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Abstract

significantly with the improved detection accuracy.

A novel approach for robust dialogue act detection in a spoken dialogue system is proposed. Shallow
representation named partial sentence trees are employed to represent automatic speech recognition outputs.
Parsing results of partial sentences can be decomposed into derivation rules, which turn out to be salient features
for dialogue act detection. Data-driven dialogue acts are learned via an unsupervised learning algorithm called
spectral clustering, in a vector space whose axes correspond to derivation rules. The proposed method is evaluated
in a Mandarin spoken dialogue system for tourist-information services. Combined with information obtained from
the automatic speech recognition module and from a Markov model on dialogue act sequence, the proposed
method achieves a detection accuracy of 85.1%, which is significantly better than the baseline performance of
62.3% using a naive Bayes classifier. Furthermore, the average number of turns per dialogue session also decreases

1 Introduction

Spoken dialogue systems (SDS) are computer systems
with which a user interacts through natural speech [1].
Services based on SDS have been deployed in a wide
range of domains, from simple goal-oriented applica-
tions, such as DARPA Airline Travel Information
System project for flight information [2], AT&T “How
May I Help You?” for call routing [3], and systems for
trip planning [4-6], to complex conversational applica-
tions, such as chatbot A.L.L.C.E. [7] and a variety of con-
versational agents using avatars [8].

The designer of an SDS often faces the following critical
issues. First, with noisy speech or spontaneous speech
with disfluency [9,10], abundant errors made by automatic
speech recognition (ASR) can lead to misunderstanding or
even pre-mature termination of a dialogue session (i.e.,
task failure). Second, the spoken language understanding
(SLU) unit is often very expensive to develop, due to the
manual annotation of certain features for semantic con-
tent. Examples of semantic features are part-of-speech
tags [11], semantic roles [12,13], prosodic features [14],
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and keywords [15]. Third, the dialogue manager (DM)
requires a sound dialogue strategy for management based
on the state of a dialogue. Such a strategy could be quite
complex in order to deal with all sorts of uncertainty, such
as errors in ASR.

A dialogue act (DA) describes the purposes or effects of
an utterance in a dialogue [16,17]. In principle, an utter-
ance can convey multiple DAs. It is a succinct representa-
tion of the current intention of the speaker. DAs are
closely related to speech acts (SA) [18], but they are spe-
cialized to dialogue systems [19]. While SAs are generic,
DAs often vary from SDS to SDS. Since we are building an
SDS, the notion of DA is more appropriate than SA to our
study.

In this article, we describe an SDS with robust DA
detection. Knowledge sources exploited include ASR con-
fidence, semantic representation of ASR output, and the
history of DA. First, the detrimental effects caused by ASR
errors are abated by using partial sentence trees. Second,
an unsupervised learning approach can determine data-
driven DAs automatically, reducing annotation costs.
Third, when DA can be reliably detected, the complexity
of DM strategy can be significantly reduced. The motiva-
tion for focusing on robust DA detection is that the issues
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with ASR error, SLU cost, and DM complexity can be
greatly alleviated.

A wealth of methods for DA detection have been
introduced in the literature. The simplest and strongest
“memorylessness” property basically assumes that the
current (DA) is independent of the past. Thus, DA
detection is based on a set of features derived from the
current utterance. In this case, classification-based
methods have been studied, including support vector
machines (SVM) [12,20], naive Bayes classifiers (NBC)
[21-23], and multi-layer perceptrons (MLP) [14,21].
When the memorylessness assumption is relaxed, the
dependence between past and current DAs has been
modeled by n-grams [24,25], hidden Markov models
[26,27], and Bayesian networks [28]. Recently, methods
based on weighted finite state transducers (WFST)
[4,29-31] or partially observable Markov decision pro-
cesses (POMDP) [32-34] have been studied for DM.

