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Abstract

Cell omics such as single-cell genomics, proteomics and microbiomics allow the

characterisation of tissue and microbial community composition, which can be compared

between conditions to identify biological drivers. This strategy has been critical to unveiling

markers of disease progression such as cancer and pathogen infection. For cell omic data, no

method for differential variability analysis exists, and methods for differential composition

analysis only take a few fundamental data properties into account. Here we introduce

sccomp, a generalised method for differential composition and variability analyses able to

jointly model data count distribution, compositionality, group-specific variability and

proportion mean-variability association, with awareness against outliers. Sccomp is an

extensive analysis framework that allows realistic data simulation and cross-study knowledge

transfer. Here, we demonstrate that mean-variability association is ubiquitous across

technologies showing the inadequacy of the very popular Dirichlet-multinomial modelling

and provide mandatory principles for differential variability analysis. We show that sccomp

accurately fits experimental data, with a 50% incremental improvement over state-of-the-art

algorithms. Using sccomp, we identified novel differential constraints and composition in the

microenvironment of primary breast cancer.
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Significance statement

Determining the composition of cell populations is made possible by technologies like

single-cell transcriptomics, CyTOF and microbiome sequencing. Such analyses are now

widespread across fields (~800 publications/month, Scopus). However, existing methods for
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differential abundance do not model all data features, and cell-type/taxa specific differential

variability is not yet possible. Increase in the variability of tissue composition and microbial

communities is a well-known indicator of loss of homeostasis and disease. A suitable

statistical method would enable new types of analyses to identify component-specific loss of

homeostasis for the first time. This and other innovations are now possible through our

discovery of the mean-variability association for compositional data. Based on this

fundamental observation, we have developed a new statistical model, sccomp, that enables

differential variability analysis for composition data, improved differential abundance

analyses, with cross-sample information borrowing, outlier identification and exclusion,

realistic data simulation, based on experimental datasets, cross-study knowledge transfer.

Introduction

Compositional analyses are central in many fields of biology. Tissue composition analysis

enabled seminal discoveries in cancer research (1–6) and epidemiology (e.g. COVID19 (4)).

Compositional analysis of microbial communities is crucial for studying metabolic disease

(7) and skin physiology (8). Single-cell transcriptomics (9) and high-throughput flow

cytometry (CyTOF) (10) enable the characterisation of cell groups measuring the abundance

for thousands of transcripts and tens of proteins at the single-cell level. The 16S rRNA and

whole microbiome DNA sequencing characterise bacterial taxonomic groups (8) by probing

their genetics. The relative abundance of groups of cells or microorganisms can be compared

between biological or clinical conditions to identify cellular or taxonomic drivers.

Despite the importance of such comparative analyses, no method for differential

variability analyses is available. Differential variability analysis is an avenue for novel

discoveries through single-cell transcriptomics, such as for T-cell response in cancer (11).

Also, although a wide range of differential composition methods exists, they only consider

some of the five fundamental properties of cell omics-derived data (Table 1). Well known

properties are (i) data is observed as counts; (ii) group proportions are compositional and

negatively correlated; and (iii) the underlying proportion variability is group-specific. No

available method jointly models these three properties. Log-linear proportion regression

methods such as scDC (12), propeller (13) and diffcyt (14) model data compositionality (ii),

and they are flexible to group-specific variability (iii) but do not model the data count

distribution. Cluster-free methods such as milo (15) and DA-seq (6) are also based on

log-linear models. Log-count-based methods such as MixMC (16), Bach, K. et al. (17),
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ANCOM-BC (18) model group-specific variability (iii) but do not model counts or data

compositionality. Binomial-based methods such as Pal, Chen et al. 2021 (19) and corncob

(20) model counts (i) and cell-group-specific variability (iii) but do not model the

compositionality (ii). Multinomial-based methods such as ALDEx2 (21), dmbvs (22) and

scCODA (23) model count data (i) and compositional properties (ii) but assume the same

variability for all groups.

