used to study the
circadian gene expression in Neurospora Crassa [3] as well
as cell-cycle regulated genes, e.g., in budding yeast [6], in
fission yeast [7], and in human cells [5].

The task of finding periodicity in time series measured
from a biological system can be viewed as a decision prob-
lem based on spectral analysis together with multiple
hypothesis testing. A formal statistical testing procedure
for the detection of periodic expression profiles was
recently introduced by Wichert et al. [8]. It relies on the
use of a so-called Fisher's g-statistic for which the exact
null-distribution can be derived under the Gaussian noise
assumption.

Recently, a number of other methods for detecting peri-
odic transcripts have also been proposed [9-13]. A major
difference between the method proposed by Wichert et al.
[8] and other methods is that Wichert's method is capable
of detecting unknown frequencies whereas other methods
are designed for detecting fixed frequencies. From a com-
putational point of view, the problem of finding
unknown frequencies is even more demanding since no
prior knowledge of the frequency to be detected is availa-
ble. In many biological applications it is more important
to search for periodicities having an unknown frequency.
However, in some applications, such as large-scale cell
cycle studies, the period length is usually known and thus
provides additional information for testing. In this paper,
our goal is to tackle both of the two problems. That is, we
develop two methods, one for the detection of unknown
frequencies and the other for testing fixed frequencies.

In many applications, including those arising from bioin-
formatics, the exact noise characteristics are usually
unknown and can be remarkably non-Gaussian. Further-
more, the observed gene expression time series can exhibit
other non-idealities, such as outliers, short length and dis-
tortion from the original wave form. Therefore, it would
be useful to have a robust method for detecting periodic
components, i.e., a method that also works well when the
original (Gaussian) noise assumption no longer holds.

A robust, rank-based, non-parametric spectral estimator
was recently introduced in [14]. In this paper, we extend
the approach of [14] to the detection of periodic time
series. This results in a robust testing procedure which is
insensitive to a heavy contamination of outliers, missing-
values, short time series, nonlinear distortions, and is
completely insensitive to any monotone nonlinear distor-
tions. We also consider a permutation-based alternative to
the method proposed in [8] and show that, when the data
is contaminated with the above mentioned non-idealities,
this results in a more robust method.

As discussed, e.g., in [15], the performance of a method
can be proven using either extensive simulations, analyti-
cal proofs or multiple plasmode experiments (to use a
term from [15]). Plasmode is a real data structure whose
true structure is known. Although very useful, the kinds of
benchmarkings proposed in the literature (related to peri-
odically behaving gene expression time series) so far do
not belong to any of the above categories. In particular,
the proposed benchmarking frameworks cannot be con-
sidered as plasmodes since the true structure (periodic
genes) is not known but, instead, is based on partial bio-
logical knowledge (or other measurements, such as pro-
tein-DNA binding). Hence, the performance cannot be
assessed solely on real data. Therefore, as the analytical
proofs are hard to obtain in this case, we perform exten-
sive simulations to show the superior performance of the
proposed methods. However, we also apply the proposed
method to real experimental data to show that the meth-
ods perform well on real data and that the results are bio-
logically meaningful.

Results
Computational methods
In order to be consistent with the previously published
methods, we use similar notation as in [8] and also con-
sider the same model for the periodic time series

yn = β cos(ωn + φ) + εn,  (1)

where β ≥ 0, ω ∈ (0, π), n = 1,..., N, φ ∈ (-π, π], and εn is
an i.i.d. noise sequence. To test for the periodicity, define
the null hypothesis as H0 : β = 0, i.e., time series consists
of the noise sequence alone, yn = εn. In the following we
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develop a method for detecting unknown frequencies and
later introduce a modification which can be applied to the
detection of known frequencies. We first review the
Fisher's test for the detection of periodic transcripts as
introduced by Wichert et al. in [8].

Wichert's method
The method proposed by Wichert et al. [8] is based on the
periodogram spectral estimator, defined as

where N is the time series length. The periodogram is fur-
ther evaluated at (harmonic) normalised frequencies

where a = [(N – 1)/2] and [x] denotes the integer part of x.
To test for the periodicity formally, some kind of a test sta-
tistic must be chosen. The so-called g-statistic for one time
series is given by

In plain words, the g-statistic is the maximum periodog-
ram ordinate divided by the sum of all periodogram ordi-
nates for l = 1, ..., a. Large value of g indicates a strong
periodic component and leads to the rejection of the null
hypothesis.

Wichert et al. [8] resort to a result by Fisher that, under the
Gaussian noise assumption, gives the exact distribution of
the g-statistic under the null hypothesis (see, e.g., [16,8]).
The exact p-value for a realisation of the g-statistic is
shown to be

where b is the largest integer less than 1/x and x is the
observed value of the g-statistic. Because there are usually
thousands of time series that are tested simultaneously,
whether they exhibit periodicity or not, there is a possibil-
ity that a time series can have a small p-value by chance.
To correct the p-values for multiple testing, Wichert et al.
[8] use the method of Benjamini and Hochberg (see, e.g.,
[17]), which controls the False Discovery Rate (FDR). The
FDR method controls the expected proportion of false
positives (Type I errors) at a given rate q. The threshold of
the FDR depends on the evaluated p-values. The FDR pro-

cedure for the ordered set of p-values p(1), p(2),...,p(M),
where M is the number of time series, is as follows

1. Let iq be the largest i for which 

2. Reject the null hypothesis for the time series corre-

sponding to the p-values p(1), p(2),..., 

The procedure based on the periodogram spectral estima-
tor for periodicity detection has several well-known and
important properties. For example, if the noise sequence
∈n is i.i.d. Gaussian and the true underlying frequencies
are among the harmonic frequencies Ω = {ωl : l = 0,..., [(N
- 1)/2]}, then the (square root of the) periodogram is the
minimum variance unbiased estimator of the frequency
content at discrete frequencies Ω (see, e.g., [18]). How-
ever, it is also widely recognized that the standard perio-
dogram is an inconsistent spectrum estimator (see, e.g.
[19]). Despite this weakness, the periodogram is a stand-
ard method that is theoretically well-founded. Under the
popular Gaussian working assumption, widely invoked in
spectral estimation, the distributional characteristics of
the periodogram are known and useful. Indeed, it is this
distributional characterisation that forms the basis for
Fisher's g-test for whiteness. In other words, Equation (5)
provides the exact significance value for a realisation of
the g-statistic. This provides a solid theoretical basis for
the use of the method proposed in [8].