Our method for DA detection is completely different.
First, DAs are data-driven by clustering via the spectral
clustering algorithm, with each cluster identified as a DA.
The clustering happens in a space defined by derivation
rules (DR). Classification of DA for unseen utterances is
based on a novel derivation rule-dialogue act (DRDA)
matrix, which is created by counting the occurrences of
each DR in each utterance cluster. As a result, a column
in the DRDA matrix represents a DA in the vector space
spanned by DRs. As an example, in our system, the utter-
ance How can I go to Anping-Fort by car? is mapped to
DA-33 (Car_Destination, as listed in Table 1), and takes

Table 1 List of dialogue acts

Numbers DA Numbers DA
1 Greeting 2 Ending
3 Query_Service 4 Query_Spot
5 Query_Opening 6 Query_Introduction
7 Query_Contact 8 Query_Telephone
9 Query_Address 10 Query_Ticket
11 Query_Route 12 Query_Opening_Spot
13 Query_Introduction_Spot 14 Query_Contact_Spot
15 Query_Telephone_Spot 16 Query_Address_Spot
17 Query_Ticket_Spot 18 Query_Route_Spot
19 Query_Station 20 Query_Bus
21 Bus_From 22 Bus_Destination
23 Bus_From_Destination 24 Query_THSR
25 THSR_From 26 THSR_Destination
27 THSR_From_Destination 28 Query_TRA
29 TRA_From 30 TRA_Destination
31 TRA_From_Destination 32 Car_From
33 Car_Destination 34 Car_From_Destination
35 Route_From 36 Route_Destination
37 Route_From_Destination 38 Particle
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an action which leads to the generation of system
response “The suggested line is that... “.

The rest of this article is organized as follows. The
basic framework of SDS is introduced in Section 2. The
proposed robust DA detection method is stated in Sec-
tion 3. Details of the implementation are described in
Section 4. Experiments and discussion on the results are
presented in Section 5. Lastly, concluding remarks are
given in Section 6.

2 Spoken dialogue system

A dialogue session between a user and a statistical SDS
consists of a chain of interleaving user turns and system
turns, as illustrated in Figure 1. ASR outputs a string of
words (or N-best list) W based on utterance U. SLU
parses W and output a semantic representation. DM
updates the belief on dialogue states, and accordingly
decides the system’s action based on a policy. Natural
language generation (NLG) converts system’s action to a
surface representation in the textual form, which is
passed to the text-to-speech (TTS) module for speech
waveform generation. The cycle repeats when the user
responds with the next utterance.

The ASR module turns user’s utterance into word
hypotheses. A telephone-based SDS inevitably needs to
deal with noisy speech and spontaneous speech, render-
ing the job of ASR module difficult. Furthermore, errors
made by ASR may propagate along the system, making
the jobs of other modules difficult. As a result, ASR
accuracy is critical to the performance of SDS.

The SLU module, as depicted in Figure 2, converts ASR
output into semantic representation. In the proposed sys-
tem, the ASR output is first converted to a partial sentence
tree (PST) [35] in the PST Construction block. The basic
idea of PST is to replace unreliable word hypotheses by fil-
lers. As a result, PST is less vulnerable to recognition
errors. From PST, partial sentences are formed and parsed.

ASR

Automatic Speech

SLU
Spoken Langauge
Understanding

U

Recognition

confidence measure

DM
Dialogue Manager

q=(Awg, H)
A, = 7(blg)

NLG
Natural Language
Generation

TTS

Text-To-Speech

speech

Figure 1 Block diagram of a spoken dialogue system. At turn ¢,
the user utters U, which is recognized by ASR to be W. v is a
semantic representation of user's intended dialogue act. g is the
dialogue state, where A, is the hypothesized user's dialogue act. g is
user's goal, and H is dialogue history. b is a distribution over
dialogue states. A; is the system’s action. The function 77 is called
policy and it encodes the strategy of the dialogue manager.
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Figure 2 The spoken language understanding (SLU) module.
During training, derivation rules are extracted based on partial
sentence tree construction, and a derivation rule-dialogue act
(DRDA) matrix is constructed. During testing, the trained DRDA
matrix is used in DM for DA detection. Name entity class (NEC)
inventory is referenced to convert certain words to word classes.