Other important data properties have remained mostly uncharacterised. While Phipson

et al. (13) introduced variability moderation through empirical Bayes (limma (24)), a

mathematical description of the proportion mean-variability association (4; Table 1) across

datasets and technologies is not apparent. This description would allow differential variability

analysis and have profound implications for the adequacy of the very popular Dirichlet

multinomial models. Similarly, the extent and the effect of outliers (v) has never been

characterised for cell omic-derived data. This knowledge would guide robust method

developments for cell omics data. Currently, only Bach, K. et al. (17) deal with outliers using

robust regression; however, the efficacy of such an approach was not benchmarked.

Here, we introduce sccomp, a generalised method for differential composition and

variability analyses based on sum-constrained independent Beta-binomial distributions.

Sccomp takes into account the five main properties of cell omics compositional data.

Furthermore, sccomp can simulate realistic data with the properties of any experimental

dataset. The simulated data can be used to assess the adequacy of the fitted model and for

benchmarking purposes. Sccomp can also transfer knowledge across datasets to improve

analyses in low-data regimens.

Using sccomp on 18 datasets, we characterise the mean-variability relationship of

compositional data across cell omics technologies. Our findings suggest that the

Dirichlet-multinomial is inadequate for models of differential composition analysis and that

incorporating the mean-variability relationship is a requirement for differential variability

analysis tools. Our results also show the ubiquitous presence of outlier observations in all

datasets. Using realistic simulations, we show that sccomp significantly improves

performance compared to other methods. Sccomp uncovered differential microenvironmental

constraints of breast cancer subtypes and cell-type-specific differences involving lymphoid

and myeloid cell populations. Uniquely, the sum-constrained Beta-binomial distribution

allows modelling of the compositional properties of data with mean-variability association

while allowing for outlier exclusion; we anticipate its adoption in other scientific fields.
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Table 1. Data properties for single-cell RNA sequencing, CyTOF and microbiome sequencing, and available

methods for differential compositional analyses.

Data properties

I. Data is observed as counts

II. Group proportions are compositional in nature and negatively correlated

III. The proportion variability is group-specific

IV. Proportion mean and variability are associated

V. Outliers are ubiquitously present

Methods Year Model i ii iii iv v Reference

sccomp 2021 Sum-constrained Beta-binomial ● ● ● ● ● Mangiola et al.

scCODA 2021 Dirichlet-multinomial ● ● Buttner et al. 2021 (23)

quasi-binomial 2021 Quasi-binomial ● ● Pal, Chen et al. 2021 (19)

rlm 2021 Robust-log-linear-model ● ● Bach et al. (17)

propeller 2021 Logit-linear + limma ● ● ● Phipson et al. (13)

ANCOM-BC 2020 Log-linear ● ● Lin et al. (18)

corncob 2020 Beta-binomial ● ● Martin et al. (20)

scDC 2019 Log-linear ● ● Cao et al. 2019 (12)

dmbvs 2017 Dirichlet-multinomial ● ● Wadsworth et al. 2017 (22)

MixMC 2016 Zero-inflated Log-linear ● ● Cao et al. (16)

ALDEx2 2014 Dirichlet-multinomial ● ● Fernandes et al. (21)

Results

Overview of sccomp
To take into account all five major properties of count-based compositional data (Table 1), we

developed a model based on sum-constrained independent Beta-binomial distributions.

Sccomp can simultaneously estimate differences in composition and variability (Figure 1C).

Sccomp is compatible with complex experimental designs, including discrete and continuous

covariates. The estimation is done through Hamiltonian Monte-Carlo via the Bayesian

inference framework Stan (25). The hypothesis testing is performed by calculating the

posterior probability of the composition and variability effects being larger than a

fold-change threshold (26). The estimation is made more stable with an adaptive shrinkage in
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the form of a prior distribution defining the association between proportion means and

variabilities (see Figure 1B and Methods). Sccomp identifies outliers probabilistically

through iterative fitting (Figure 1E and Methods), which are excluded from later fits (Figure

1F).