Concerning the problem of detecting hidden periodici-
ties, some generalisations and improvements over the tra-
ditional methods have been proposed. A recent review of
the proposed methods can be found in [20]. Many of the
improved methods are some type of generalisations of the
traditional methods, such as the correlogram or periodo-
gram. Artis et al. [20] report that two particular methods
are generally found to have a good performance: so-called
mixed spectrum methods by Priestley and Bhansali (see,
e.g. [19,20]), and a modified method based on the maxi-
mum periodogram ordinate by Chiu [21]. The method by
Priestley and Bhansali uses a certain type of windowing of
the correlogram for the "smoothing" purposes (i.e., in
order to reduce the variance). The method by Chiu in turn
modifies the g-statistic by replacing the average spectrum
in the denominator with a proper trimmed mean of the
ranked periodogram ordinates. As we explain in the Dis-
cussion Section, the same modifications/improvements
can be used in the proposed robust method (to be intro-
duced shortly) as well. Indeed, the windowing can be uti-
lized much in the same way as it is used in the method by
Priestley and Bhansali. Similarly, the modification(s) of
Chiu can be directly implemented in the case of the pro-
posed robust estimator.
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Fisher's test and the proposed robust method can be con-
sidered to be analogous in the sense that neither of them
incorporates any modifications for the traditional perio-
dogram/correlogram approach. In Simulations Section we
perform an extensive comparison of the unmodified,
standard methods since this provides a better insight into
the performance differences of the traditional methods
and the proposed robust rank-based methodology. Fur-
thermore, from an extensive simulation point of view,
comparison of many different modifications together
with the robust method would also result in a rather large
number of simulations, especially because it is possible to
use many different combinations of the modifications.
Note, however, that the further modifications, such as the
ones proposed by Priestly, Bhansali, and Chiu, can be
implemented in both of the frameworks (the traditional
and the robust rank-based) to gain further performance
improvements. We discuss this issue further in Discussion
Section.

In many applications, particularly in bioinformatics, the
noise distributions are usually unknown and can remark-
ably deviate from the Gaussian assumption. The methods
based on Gaussian noise assumption may fail, or even
produce invalid results, when the model assumptions do
not hold. The goal of this paper is to introduce an alterna-
tive for the standard methods, aimed at providing a robust
estimator.

A robust alternative
As a starting point we should like to remind that the peri-
odogram I(ω) is equal equivalent to the correlogram spec-
tral estimator (see, e.g., [25])

where  is the biased estimator of the autocorrelation
function

Note that the required values for  for m < 0 are
obtained by invoking the inherent symmetry of the auto-
correlation function: r(-m) = r(m). Consequently, the g-
statistic in Equation (4) as well as the corresponding sig-
nificance value in Equation (5) can also be computed
using S(ω) instead of I(ω). It is natural to try to obtain

robustness by replacing  with a robust alternative.

Before continuing to the robust method, it is important to
note that, especially in the case of gene expression time

series, the data is often contaminated with missing values.
Therefore, the spectral estimation method must take miss-
ing samples into account. Let Im be the set of time indices
k for which both yk and yk+m are available and Km = |Im|. As
long as Km ≠ 0, a missing data-adapted version of the unbi-
ased estimate of the autocorrelation can be obtained as

We cover only the versions adapted to missing data in the
following text since they are equal to the standard estima-
tors in case of complete data sets. Note that Km equals N -
m for the complete data sets. Next we consider a recently
introduced rank-based autocorrelation estimator [14] for
the problems of spectrum estimation. This estimator is a
moving-window extension of the Spearman rank correla-
tion coefficient, quantifying the association between the
sequences {yk} and {yk+m}. The resulting quantity, ρS(m)
is actually an alternative estimator of the standard correla-
tion coefficient ρ(m) between these sequences (see e.g.
[19])

where [·] denotes the expectation operator and µyi = 
[yi] is the mean of the sequence. Recall that the sample
correlation coefficient between two N length sequences
{xi} and {yi} is defined as

where  denotes the sample mean of {xi}.

Under the assumption of stationarity, it immediately fol-
lows from Equation (9) that the correlation coefficient
ρ(m) is related to the autocorrelation function r(m) by

, where  is the

variance of the sequence. Since it is important to remove
the mean of the sequence prior to spectrum estimation to

avoid low frequency artifacts and since  is simply a

scale factor, the problem of detecting periodic compo-
nents in a data sequence may equally well be based on
ρ(m) as r(m). Consequently, we consider spectral estima-
tors of the form
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where  estimates the correlation coefficient between
{yk} and {yk+m} and L is the maximum lag for which the
correlation coefficient is computed. More specifically, we
consider the correlation coefficient between the data

ranks Ry(i) and , defined by

where C is a normalisation factor, Ry(i) denotes the rank

of yi in the set S = {yj : j ∈ Im} and  denotes the rank

of yi+m in the set S' = {yj+m : j ∈ Im}. By selecting either C =
Km or C = N in Equation (12) yields the unbiased or the
biased estimate of the correlation coefficient between the
rank sequences, respectively. Because both of these rank
sequences assume every value from 1 to Km precisely once,
their average is (Km + 1)/2, independent of the data values
{yn}, and their sample variance, when scaled by the

sequence length Km, can be shown to be (  - 1)/12.