The parse results contain derivation rules (DR), which are
extracted in the DR Generation block. The NEC (name
entity class) inventory is referenced and certain words are
replaced by word classes.

The core of an SDS is the dialogue manager. DM
adopts sound strategy to keep dialogue sessions alive
until they are successfully finished. An optimal action is
taken at each turn based on the dialogue state, including
user’s goal, user’s DA, and dialogue history. To cope
with uncertainty, a belief on the states can be main-
tained, and the policy for taking action can be based on
the belief.

3 Dialogue act detection

To infer dialogue act, a statistical model involving DA is
required. The model assumption of the generation pro-
cess for user’s utterance is described as follows. Based
on user’s goal and the dialogue history, a user decides a
DA, convert it into words, and produces an utterance.
This is depicted in Figure 3. Note that each variable in
the figure is indexed by turn ¢. However, to keep the
notation and graph from being cluttered, we drop the

A
() —~(2)~()~(v)

Figure 3 The generation process of user’s utterance. In this
graph, g is user's goal, H is dialogue history, A, is user’s intended
dialogue act, S is the uttered sentence, and U is the acoustical
observation. Note that the uttered sentence S and the recognition
hypothesis of ASR W are different.
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subscript ¢. It is not difficult to see that the critical evi-
dence to infer the current dialogue act should depend
on ASR output, lexical items, and dialogue history.
Thus, we can write

Al = arggnggmvsxf(w, U)g(Au, W) h(Ay, H), (1)

where Q = {A', .., A%} is the set of DAs. In (1), f (W,
U) is called ASR score, g(A,, W) is called lexical scorem
and /(A,, H) is called history score.

These scores are related to conditional probability
functions. For the ASR score, we use the acoustic model
and the language model in the ASR system. Specifically,

f(W, U) ~ pam(UIW)Py, (W), )

where pam(-) is the acoustic model probability, Py ai(-)
is the language model probability, and o is the language
model scale factor. For the history score, a back-off bi-
gram model for DA sequence is used [4,30,31]. That is,

h(Aw, H) =~ Pr(A; = AulAr1). 3)

Essentially, equation (3) models DA sequence as a
Markov chain. We assume that the current user’s DA
depends on the history only through the previous user’s
DA. For the lexical score, a novel measure is proposed
and the details are described in the following section.

4 Method for lexical score

One main contribution of this research is to demon-
strate that a novel method for estimating lexical score g
(A,, W) works quite well. The proposed method incor-
porates several steps, including partial sentence tree
construction, derivation rule extraction, utterance repre-
sentation in a vector space, the dialogue act set genera-
tion via spectral clustering, dialogue act representation
using relative frequency weighted by normalized
entropy, and finally a cosine distance measure between
dialogue act and utterance. Taking the risk of being
tedious, we describe the details of these steps in the fol-
lowing sections in order to make the overall procedure
clear.

4.1 Construction of partial sentence tree
In an SDS, it is often beneficial to partition the vocabu-
lary into a set of keywords K and a set of non-key-
words Q . Each word w e I should be quite indicative
of DA. Using K and @, the set of sentences with at
least one keyword can be represented as

§=09%(K Q) (4)

where A* is the Kleene star (a.k.a. Kleene closure) of
A, and A+ is the Kleene plus of A .
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Given a sentence s € S, a partial sentence (PS) of s
contains all keywords in s, while replacing some non-
keywords in s by tokens called Filler. For a sentence
with 7 non-keywords, there are 2" PS’s. These PS’s can
be compiled in a tree called partial sentence tree (PST).
A path in PST from the root to a leave corresponds to a
PS. The PST of sentence s is henceforth denoted by 7.
For example, Figure 4 gives the PST for the sentence

s : Where is the Anping - Fort (5)

In this example, Where and Anping-Fort are key-
words, while is and the are non-keywords. The 2> = 4
PS’s embedded in the PST.