The Bayesian framework allows sccomp to incorporate the mean-variability

association from other datasets (Figure 1A). This prior knowledge is helpful when only a few

groups or samples are present. After fitting the model, sccomp can simulate data

recapitulating the learned properties (Figure 1H). The simulated data can help identify

potential failings of the model and enables benchmarking based on more realistic simulations.

Figure 1. Sccomp core algorithm, data integration and visualisation. A: The integration of existing single-cell

compositional studies gives prior information on the proportion mean-variability association (Cross-dataset

learning transfer in Methods). B: The representation of the association between proportion means and variability

(Statistical model in Methods). C: An example of the difference in cell-group abundance (left-hand side) and

variability (right-hand side) that sccomp can estimate (Differential variability analysis in Methods). D:

Representation of the process from cell clustering and counting that is the input for the differential composition

analysis (User interface in Methods). E: Schematics of the iterative process of outlier identification and

outlier-free data fitting that sccomp adopts for robust estimation (Iterative outlier detection in Methods). F:

Illustration of the posterior probability distribution of regression coefficients from the model fitting (Hypothesis

testing in Methods). H: Data simulation from the fitted model. I: Posterior predictive check simulates data

under the fitted model and then compares these to the observed data (64) (Posterior predictive check, Methods).
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This check allows users to evaluate the ability of the model to fit a specific input dataset. L: Representation of

benchmarking with realistic data that sccomp allows in a user-friendly way.

Proportion means and variabilities are log-linearly correlated in cell-omic data
To develop a method able to share information across groups, we studied the association

between group proportion means and variability for 18 single-cell RNA sequencing, CyTOF

and microbiome datasets (Table S1). We first fitted our sum-constrained Beta-binomial model

to the data with no linear association between the logit-multinomial proportion means (µg)

and log-variabilities (-⍵g) built-in (see Methods for notation), and observed the correlation of

the estimates. We observed consistent positive linear homoscedastic association for all three

data types (Figure 2A-left and S1, dotted line and residuals). Comparing the estimates with

the mean-variability log-linear association built-in, we observe shrinkage of the variability

estimates of up to 4 fold for (Figure 2A-right and S1D).

For single-cell RNA sequencing data, modelling this association had a shrinkage

effect on the variability estimates (-⍵g; and means µg to a lesser extent), something obvious

for the BRCA1 dataset for cell types with low abundance (e.g. tumour associated

macrophages, Tam1, Figure S1). For CyTOF data, the shrinkage effect is evident in the

Bodenmiller and cytonorm datasets. Similarly, the most significant impact can be seen for

rare cell types. Microbiome data is characterised by higher uncertainty and greater spread

around the regression line (before shrinkage). The impact of shrinkage there is more dramatic

than in the other data types, especially for the means.

The estimated slope of the linear relationship is fairly consistent across technologies.

The average slopes across datasets are 0.84, 0.47, 0.55 for single-cell RNA, CyTOF and

microbiome (standard deviations 0.10, 0.22 and 0.26), respectively. Their intercepts are more

variable, with the average means being -4.32, -7.19 and -5.66, and the standard deviations

being 1.05, 1.86 and 5.66, respectively. Some single-cell RNA sequencing datasets show a

bimodal association, where the second mode represents high-variability groups (dataset

BRCA; Figure S1A). This pattern is observable in the resulting bimodal residual distribution

(Figure 2A-middle and second rows of S1A, S1B and S1C). Our model uses a Gaussian

mixture distribution that accurately fits both modes (Figure S1A third row; dashed lines).
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Figure 2. Sum-constrained Beta-binomials model mean-variability association and are adequate for

experimental data from 18 studies (1–5, 17, 30–33) (Table S1), including single-cell RNA sequencing, CyTOF,

and microbiome technologies. A: Study of the correlation between the proportion mean and variability (see