More generally, if C = Km, and since ρS(m) is the correla-
tion coefficients between ranks, it is bounded by -1 ≤
ρS(m) ≥ 1 for all m. In the following we shall use L = N - 2
in Equation (11) because N - 2 is the largest lag for which
Equation (12) can be computed.

We shall use the biased estimate, i.e., C = N, here because
of its connection to the equivalence between I(ω) and
S(ω). Moreover, the use of the biased estimate in spectrum
estimation (Equations (6) and (7)) can be interpreted as
triangular weighting of the autocorrelation function esti-
mate. Windowing is usually applied to reduce the scallop-
ing loss effect which is the reason why some frequencies
are inferior to others [25].

As in the case of the standard autocorrelation estimate, the
values for ρS(m) for m < 0 are obtained by symmetry: ρS(-
m) = ρS(m). This also helps in computing Equation (11)
since it reduces to

where (x) denotes the real part of x. As opposed to
standard periodogram or the corresponding correlogram,
the proposed robust spectral estimator is not guaranteed
to be non-negative. We shall hence use the absolute value

of  in the following.

Significance values
In the same way as Wichert et al. [8] do, we use the g-sta-
tistic and evaluate

for each time series spectral estimate. However, we do not
have the luxury of resorting to an exact distribution of the
g-statistic, e.g., under the Gaussian noise assumption. To
obtain the significance values we consider two common
ways of computing them: simulation and permutation-
based methods. This also opens up a possibility for adjust-
ing some parameters in the proposed robust method that
were previously kept fixed. In particular, we vary the
number of equidistant frequencies at which the spectral
estimate is evaluated and change Equation (14) accord-
ingly by incorporating more terms in the max-operator as
well as in the sum in the denominator. Instead of having
a fixed set of a + 1 normalised frequencies as in Equation
(3), we can evaluate the spectral estimate at [(K - 1)/2] + 1
equidistant frequencies

Although the method is rather insensitive to the selection
of K, we found that K = 2N generally provides a good per-

formance. Evaluating  at more frequencies can be
viewed as a smoothing or interpolation of the original dis-
crete spectral estimate. From the implementation point of
view it is worth mentioning that Equation (13) evaluated
at frequencies shown in Equation (15) can be computed
using the fast Fourier transform (FFT).

As was already discussed in the Background Section, in
some cases one might be interested in testing fixed instead
of unknown frequencies. The proposed method can natu-
rally be adapted to that case as well. If ω' is the known fre-
quency for which the spectral content is to be tested, then
a modified g-statistic, g', can be used

In the following, we mainly concentrate on the use of the
standard g-statistic for detecting unknown frequencies.
However, the same methods, such as simulation and
permutation based significance values, can also be
applied to the modified g-statistic. In Experimental results
Section we apply both the standard and the modified g-
statistics to real microarray data.
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When the noise satisfies the i.i.d. assumption, the deci-
sion between simulation and permutation test-based sig-
nificance values is facilitated by the following
observation. A statistic T is said to be distribution-free

over a collection of distributions  if the distribution of

T is the same for every joint distribution in . Consider
the signal model shown in Equation (1) under the null
hypothesis H0: β = 0, i.e., yn = εn, and assume that εn is
again i.i.d. and has continuous distribution. It is easy to
see from Equation (12) that, for any time series {yn}n =

1,...,N, the g-statistic depends on {yn}n = 1,...,N only through
the rank sequence {Ry(i)}i = 1,...,N, where Ry(i) denotes the
rank of yi in the original sequence. This implies that the g-
statistic is distribution-free over the class of all joint distri-
butions of N i.i.d. continuous univariate random varia-
bles (see, e.g., [22]). In other words, for each N and
independent of the type of the noise, the g-statistic has
exactly the same null distribution as long as the noise
term satisfies the continuous i.i.d. assumption. Therefore
we can choose to use either the simulated distributions
(must be simulated separately for each times series
sequence length) or the permutation tests, depending on
the circumstances.

Simulation-based significance values
The simulation-based method is simple. Given the model
as in Equation (1) together with some distributional
assumptions for εn, generate a set of P random time series
under the null hypothesis. Evaluate the test statistic
shown in Equation (14) on each of the P time series. Use
the obtained g-values to compute an estimate of the distri-
bution of the g-statistic under the null hypothesis. The dis-
tribution can be estimated, e.g., using kernel density
estimation methods. The testing can then be performed as
explained above except that the significance values are
computed/integrated relative to the estimated distribu-
tion. Note that the null distribution must be estimated for
each time series length separately but, due to the distribu-
tion-free property, the null distribution is independent of
the noise characteristics under the i.i.d. assumption.

Permutation-based significance values
A more flexible way of obtaining p-values is to use permu-
tation tests [23]. Although they are a relatively old con-
cept, permutation tests have only recently become
interesting in practise because of the intensity of needed
computing power. The idea is simple:

1. Choose a test statistic.

2. Evaluate the test statistic on the original data.

3. Randomly permute the data and evaluate the test statis-
tic on every permutation.

4. Estimate the distribution of the test statistic with the
help of the sample generated in point 3.

5. Use the estimated distribution to get a p-value for the
original test statistic computed in point 2.

A sequence of random variables {Xn}, n = 1, 2,...,N is

exchangeable, if the joint distribution of 

is the same as that of the original sequence X1, X2,..., XN for
all permutations π. Under the null hypothesis, the ele-
ments of the time series yn are i.i.d. and therefore
exchangeable, and hence the permutation test can be
applied. Alternatively, as the application of a random per-
mutation destroys any periodic structure that is present in
the original sequence, permutation tests can be used to
assess how highly structured the given time point values
are in the light of the chosen test statistic versus other per-
mutations of the given sample. As the concept of permu-
tation tests is non-parametric, they can be applied without
knowing the exact distribution of the data at hand.