PST is a robust representation of ASR output. That is,
even if some words are not recognized correctly, the
semantics of an utterance can still be conveyed with the
recognized keywords.

In the actual implementation, the ASR output is post-
processed before PST construction. First, a word
hypothesis, say w, is replaced by a Filler if the z-score
[36] is below a threshold

sw) =100, ©)

where f (w) is the recognition probability for word w,
i is the mean and o~ is the variance computed from all
samples. In addition, recognized keywords are replaced
by the named entity classes (NEC) or the greeting/end-
ing classes, to have a compact representation.

4.2 Extraction of derivation rules

After PST construction, each PS in the PST is parsed by
the Stanford parser (S-parser) [11]. Let the grammar of
the S-parser be denoted as a 5-tuple [37]

G=(V, =, P, S, D), (7)

where V) is the set of variables, X is the set of term-
inals, P is the set of production rules, S is the sentence
symbol, and D is a function defined on P for rule

Where
is

Filler
the Filler the

Anping Fort ~ Anping Fort  Anping Fort Anping Fort

Figure 4 Construction of the partial sentence tree for the
sentence where is the Anping-Fort. With 2 non-keywords, there
are 4 partial sentences.
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probability. In our implementation, a derivation rule
(DR) is defined to be a derivation of the form

A —- B — w, (8)

where A,B € V and w € X. Note that equation (8) is a
lexicalized rule. For illustration, parse results of the par-
tial sentences are shown in Table 2. One can see that a
lexical word in a PS produces a DR. Given a text corpus,
a set of DRs R = {R!,R?,...,R!} can be extracted and
compacted.

The motivation for using DR is to exploit the part-of-
speech (POS) information. In particular, POS tags help
to disambiguate noun-verb homonyms that occur quite
often in Chinese.

4.3 Vector representation of sentences
Using each DR as a feature, we can represent a sentence
s as a binary vector v, where

1,ifRi e T,
0, otherwise,

(- | ©)

Table 2 Examples of the parse result (left) and the
extracted derivation rules (right) corresponding to the
four partial sentences in Figure 4

PS: where is the spot

(Root DR1: WHADVP WRB
Where
(SINV DR2: VP VBZ is
(FRAG DR3: NP DT the
(WHADVP (WRB Where))) DR4: NP NNP Spot
(VP (VBZ is))

(NP (DT the) (NNP Spot)))
PS: where is filler spot

(ROOT DR1: WHADVP WRB
Where
(SBARQ DR2: SQ VBZ is
(WHADVP (WRB Where)) DR3: NP NNP Filler
(SQ (VBZ is) DR4: NP NNP Spot

(NP (NNP Filler) (NNP Spot)))))
PS: where filler the spot

(ROOT DR1: WHADVP WRB
Where
(FRAG DR2: VP VB Filler
(WHADVP (WRB Where)) DR3: NP DT the
(VP (VB Filler) DR4: NP NNP Spot

(NP (DT the) (NNP Spot)))))
PS: where filler spot

(ROOT DR1: NP NNP Where
(NP (NNP Where) (NNP Filler) (NNP DR2: NP NNP Filler
Spot)))

DR3: NP NNP Spot




Chen et al. EURASIP Journal on Audio, Speech, and Music Processing 2012, 2012:13

http://asmp.eurasipjournals.com/content/2012/1/13

where 7; is the PST for s. For example, the represen-
tative vector

v,=[1010]" (10)

means that R' and R® are used in 7, and that there
are [ = 4 derivation rules.

4.4 Generation of dialogue acts

We use a set of data-driven DAs to save the prohibitive
cost of manual annotation. We apply the recently-pro-
posed spectral clustering algorithm [38] to cluster utter-
ances in the training set. The spectral clustering
algorithm is chosen because a conventional clustering
algorithm (e.g., k-means) is often sensitive to centroid
selection (for initialization). After clustering, each cluster
found is identified as a DA.