Methods subsection Study of mean-variability association). The left facets refer to mean and variability

estimates association with no constraints on their relationship. The dotted line is the line fitted by robust linear

modelling (rlm (58)). The middle facets plot the rlm residuals versus fitted values with a lowess smoother

superimposed. The facets on the right show the decrease of the size of the 95% credible intervals for all datasets.
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Only changes larger than 0.5 are shown (increase or decrease). B: The four main steps of the sccomp algorithm

(see Methods section Study of model adequacy to experimental data). C: Example of the posterior-predictive

check, with the simulated data (COVID19 dataset EGAS00001004481 (4); blue boxplots) over the observed

data (colourful boxplot). The colour code expressed the magnitude of the difference estimated by sccomp across

biological conditions. D: Scatter plot of the observed versus simulated cell-group proportions for 18 datasets,

including single-cell RNA sequencing, CyTOF and microbiome (1–6). Datasets are labelled by their numeric

IDs (Table S1). Each line represents a cell group. The slope of fitted lines represents the match between

observed and generated data for one group (paired by their ranks), which is expected to be 1 when two

distributions are the same. The dashed grey line represents a perfect linear match. E: The distribution of slopes

of the scatter plots (panel D). F: Association between the slopes of the scatter plots (y-axis) and the estimated

proportion abundance of each group (x-axis). Sum-constrained Beta-binomial (scBb) and Dirichlet-multinomial

(Dm) are compared. If data simulated from posterior predictive distribution is similar to observed data, we

expect a straight horizontal line intersecting 1.

The sum-constrained Beta-binomial model achieves descriptive adequacy to

experimental data across technologies
Our method can simulate realistic data based on the learned characteristics of experimental

datasets (Figure 2B). This simulation is achieved by first estimating the posterior distribution

from a given dataset and then generating data from the posterior predictive distribution. The

posterior predictive check (27, 28) is helpful to assess the model’s descriptive adequacy (29)

to specific datasets and study designs. For example, the overlay of experimental to simulated

data shows the descriptive adequacy of sccomp to the COVID19 dataset EGAS00001004481

(4) (replicating quartile ranges; Figure 2C) and the absence of noticeable pathologies. To

provide a more quantitative assessment, we regressed the observed and simulated data for

each cell type of 18 publicly available datasets (1–5, 17, 30–33) across three cell omic

technologies (Figure 2D). The fitted lines are tightly centred around the 45° reference line for

all datasets (Figure 2E). This evidence suggests that proportion means and variability

inference are descriptively adequate for and representative of experimental data across

technologies. This trend is particularly significant considering that performing posterior

predictive checks on datasets with a small sample size suffers from noise.

The sum-constrained Beta-binomial accurately models variability across group

abundance, in contrast to the Dirichlet-multinomial
Considering the existence of a mean-variability association, we assessed the ability of our

model to adequately estimate the variability of small and large groups. We analysed the

relationship between fitted slopes between observed and simulated proportions (Figure 2D)
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and the baseline abundance (estimated intercept) across 18 datasets (Table S1). We compared

our model with the Dirichlet-multinomial model, a de facto standard for count-based

compositional analyses (22, 23, 34–37).

We saw no bias in the fitted slopes of observed-simulated data across group

abundance. These results present no evidence that our model underestimates or overestimates

the data variability for any group, regardless of their relative abundance and the data source

(Figure 2F-top). On the other hand, the Dirichlet-multinomial under/over-estimation of

variability within a group is associated with group abundance (Figure 2F-bottom) for

single-cell transcriptomic, CyTOF, and microbiome data. For single-cell RNA sequencing

data, the variability of small groups is consistently overestimated because of the low data

support (small sample size and low cell count). In contrast, for CyTOF and microbiome,

where more data is available, the consistent overestimation for small groups is mirrored by an

underestimation for large ones.