Instead of performing all the N! permutations for each
time series, we have chosen to permute each of the origi-
nal time series for P = 5000 times. As our simulations
show, this seems to be quite an adequate number of iter-
ations. The selection of P is always a compromise, because
too high P makes computations too slow and too low P
weakens the accuracy and resolution of the calculated p-
values. For example, time series having a very periodic
structure can get a p-values of zero due to the low value of
P.

While we have mainly applied the permutation tests to
the robust estimator, it must be noted that with the help
of permutation tests the robustness of the periodogram
can also be improved. As we show in Results section that
if we add, e.g., some impulsive noise to the simulated
data, the results when using the periodogram method as
in Equation (5) are not as good as when we use permuta-
tion tests to find the p-values.

Correction for multiple testing
In order to facilitate the comparison between the pro-
posed and previous methods, the obtained p-values are
corrected exactly in the same way as in the method by [8].

Simulations
We put the presented methods to a test by first going
through simulated data, where the ground truth is known,
and then by finding periodically behaving genes in real
microarray data.




X X X
Nπ π π1 2

, ,...,
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In simulations, we use exactly the same test signal model
as in [8] for comparison purposes, namely Equation (1)

with β =  and φ = -π/4, i.e.,

where n = 1,...,N, ω is uniformly randomly chosen in the
interval ω ∈ [0.05π, 0.45π] (we wanted to avoid frequen-
cies near zero and the Nyquist frequency) and εn is an i.i.d.
noise sequence. An essential parameter is the amplitude

(β = ) which affects the signal-to-noise ratio and
which we would like to have the same as in [8]. We chose
to consider three types of non-idealities, namely (i) pure
standard Gaussian noise (zero mean and unit variance,
see Figure 1(a)), (ii) standard Gaussian and impulsive
noise (number of impulses equals ten percent of the
sequence length, amplitude ± 6 times the standard devia-
tion of the Gaussian noise, see Figure 1(b)), and (iii)
standard Gaussian noise and x3 distortion, where all val-
ues were raised to the power of three after adding the
noise (see Figure 1(c)).

In each example sequence in Figure 1, the normalised fre-
quency of the original sinusoidal is ω = 0.1. Figures 2(a)–
(c) show the spectral estimates for the time series in Fig-
ures 1(a)–(c), respectively, using both the standard perio-
dogram and the proposed robust method. Note that the
spectra have been scaled for viewing purposes.

Figures 2(b)–(c) already illustrate a remarkable difference
between the two methods. For more details about the per-
formance of the proposed robust method as a spectrum
estimator, see [14]. A detailed comparison of the periodic-
ity detection capabilities is performed next.

Let us first examine the power of the test, i.e., one minus
the probability of the type II error (false negative). The
power of the test is estimated for the three different test
cases as well as for different time series lengths and for dif-
ferent noise parameters using 10000 Monte Carlo runs,
see Figure 3. The significance level is set to α = 0.05. In all
the three cases, the case-specific noise assumptions are
used for both the null hypothesis (β = 0) and the alterna-
tive hypothesis (β > 0). In this simulation, we use the sig-
nal model shown in Equation (17) to represent a periodic
signal (i.e., the alternative hypothesis). In the right col-
umn of Figure 3, the length of the time series is set to 40
and the power is shown as the function of varying noise
parameters. Figure 3 clearly shows that the power of the
proposed robust hypothesis testing method is remarkably
better than that of the Fisher's test, especially in the case of
outliers and non-linear distortion. More interestingly,
however, the proposed method is also more powerful in
the case of standard Gaussian noise.

Next we consider another simulation. In the same way as
in [8], two thousand time series of length N = 10, 20, 40,
45, 50 and 100 were generated to test the periodicity
detection. One thousand and nine hundred of the time
series were plain noise and one hundred time series were
generated according to Equation (17). We again consider
the three aforementioned noise models. As explained in
the Computational Methods Subsection, we evaluated the
g-statistic and p-value for each time series and then used
the FDR rule to determine which of the time series were
considered to be cyclic for a certain FDR level. The FDR
level, at which the expected rate of false positives is con-
trolled, was chosen similarly as in [8], i.e., q = 0.15, 0.10,
0.05, 0.01 and 0.005. For each N and q the simulation was
run for 99 times for the simulation-based cases and 9
times for the permutation-based cases. Median statistics
are reported for the number of found periodic compo-
nents, the number of correctly identified periodic compo-
nents (shown in parenthesis) and the number of truly
periodic time series among the top 100 ranked sequences
(Z).

If we take a look at the results in Tables 1 to 9 we can draw
some immediate conclusions. First, when the noise is
plain Gaussian, Tables 1, 2, 3, 4 show that both methods
perform approximately equally well.

There are no significant differences between the two meth-
ods in terms of the number of detected genes or in terms
of the number of correctly detected genes. However, the
numbers of truly periodic genes among the top 100
ranked sequences (Z-scores) show somewhat favorable
performance for the robust method, especially for the
short time series N = 20 and N = 40. Indeed, this observa-
tion agrees with previous findings [14] where the robust
method was found to have a good performance as a spec-
trum estimator for short time series. By comparing Tables
1 and 2 and Tables 3 and 4, it is obvious that the permu-
tation tests do not provide any significant performance
gain over the traditional approach where the significance
values are computed using the simulation-based method
or Equation (5), respectively. In both cases, the Z-scores
are about the same, as expected. The only notable differ-
ence is seen in the number of found periodic genes for
short time series (e.g., N = 40, 45, 50) and small FDR lev-
els (q = 0.005, 0.01, 0.05) where the numbers are slightly
higher when permutation tests are used. This suggests that
the permutation-based method finds a bit smaller p-val-
ues than the simulation-based method.