Our implementation of spectral clustering is outlined
as follows. Suppose there are n utterances in the train-
ing set

D={s1, 52, ..., Su}. (11)

Each utterance is represented by a vector according to
equation (9). From D, we construct an n x n similarity
matrix M, where the similarity M, between two utter-
ances s; and si is defined as the cosine measure
between Vs, and Vsy. The normalized Laplacian matrix
of M is defined as

1 1
L21—D 2MD 2, (12)
where D is a diagonal matrix with entries
n
Dy = 8 ) My. (13)

j=1

We find the eigenvectors of the g smallest eigenvalues
of L. Note that the eigenvectors can be made orthonor-
mal since L is real-symmetric. We put these eigenvec-
tors in an n x g orthogonal matrix Q, and cluster the
row vectors to g clusters. Each cluster is identified as a
data-driven DA.

On a theoretical side, consider the conversion of M
into a binary-valued matrix A4 via a threshold 7, i.e.,

1, My <1,

. 14
0, otherwise. (14)

Mkk/ = {

M can be regarded as the adjacency matrix of a graph
G = (N, &), where node set A corresponds to D, and
edge set E corresponds to the non-zero entries in pf. It
can be shown [38] that the multiplicity of the eigenvalue
0 for [, the normalized Laplacian matrix of pf, equals
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the number of disjoint connected components in G,
which can be identified as clusters in D.

4.5 Derivation rule-dialogue act matrix

A cluster of utterances found via spectral clustering
algorithm is identified as a DA. In our implementation,
we use an entropy-based representation for DA. The
representation of DA is described as follows. Let #;; be
the accumulated count that DR R’ occurs in the utter-
ance cluster of A/. From n;j, a probability function of
DA conditional on DR is defined as follows

vij = P(DA = #|DR = R') £ (15)

The normalized entropy for the probability conditional
on DR R' is

1 4 .
Zyijlogyij' 1= ]_,...,l. (16)

_1084j=1

& =

Note that 0 </; < 1, and a DR R’ with a lower [, is
more discriminative for DA. From equations (15) and
(16), a matrix I" of size [ x g can be constructed with
entries

Lij = (1 = &i)yy.

We call I' the derivation rule-dialogue act (DRDA)
matrix. Thg jth column in I is a vector representation
for a DA A’ in the vector space spanned by DRs.

(17)

4.6 Similarity between utterance and dialogue act
In our implementation, the lexical score g(4,, W) in
equation (1) is decomposed into two terms

8(Au, W) ~ gr(Au, s)gn(Au, W), (18)

where gr(Au, s) is called DR score and gy (4, W) is
called named entity score. For DR score, the following

similarity measure is used
bgaj

gr(A, = A, 5) = max ,

(19)
acT. [by laj

where b, is the vector representation for PS ¢ in 7,
and a; is the vector representation for DA A (ie., col-
umn j in DRDA matrix I'). For named entity score, we
use the naive Bayes approximation

an(Ay = A, W) = ] v(4, a)

aeW (20)

where o is a named entity. Note that v(4/, o) is esti-
mated from a training corpus by the relative frequency
of o occurring in A’
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5 Experiments and discussion

We evaluate the proposed method for dialogue act
detection on an SDS for Tainan city tourist-information
services.

5.1 Data collection

We adopt the setup utilized in [4,6] to collect the dialogue
speech data. The data collection setup is shown in Figure
5, and an exemplar in the collected dialogue data is shown
in Table 3. An operator play the role of SDS, which helps
users to plan trips in Tainan. Twenty six male and eleven
female subjects play the role of users. For our prototype
system, users are asked to use utterances with single DA.
Dialogue speech data is recorded in a lab environment,
using 16,000-Hz sampling rate and 16-bit PCM format.
There are 294 dialogues.