The sum-constrained Beta-binomial distribution models compositionality while

allowing for group-specific variability
To add dependence to a series of independent Beta-binomials, we impose a sum-to-one

constraint on proportions analogously to the Dirichlet-multinomial. We hypothesised that our

model would capture the compositional nature of data of a Dirichlet-multinomial, despite

allowing for group-wise variability. Data was generated by a four-group

Dirichlet-multinomial (with parameters 0.2, 0.6, 2.0, 4.0; Figure 3A and 3B), and the sccomp

single-mean model was fitted to this data. To show the adequacy of our model of the data, we

simulated data from the posterior predictive distribution. The overlay of the simulated data on

the observed data shows that the densities match (red data points, Figure 3C and 5D).

We tested whether our model can capture the dependence structure across the

proportion means, typical of compositional data, analysing the correlation among estimated

means using pairs plots. We also compared the estimated means for a Dirichlet-multinomial

(as a baseline) and an unconstrained (independent) Beta-binomial model. The estimated

means of our model show a negative correlation structure similarly to the

Dirichlet-multinomial model (Figure 3E). This correlation is strong for groups one and two

(G1 and G2) and to a lesser extent for group three. On the contrary, the unconstrained

Beta-binomial does not reproduce this dependence. This lack of dependence results in a

higher uncertainty around the estimates, especially for low-abundance groups G1 and G2.
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The differences between sum-constrained and unconstrained Beta-binomial models

are reflected in the ability to simulate representative data to the Dirichlet-multinomial (Figure

3F). The marginal distributions of the predictive posterior and the weak dependence structure

of the simulated data across the four groups, characteristic of the Dirichlet-multinomial, is

accurately reproduced by the sum-constrained Beta-binomial. On the contrary, the

unconstrained Beta-binomial generates visibly distinct data densities compared to the

Dirichlet-multinomial.

Figure 3. The sum-constrained Beta-binomial models the compositionality of four groups (G1, G2, G3 and G4)

proportions while allowing for group-specific variability. A: Distribution of data simulated from a four-group

Dirichlet-multinomial. B: Estimated mean and variability parameters from the sum-constrained Beta-binomial.

The error bars represent the 95% credible intervals. C: Distribution of observed data (from A, black) overlaid to

simulated data from the fitted model (red). D: Matching densities of the observed (white) and generated data

(red) for the four groups. E: Draws from the posterior distribution of the scaled means (log-scale). The models

used for estimation were Dirichlet-multinomial (Dm), (unconstrained), Beta-binomial (Bb), and

sum-constrained Beta-binomial (scBb). The estimate for G4 is missing from Dirichlet-multinomial and

sum-constrained Beta-binomial because it is not part of the parameter space but rather calculated as the negative

sum of G1-3. The correlation is shown for each model. The stars indicate the correlation significance test
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(***=<0.001, calculated with GGally (65)). F: Overlap between the observed and generated data between each

group across models.

Sccomp improves the performance of differential compositional analyses
To compare the performance of sccomp with publicly available methods for differential

composition analysis (Table 1), we performed a benchmarking on realistic simulated data

based on the noise and outlier characteristics of the COVID19 dataset (4) (Figure 4A). The

simulation was based on a logit-linear-multinomial model to ensure fairness across methods.

We built a receiving-operator characteristic curve for every run and evaluated the

performance using the area under the curve (AUC, up to 0.1 false-positive rates; Figure 4B).

Overall across simulation settings, sccomp shows significantly better performance

than publicly available methods, including a generic logit-linear regression (lm in R). The

gain in performance tracks with the increase of slopes until the 0.1 average AUC plateau.