Tables 1, 2, 3, 4, 5, 6, 7, 8 clearly show the superior robust-
ness of the proposed method over the traditional Gaus-
sian analysis. As can be seen from Tables 1 and 5 and
Tables 2 and 6, there is only a minor performance degra-
dation between the Gaussian case and the combined

2

y nn n= ⋅ − + ∈ ( )2 4 17cos( / ) ,ω π

2
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Examples of time seriesFigure 1
Examples of time series. An example of a time series composed of a sine and (a) additive standard Gaussian noise, (b) addi-
tive standard Gaussian and impulsive noise, and (c) additive standard Gaussian noise and cubic distortion.
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Examples of spectral estimatesFigure 2
Examples of spectral estimates. The spectral estimates for the time series in Figures 1 (a)-(c), respectively, using both the 
standard periodogram and the proposed robust method.
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Power of the testFigure 3
Power of the test. The power of the tests (y-axis) for the three different test cases as the function of the time series length 
and varying noise parameters (x-axis). The solid (resp. dashed) line corresponds to the proposed robust method (resp. Fisher's 
test). Three different types of non-idealities are considered, namely, pure standard Gaussian noise (the first row), standard 
Gaussian and impulsive noise (the second row), and standard Gaussian noise and x3 distortion (the third row). The left (resp. 
right) column shows the results for different time series lengths (resp. different values of the noise parameters).

20 40 60 80 100
0

0.5

1
Gaussian noise

th
e 

po
w

er
 o

f t
he

 te
st

length of the time series
1 2 3 4

0

0.5

1
Gaussian noise

th
e 

po
w

er
 o

f t
he

 te
st

the noise variance

20 40 60 80 100
0

0.5

1
Gaussian noise and 10% impulses

length of the time series

th
e 

po
w

er
 o

f t
he

 te
st

0 0.1 0.2 0.3 0.4
0

0.5

1
Gaussian noise and impulses

th
e 

po
w

er
 o

f t
he

 te
st

the fraction of impulses

20 40 60 80 100
0

0.5

1
Gaussian noise and cubic distortion

length of the time series

th
e 

po
w

er
 o

f t
he

 te
st

1 2 3 4
0

0.5

1
Gaussian noise and cubic distortion

the noise variance

th
e 

po
w

er
 o

f t
he

 te
st
Page 10 of 18
(page number not for citation purposes)



BMC Bioinformatics 2005, 6:117 http://www.biomedcentral.com/1471-2105/6/117
Gaussian and impulsive case. On the other hand, Tables 3
and 7 and Tables 4 and 8 clearly indicate the sensitivity of
the periodogram method to fluctuations from the original
Gaussian noise assumption.

As discussed above, Tables 5 and 6 show that, in the case
of the robust method, permutation-based significance
value computation performs approximately equally well
as the simulation-based computation. The only notable
difference is again seen in the number of found periodic

genes for short time series (e.g., N = 40, 45, 50) and small
FDR levels (q = 0.005, 0.01, 0.05). Tables 7 and 8 in turn
show that, apart from the Z-scores, the permutation-based
method mitigates the sensitivity of periodogram method
to the fluctuations from the model (Gaussian)
distribution.

The robustness of the proposed method is further demon-
strated by its response to combined Gaussian noise and
nonlinear cubic distortion. As explained in Computa-

Table 1: Number of inferred periodic time series: case 1. The number of inferred periodic time series using the robust method and 
standard Gaussian noise in the data. p-values were obtained by simulating the distribution of the g-statistic using 10000 time series 
composed of Gaussian noise.

q\N 10 20 40 45 50 100

0.15 0 2(1) 107(90) 109(96) 117(99) 115(100)
0.10 0 1(1) 96(87) 103(94) 110(98) 109(100)
0.05 0 1(0) 83(79) 95(89) 101(96) 105(100)
0.01 0 1(0) 59(59) 80(79) 90(89) 101(100)
0.005 0 0(0) 32(32) 62(61) 64(64) 100(100)

Z 12 49 89 93 95 100

Table 2: Number of inferred periodic time series: case 2. The number of inferred periodic time series using the robust method and 
standard Gaussian noise in the data. p-values were obtained by using permutation tests.

q\N 10 20 40 45 50 100

0.15 0 4(3) 108(92) 113(96) 111(98) 119(100)
0.10 0 1(1) 99(90) 106(94) 106(97) 112(100)
0.05 0 1(0) 88(84) 97(89) 101(95) 106(100)
0.01 0 0 65(64) 80(78) 86(86) 101(100)
0.005 0 0 46(46) 61(61) 71(71) 100(100)

Z 15 48 91 92 95 100

Table 3: Number of inferred periodic time series: case 3. The number of inferred periodic time series using the periodogram method 
and standard Gaussian noise in the data. p-values were obtained by using Equation 5.

q\N 10 20 40 45 50 100

0.15 1(0) 17(11) 111(89) 108(86) 117(97) 122(100)
0.10 0 9(6) 100(85) 98(80) 108(96) 115(100)
0.05 0 2(1) 83(78) 79(71) 99(93) 107(100)
0.01 0 0 56(55) 54(52) 84(83) 101(100)
0.005 0 0 23(23) 20(20) 54(54) 99(99)

Z 13 39 85 83 93 99
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Table 4: Number of inferred periodic time series: case 4. The number of inferred periodic time series using the periodogram method 
and standard Gaussian noise in the data. p-values were obtained by using permutation tests.

q\N 10 20 40 45 50 100

0.15 0 2(0) 109(94) 111(98) 114(98) 117(100)
0.10 0 2(0) 98(91) 103(96) 107(98) 112(100)
0.05 0 2(0) 87(84) 98(95) 103(98) 105(100)
0.01 0 2(0) 68(67) 88(86) 91(80) 102(100)
0.005 0 1(0) 55(55) 70(70) 80(79) 100(100)

Z 14 40 92 94 97 100

Table 5: Number of inferred periodic time series: case 5. The number of inferred periodic time series using the robust method and 
standard Gaussian plus impulsive noise in the data. p-values were obtained by simulating the distribution of the g-statistic using 10000 
time series composed of Gaussian noise.