Two types of speech data are collected. The first type,
called S-data, is from the operator playing the role of
SDS. S-data contains travel information collected from
on-line resources, such as Wikipedia and Google map. S-
data set consists of 2, 653 utterances, with 317 different
words. The second type, called U-data, is from subjects
playing the role of users. U-data consists of 2, 636 utter-
ances, with 297 different words. The vocabulary size is
small as we have a domain-specific task. From U-data, 87
keywords corresponding to 28 named entity classes/
semantic classes and 796 derivation rules are obtained
from the S-parser. Examples of the selected NECs and
semantic classes are given in Table 4. The collected data
contains sightseeing information, queries for the time
schedules of two railway systems (Taiwan Railways
Administration (TRA) and Taiwan High-Speech Rail
(THSR)), and greeting/ending words in dialogues.

We use fivefold cross-validation method for system
development. That is, the data is divided into five parts.
In a round-robin fashion, four parts are used as training
data, and one part is used as test data. We develop our
system such that the average accuracy of DA detection
over five test sets is optimal.

5.2 ASR module
The ASR module is an HTK-based Mandarin speech
recognizer [39]. A syllable in Mandarin is modeled as the

Speak Listen
TTS ——
Listen Select/
Type

User Operator

Figure 5 The environmental setting of data collection. The
operator acts like an SDS, and the user acts like s/he is interacting
with an SDS.
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Table 3 The beginning part of a collected dialogue

Role Dialogue act Utterance

System  Greeting Welcome

User Query_Service What service can you provide?

System  Ans_Service | can provide the information of historic spot
and timetable of railway

User Query_Intro Can you give an introduction to Anping-Fort?

System  Ans_Intro Anping-Fort is also known as Fort Zeelandia

It was first built by the Dutch in 1624 as ..

This is collected in the way illustrated in Figure 5

concatenation of an initial model and a final model. The
acoustic model set includes 115 right-context-dependent
initial models, 38 context-independent final models, 37
particle models, (e.g., EN, MA, OU), 47 syllable-level
models for hyper-articulated speech, and 14 filler models
(e.g., short pause, breathing, and footfall). Each initial
model is a three state HMM, while each final model is a
five state HMMs. The observation probability density of
a state is a Gaussian mixture model (GMM) with no
more than 32 components. The speech feature vector is
composed of 39 components, including 12 mel-frequency
cepstral coefficients (MFCCs), log energy, and the velo-
city and acceleration features. For real-world data with a
variety of speakers, a reliable acoustic model is needed.
Thus, an acoustic model set trained by the TCC-300
Mandarin corpus is adapted by the collected dialogue
speech data via maximum-likelihood linear regression
(MLLR). The lexicon contains 297 words. The bi-gram
language model is estimated by SRILM toolkit [40].

Table 5 shows the performance of ASR module with
clean and simulated noisy speech. Note that the real-world
scenario of noise corruption is applied in the collection of
the noisy speech (footfall noise, human speech, or both).
That is, a speaker stands in front of a microphone and the
noise is played behind the speaker. From the results, we
can see that the recognition accuracy does not severely
degrade in the presence of noises behind a user.

5.3 The z-score threshold
Ideally, an effective threshold for z-score strikes a good
balance between reliable recognition and keeping

Table 4 Examples of named entity classes (NEC) and
semantic classes

NEC/semantic class Named entities/words

City Tainan, Taipei, Kaohsiung
Spot Anping-Fort, Fort-Provintia, Sun-Moon Lake
Date Today, Tomorrow, Yesterday

Timel Morning, Noon, Afternoon

Time2 o'clock, hour, minute

Greeting Welcome, Hello

Ending Thanks, Bye
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Table 5 Word accuracy rates of automatic speech
recognition in clean and three noisy conditions
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Table 7 Accuracy rates of dialogue act detection with
various feature sets in various noisy conditions

Conditions Clean Football Human Both noises

accuracy rate (%) 84.8 82.7 814 80.9

sufficient keywords for subsequent semantic representa-
tion in SLU. We analyze the rejected word hypotheses
with z-scores below the threshold of 2 (which corre-
sponds to the confidence level of 0.95), and find that
only 3.4% of the keywords are incorrectly rejected. The
threshold of 2 is therefore used. Such performance can
be attributed to the fact that users often pause naturally
before or after a keyword.