q\N 10 20 40 45 50 100

0.15 0 1(0) 73(62) 84(73) 101(84) 114(100)
0.10 0 1(0) 60(55) 76(69) 91(81) 109(100)
0.05 0 1(0) 48(46) 58(56) 77(73) 105(100)
0.01 0 0 22(21) 21(21) 49(49) 100(99)
0.005 0 0 13(13) 17(17) 34(34) 95(95)

Z 9 35 73 78 84 99

Table 6: Number of inferred periodic time series: case 6. The number of inferred periodic time series using the robust method and 
standard Gaussian plus impulsive noise in the data. p-values were obtained by using permutation tests.

q\N 10 20 40 45 50 100

0.15 0 1(0) 70(57) 83(72) 93(82) 117(100)
0.10 0 0 59(51) 71(68) 89(79) 111(100)
0.05 0 0 48(45) 60(58) 77(72) 105(99)
0.01 0 0 24(23) 35(33) 54(53) 99(98)
0.005 0 0 22(21) 27(27) 41(41) 95(95)

Z 9 38 72 78 82 99

Table 7: Number of inferred periodic time series: case 7. The number of inferred periodic time series using the periodogram method 
and standard Gaussian plus impulsive noise in the data. p-values were obtained by using Equation 5.

q\N 10 20 40 45 50 100

0.15 0 0 16(16) 24(22) 28(28) 77(71)
0.10 0 0 13(12) 20(12) 25(24) 73(69)
0.05 0 0 11(11) 13(13) 17(17) 65(63)
0.01 0 0 3(3) 6(6) 9(9) 52(52)
0.005 0 0 0(0) 1(1) 3(3) 40(40)

Z 11 29 44 46 52 79
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tional Methods Section, the robust method depends on
the observed time series only through the rank sequence.
Any monotone distortion preserves the ordering of the
samples. Therefore, the rank-based method is completely
insensitive to any monotone distortions. Consequently,

the results for the third test case are identical to those pre-
sented in Tables 1 and 2. The results for the periodogram
method are shown in Table 9.

Table 8: Number of inferred periodic time series: case 8. The number of inferred periodic time series using the periodogram method 
and standard Gaussian plus impulsive noise in the data. p-values were obtained by using permutation tests.

q\N 10 20 40 45 50 100

0.15 0 6(5) 38(29) 40(33) 18(16) 82(76)
0.10 0 2(2) 34(26) 36(32) 14(13) 76(72)
0.05 0 1(1) 23(22) 32(29) 10(9) 69(69)
0.01 0 0 16(15) 18(18) 7(6) 61(61)
0.005 0 0 15(14) 17(17) 7(6) 53(53)

Z 11 32 47 49 44 80

Table 9: Number of inferred periodic time series: case 9. The number of inferred periodic time series using the periodogram method 
and standard Gaussian noise and cubic distortion in the data. p-values were obtained by using permutation tests.

q\N 10 20 40 45 50 100

0.15 0 0 49(44) 79(64) 89(74) 107(93)
0.10 0 0 39(36) 71(62) 80(69) 98(90)
0.05 0 0 25(24) 52(49) 64(59) 90(88)
0.01 0 0 8(8) 28(28) 44(43) 82(82)
0.005 0 0 8(8) 19(19) 37(36) 67(67)

Z 7 15 68 71 79 91

Table 10: Number of inferred periodic genes from real microarray data. Results obtained by using real microarray data are presented 
here. Permutation tests were used to obtain significance values for the robust spectra. Symbols: N is the length of the time series, M is 
the number of genes analysed, P (resp. P') is the number of found periodic genes having an unknown frequency (resp. frequency 
corresponding to the cell cycle length). Notes in the table: aSince the elutriation time course did not show any significant periodic 
components, we did not perform the test with a fixed frequency. bThe average spectrum showed several major peaks. The one in the 
vicinity of the assumed cell cycle frequency was chosen manually.

Cell type Experiment N M P' P'/M P P/M Source

S.cerevisiae cdc15 24 5287 981 18.6 946(766) 17.9 [6]
S.cerevisiae cdc28 17 6103 363 6.0 32(105) 0.5
S.cerevisiae alpha 18 6056 346 5.7 139(468) 2.3
S.cerevisiae elutriation 14 6074 _a _a 4(193) 0.07
Human HeLa Score3 48 41508 1285b 3.1b 3580(6043) 9.0 [5]
S.pombe cdc25-1 19 4373 1431 32.7 759 17.4 [7]
S.pombe cdc25-2 36 4422 2605 58.9 2197 49.7
S.pombe cdc25-sep1 20 4700 2624 55.8 2295 48.8
S.pombe elutriation1 20 4229 1948 46.1 551 13.0
S.pombe elutriation2 20 3961 1453 36.7 384 9.7
S.pombe elutriation3 20 4236 673 15.9 355 8.4
S.pombe elutr.-cdc10-br 22 4647 3131 67.4 2431 52.3
S.pombe elutr.-cdc25-br 21 4272 2405 56.3 767 18.0
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Experimental results
The data sets that are considered here are from the follow-
ing papers: [6,5,7]. For each time series experiment (13 in
total), we apply the proposed robust methods for detect-
ing genes having both fixed and unknown frequency com-
ponents. For the fixed frequency we use the one that
corresponds to the length of the cell cycle. Following the
idea presented in [8], a simple method for estimating the
cell cycle length/frequency is to compute the average
robust spectral estimate. For each time series, we present
the number of statistically significant genes that are found
to be periodically behaving at a specific level of the FDR
(q = 0.05). For the cdc15 experiment by Spellman et al.
[6], the sampling time was not equidistant in the begin-
ning and at the end of the data set. Considering the miss-
ing time points as missing values would result in a large
number of missing values with a regular pattern of occur-
rence. Although the proposed robust methods can cope
with missing values, such a regular pattern of missing val-
ues can artificially cause many small significance values
and hence result in an unreliably large number of statisti-
cally significant periodic genes. This can be avoided e.g. by
interpolating the expression values for the systematically
missing time points, in which we used simple linear inter-
polation. Only non-missing expression values are consid-
ered in the interpolation. If the expression values of both
the previous and the next time instants are missing, then
the interpolated sample is defined to be missing as well.
This results in a more conservative number of detected
genes for the cdc15 experiment. We chose to consider
only those genes that have less than 30% missing values
and decided to rule out all except the Score3 experiment
in the data by Whitfield et al. [5] because of high degree of
irregular sampling and short time series length. The
obtained results are shown in Table 10. The total number
of genes analysed in each data set is denoted as M. The
number of found periodic genes having fixed and
unknown frequency are denoted as P' and P, respectively.
The corresponding figures from [8] are shown in paren-
theses. For the detection of periodic components having
unknown frequency, we used the permutation-based
method. As was shown in Simulations Section, both the
simulation and permutation based approaches performed
approximately equally well. Hence, for the ease of imple-
mentation, we used the simulation-based method for the
detection of periodic components having a fixed
frequency.

If we first take a look at the numbers of detected genes
having a periodic component of an unknown frequency
(P) shown in Table 10, we can see that generally the num-
bers of periodically behaving genes are lower than those
of the corresponding figures in [8]. In other words, the
proposed robust method seems to provide more conserv-
ative estimates, although the cdc15 experiments shows an

exception. In the case of real data further comparison
between the two methods is much more subjective than in
simulation experiments since the ground truth is not com-
pletely known. Based on the simulation results shown
above, one could put more faith on the robust method,
especially in the cases where the Gaussian noise assump-
tion is violated. Hence one could argue that the robust
method has ignored more non-periodic time series, par-
ticularly ones where outliers and other non-idealities have
caused artificial variation in the periodogram. The
number of detected truly periodic genes can be increased,
at the cost of detecting more false positives, by using a
higher level of q.

Let us then focus on the numbers of found periodic genes
when using a fixed frequency in the robust method (P').
Concerning the numbers of detected periodic genes in the
data sets by Spellman et al. [6], the results are in concord-
ance with the previously published ones [24]. On the
cdc28 data set, the proposed method finds a slightly
higher number of periodic genes. Direct comparison
between the numbers P and P' is not meaningful as the
number of detected genes depends on the significance
level, which may be dependent on the used method. The
comparison is better done using the ordered gene lists
which we will discuss shortly together with three bench-
mark gene sets (see below).

We have not yet come across with another study, besides
the original paper, that would have examined the perio-
dicity in the data by Rustici et al. [7]. Rustici et al. investi-
gate the global cell cycle control of gene expression in the
fission yeast Schizosaccharomyces pombe using DNA micro-
arrays. Thus, the comparison of values in Table 10, related
to Rustici et al. data, is not feasible. Table 10 shows that
the number of detected periodic genes ranges from 673 up
to 3131. In the case of very large number of detected peri-
odic genes, more insight into the data set can be gained by
looking at the ordered list of genes.

Table 10 only shows the number of detected genes. Fur-
ther insight can be gained by looking at the enrichment of
the genes assumed to be cell cycle regulated among the
top ranked genes. In particular, we resort to the three dif-
ferent benchmark gene sets introduced in [24]. In order to
provide a direct comparison with the results shown in
[24], we show similar enrichment graphs for the both
robust detection methods (fixed and unknown fre-
quency) in Figure 4. Note that some of the benchmark
genes are ignored during the analysis since they have more
than 30% missing values. There are also a few benchmark
genes for which no exact match was found among the
genes in the data provided by [6]. Hence the graphs are
drawn based on slightly smaller benchmark gene sets,
Page 14 of 18
(page number not for citation purposes)



BMC Bioinformatics 2005, 6:117 http://www.biomedcentral.com/1471-2105/6/117
Benchmark resultsFigure 4
Benchmark results. The fraction of the benchmark set that is identified (y-axis) as the function of the highest ranked genes 
(x-axis). The solid (resp. dashed) line corresponds the robust detection having fixed (resp. unknown) frequency. The dotted 
line shows the performance of the random gene selection. The columns from left to right correspond to the Alpha, the Cdcl5 
and the Cdc28 experiment by [6]. The rows, from top to bottom, correspond to the three different benchmark gene sets B1, 
B2 and B3. for more details about the benchmark gene sets, see [24].
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namely, 101–112 (B1), 309–339 (B2), and 465–505
(B3), depending on the experiment.

Figure 4 reveals some interesting results. First, let us com-
pare how well the proposed robust method (with the
fixed frequency) finds the benchmark genes when com-
pared to previously published methods (for comparison,
see the corresponding graphs in [24]).

The results for the benchmark gene set B1 are shown on
the first row in Figure 4. For all the data sets, the perform-
ance of the robust method is either between the best
methods and the amplitude-independent method by
Zhao et al. [9], or close to the method by Zhao et al. [9].
This finding is not surprising. As discussed in [24], this
benchmark gene set is biased towards periodic genes
which are strongly regulated, i.e., have large amplitudes.
In general, because high-amplitude periodic genes are
more easily detected from noisy expression data, the gene
sets identified from such studies are likely to be biased
towards high amplitude genes. An advantage of ampli-
tude-independent methods is, however, that they detect
small-amplitude periodic transcripts better, and hence
may identify genes which are not yet known to be
periodic.

For the benchmark gene set B2, the performance of the
proposed robust method is approximately the same as
that of the best methods reported in [24], except for the
alpha experiments on which the robust method performs
slightly worse. Noteworthy is that the benchmark gene set
B2 is obtained from a separate Chromatin IP experiment
and thus is independent of the previous gene expression
studies.

Concerning the benchmark gene set B3, the robust
method performs better than the majority of the methods.
Notably good performance is seen on the data from the
Cdcl5 and the Cdc28 experiments. Interestingly, the
benchmark set B3 is also likely to be biased, but towards
small amplitude genes [24]. This strengthens the assump-
tion that the potential of the proposed robust method is
especially in detecting unknown, small-amplitude, peri-
odic genes.