5.4 The number of dialogue acts

While generic speech acts are relatively well-defined,
DAs are often specialized to particular domains and
they need to be specified. In this research, since we
adopt data-driven DAs by clustering, the number of
DAs (clusters) become a critical parameter in system
design. In order to decide this number, we investigate
the system performance when it is varied. The detection
accuracies are shown in Table 6. We can see that 38
DAs (g = 38) achieves the best performance®. Therefore,
we use 38 DAs. To make more sense, each cluster is
given an artificial but meaningful label (tag, name), as
shown in Table 1. For example, Query_Introduction_-
Spot is assigned to the cluster formed by “queries of
introduction to sightseeing spot”.

5.5 Evaluation of feature sets

Just like the set of DRs, an alternative set of semantic fea-
tures can be used as the coordinate axes to construct the
corresponding vector set for D . Applying spectral cluster-
ing, a matrix analogs to the DRDA matrix can be con-
structed according to the steps described in Section 4.

Including the proposed DR, 5 sets of features are
investigated. In baseline, keywords are used as features.
In NEC, named entity classes are used. In PS, partial
sentences are used. In uwDR, derivation rules without
normalized entropy weighting are used.

DA detection accuracies are summarized in Table 7.
In this table, the column 40%-SIM means 40% of the
words in the reference transcripts are retained, and
similarly for 60%-SIM and 100%-REF. The recognition
accuracy of ASR is 84.8% (15.2% word error rate), so we
have a column of 84.8%-ASR. The middle columns are

Table 6 Accuracy rates of dialogue act detection with
various numbers of DAs

Number of DAs 36 37 38 39 40
accuracy rate (%) 796 81.7 829 79.2 788

40%- 60%- Football Human Both 84.8%- 100%-
SIM SIM ASR REF
baseline 172 326 443 431 426 496 609
NEC 224 36.8 52.1 510 498 56.8 76.9
PS 29.8 492 752 74.6 735 76.2 91.1
uwDR 263 480 81.1 808 802 816 92.1
DR 263 474 823 819 816 829 933

the results with simulated noisy speech, corrupted by
footfall (football), human speech (human), and both
noises (both).

In the case of 84.8%-ASR, we can see that NEC (56.8%)
is better than baseline (49.6%), and that PS (76.2%) is bet-
ter than NEC. The incorporation of uwDR (81.6%) and
DR (82.9%) lead to further improvements. Thus, the dif-
ference between baseline and the proposed DR is very
significant. We notice that an ambiguous Chinese word
may correspond to different DAs with its different mean-
ings. For instance, in open door and drive car, the words
open and drive are the same word in Chinese. Using DRs
helps disambiguation. For the cases of 40%-SIM and
60%-SIM, the results show clear improvement of NEC
and PS over the baseline. Using DRs, however, does not
further improve in these scenarios as the keywords are
randomly discarded. We can see that recognizing the
keywords is particularly important in highly adverse
acoustic conditions. We also evaluate using the simulated
noisy speech data in SDS. One can observe an interesting
result that the performance of DR with the simulated
noisy data and the clean data are very close. In PS, non-
keywords are removed or replaced by Fillers. Thus, most
of the partial sentences of simulated noisy speech are
almost the same as those obtained from the clean speech.