Yet another interesting observation can be drawn by com-
paring the solid and dashed curves in Figure 4. As can be
expected, the method which detects especially cell cycle
frequencies ranks the benchmark genes higher than the
method which detects unknown (all) frequencies, i.e., the
solid line is above the dashed line. Another expected
behavior is that the method which detects unknown fre-
quencies also detected a great number of genes assumed
to be related to the cell cycle. However, from another
point of view, Figure 4 also indicates that there are some

statistically significant periodic patterns which are more
significant than some of the cell cycle related ones. Possi-
ble sources of those significant periodic patterns may
include, among others, systematic artifacts in the array/
experiment preparation, unknown periodic biological
processes, or simply the considerable amount of experi-
mental noise (false positives).

The top 300 ranked genes for all the data sets analysed,
obtained using the proposed robust method, are provided
on our companion website.

Discussion
As discussed above, some extensions and improvements
over the traditional periodogram/correlogram approach
have been proposed in the literature. Two particular mod-
ifications, namely utilisation of windowing and a
trimmed g-statistic, were reported to provide a good per-
formance in a recent review by Artis et al. [20]. Although
we provided an extensive comparison of the unmodified
traditional and the (unmodified) proposed rank-based
methodologies, the further modifications can be imple-
mented in a straightforward fashion in both of the frame-
works. These extensions for the robust rank-based method
will be examined in future studies but let us give an over-
view of the possible modifications.

As discussed previously, the biased version of the robust
correlation estimator can be viewed as a type of weighting
or windowing. More generally the windowing is typically
incorporated into the computation of the spectral esti-
mate (see, e.g., Equations (6) and (11)). Different
windows provide different properties for spectral estima-
tors. For example, the shape of the window can be used to
control the smearing and leakage effects whereas the
length of the window compromises with the spectral res-
olution and the variance [25]. In general, the used
windows can be chosen from a general class of windows,
including, among others, Bartlett, Daniel, and Parzen
windows (see, e.g. [16,18,19]). Concerning the detection
of hidden periodicities, windowing can be applied much
in the same way as it is used in the method by Priestley.

Similarly, the modification by Chiu [21], i.e., the use of a
proper trimmed mean of the ranked periodogram
ordinates in place of the average periodogram, can be
applied to the robust rank-based estimator as well. A
drawback associated with the use of the trimmed g-statis-
tic in the traditional periodogram setting is that only
asymptotic distribution of the test statistic is available.
The discrepancy between the true distribution and the
asymptotic one can be remarkable in the case of small
sample size typical e.g. in gene expression studies. These
difficulties can be circumvented by the computer inten-
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sive simulation and permutation-based methods
explained above.

The proposed method has other possible extensions as
well. As a periodically behaving gene may be involved in
several different biological processes, its expression pat-
tern may contain several dominant frequencies. In that
regard, the testing procedure can be extended to detect
several frequency peaks from the spectral estimate. See,
e.g., [19,21] for extensions of Fisher's test to that
direction.

In cell cycle related studies, a cell population is usually
forced to synchrony prior to taking the measurements
using an external synchronisation method. The synchro-
nisation is achieved by arresting the cells at a specific
phase of the cell cycle after which they are released. How-
ever, as time evolves, the cell population gradually loses
its synchrony. Such a phenomenon can be viewed as time-
varying (low-pass) filtering of the expression values where
the time-varying filter kernel corresponds to the distribu-
tion of the cell population over the cell cycle. Inverse
methods have been developed to correct for the effect of
the loss of synchrony [26,27]. Several interesting ques-
tions remain to be studied. First, the inverse filtering prob-
lem as such is fairly sensitive to noise and is further
complicated by the fact that the accuracy level at which
the filter kernel (i.e., distribution of the cell population)
can be measured is limited. Therefore, the corrected time
series may contain even more obscure non-idealities than
the uncorrected ones.

Consequently, robust methods are potentially even more
important when periodic components are sought from
the time series which are corrected for the loss of syn-
chrony. Future studies are also needed to compare the
robust periodicity detection method, when applied to
both uncorrected and corrected time series, to see whether
the inversion of the loss of synchrony brings any addi-
tional gain in the case of robust periodicity detection. In
addition to the simulation results presented in the Simu-
lations Section, we also performed preliminary simula-
tions where the amplitude of the periodic signal was
attenuated to model the loss of synchronisation. We
noticed that if the average amplitude of the sinusoidal sig-
nal remained the same, the results were similar to those in
the tables of the Simulations Section.

Further comparisons must also be made to assess the per-
formance differences between the proposed method (pos-
sibly combined with a proper inversion method for the
loss of synchrony) and alternative methods in which a
model for the loss of synchrony is incorporated into the
statistical testing framework [12,11]. Although elegant,
such combined approaches have potential difficulties in

that they usually result in a computationally intensive
optimisation problem [11] and/or include several distri-
butional assumptions [12]. Furthermore, the inversion of
the loss of synchrony is performed blindly, i.e., without
any additional measurements, which the distribution of
the cell population could be estimated with. Future exper-
iments are needed to address these questions.

Conclusion
The presented method yields a robust way of finding peri-
odicity in short time series data. As illustrated in Simula-
tions Section, the proposed robust detection method is
remarkably insensitive to different kinds of non-idealities
in the data, such as heavy contamination of outliers, miss-
ing values, short time series, nonlinear distortions, and is
completely insensitive to any monotone nonlinear distor-
tions. The results also show that the proposed method has
clearly better performance than the Fisher's test, even in
the case of the standard Gaussian noise. Furthermore, the
results on real data demonstrate that the proposed
method performs well on real data and that the results are
biologically meaningful. As illustrated in Figures 2(a)–(c)
and more extensively reported in [14], the robust method
serves also as a good spectral estimator. As the time series
measured from biological systems are usually short and
prone to contain different kinds of non-idealities, we
believe that the robust detection method presented in this
paper will find many important applications in this field.
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