5.6 Evaluation of the history score

The above results on DA detection are obtained without
considering the dependency between DAs. Next, we
evaluate the effectiveness of the history score. In order
to balance the contribution of the lexical score and the
history score, we generalize equation (1) to the following
form,

Ay = argmax [g(Au, W)]P [h(Au, H)JP, (21)
Ay eQ

where 0 < ,Bg < 1 is the weight of the lexical score, and
Br =1 - Bg is the weight of the history score.

A few comments on using equation (21) are in order.
First, we note that when the ASR module outputs only
one-best hypothesis, the maximization over W in equa-
tion (1) becomes trivial. It follows that the term f (W,
U) can be dropped since it does not depend on A,. In
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addition, as the values of g(A,, W) and h(A,, H) are in
different ranges, simple linear combination may not
work as one score can easily be dominated by the other.
Therefore, we use the linear combination in the log
domain, which is equivalent to the product in equation
(21). In fact, a similar case based on the same considera-
tion is the language model scale factor commonly used
in ASR.

Table 8 shows the results of different f3;, and the best
performance is achieved when f3;, = 0.7. The evaluation
results demonstrate that the dialogue history is
informative.

5.7 Comparison with other methods

The performance of the proposed approach for DA detec-
tion is compared with other methods. In the NBC method,
the keywords are used as the semantic features, and they
are used in calculating DA probabilities. In the co-occur-
rence (co-oc) method, a priori algorithm [41] is used to
calculate the co-occurrence of keywords in each DA. In
the SVM and maximum entropy (ME) methods, a DA
classifier is trained using keywords. In latent semantic ana-
lysis (LSA), the keyword-DA matrix is treated as a conven-
tional word-document matrix, and then the LSA is
applied. The results are listed in Table 9. We can see that
the proposed approach achieves the best accuracy.

5.8 Evaluation on end-to-end measure

In addition to DA detection accuracy, we also conduct
evaluation on end-to-end measures, i.e., from the start of a
session to the end of the session. End-to-end measures are
arguably better for performance evaluation as the ultimate
goal of an SDS is to enable a user to complete a session
correctly and quickly.

Three systems are evaluated, including the NBC, the
proposed system (proposed), and the proposed system
without using the history information (no history). Five
subjects are recruited. Subjects perform exactly same task
without knowing the order of the systems. This order is
random for a test subject. A task is considered completed
as soon as a subject acquires the appointed information.
Table 10 shows the average dialogue turns per task of the
evaluated systems. The proposed approach achieves the
minimum of the average number of turns.

6 Conclusion
In this article, a robust dialogue act detection method
using named entity classes, partial sentence trees,

Table 8 Accuracy rates of dialogue act detection with
various history score weights

Value of f 0.3 0.4 0.5 0.6 0.7 0.8 0.9
accuracy rate (%) 839 841 843 846 851 849 849
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Table 9 Accuracy rates of dialogue act detection with
five feature sets

Approaches NBC co-oc SVM ME LSA Proposed

accuracy rate (%) 623 62.6 758 763 786 85.1

Table 10 End-to-end measure of system performance
evaluation.

NBC

average number of turns 1 9.2 8.2

No history Proposed

The average numbers of turns per dialogue session of three systems

derivation rules, and entropy-based dialogue act-deriva-
tion rule matrix is investigated. Data-driven dialogue
acts are created by the spectral clustering algorithm.
Our implementation of a spoken dialogue system for
tourist-information services incorporating the proposed
method achieves 85.1% detection accuracy, outperform-
ing a naive Bayes classification based method (62.3%). It
also reduces the number of dialogue turns per dialogue
session on average. The results show that partial sen-
tence tree and derivation rules are indeed succinct and
informative features for dialogue act detection. Further-
more, spectral clustering is a successful method for
automatic and unsupervised learning of dialogue acts
from in-domain training data.

Endnote

2Queries to 3 kinds of vehicles - bus, TRA, and THSR,
are in different clusters when ¢ = 38, but in the same
cluster when g = 36. This partially explains the differ-
ence in performance between using 36 DAs and 38 DAs.
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