Sccomp has the highest incremental performance gain within the method rank (Figure 4D)

(1.4 folds and 1.9 fold using sum-constrained Beta-binomial-based simulations; Figure S2). It

is the only method having a more-than-linear gain (i.e. > 1 fold). The method rlm and

logit-linear are the second and third best performers with an incremental performance gain of

0.64 and 0.75, respectively.

Overall across simulation settings, the number of groups was the least impactful. An

outlier-free benchmark (Figure S3) shows a better performance of sccomp with a smaller

incremental improvement.

Sccomp can further inform the estimates by transferring information from publicly

available datasets (see Cross-dataset learning transfer subsection). To test the effectiveness of

this technique to regularise estimates in low-data regimens, we compared the use of

uninformative or informative hyperpriors. Our results show a noticeable impact on the

performance for simulations with low sample or group size, up to 2 fold (Figure S4).
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Figure 4. Sccomp outperforms state-of-the-art methods for realistic data simulations (including outliers) based

on a logit-linear-multinomial model of the COVID19 dataset EGAS00001004481 (4) (see Methods section

Benchmark). A: Example of a simulation with the following settings: regression slope of 1.5, 20 samples (10

per condition), 20 groups, 1000 total cells per sample, with 8 groups (40%) being differentially abundant and 12

having no differences. The yellow groups are differentially abundant. B: The receiving-operator characteristic

(ROC) curve for the simulation in panel A, measuring the ability of the methods to identify groups as different

or not based on the ground truth, as the threshold is varied. The grey area represents the false positive threshold

used to calculate the area under the curve (AUC), which indicates the relative performance of each method. C:

The comprehensive benchmarking across a range of slopes, number of samples and groups. Each performance

measure represents an average of 50 areas under the curve (up to the 0.1 false-positive rate) for 50 simulations

with the same parameters. D: Incremental performance gain across all simulation conditions (see Methods) of

sccomp compared to other methods. A fold gain of 1 represents a linear incremental gain along the methods

rank. Methods are ordered by their average performance across simulation conditions (bottom facet).
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Sccomp identifies differential constraints in the microenvironments of breast

cancer subtypes
We used sccomp to analyse the microenvironment of primary breast cancer from data first

described by Wu et al. (3). This study analysed 26 breast cancer primary tumour tissues and

identified 49 cell phenotypes. We analysed the difference in composition and variability of

the triple-negative subtype (TNBC) compared to ER+ and HER2+. Our analysis led to a rich

and diverse landscape of compositional and variability changes across subtypes (Figure 5A).

The main feature is the depletion of cytotoxic CD8 IFN-γ, compared to HER2+ and ER+

(Figure 5B). Compared with triple-negative, the HER2+ microenvironment is enriched in

several other lymphocytic populations, including CD4 follicular helper (CD4 fh in Figure

5B), CD4 CCR7+, CD4 IL7R+, T regulatory (T-reg), natural killer (NK AREG), and NKT

(Figure 5B). ER+ tumours are characterised by changes in the stromal compartment, with

enrichment of endothelial cells (endo ACKR1, CXCL12, RGS5) and depletion of

cancer-associated fibroblasts (iCAFs2 and myCAFs4), inflammatory monocytes (Mon

S100A9) and B naive cells, compared with triple-negative (Figure 5B). The differences

identified by Wu et al. in the immune/stromal compartments using a t-test (3) were not

labelled significant by sccomp; however, the estimated signs agree. Sccomp results are

consistent with Wu et al. (3) for the enrichment of the cancer cell phenotypes (Basal, luminal,

HER2+) for the respective clinical subtypes (Figure S5A).

Most importantly, sccomp allowed the investigation of latent microenvironmental

constraints across breast cancer subtypes (see Methods subsection Reanalysis of single-cell

RNA sequencing datasets). Although not immediately evident from analysing single groups

(Figure 5A and 4B), the variability baseline (intercept of the mean-variability regression line;

Figure 5E and 4F) for the triple-negative subtype is significantly higher than for the other cell

types. This trend indicates an overall higher microenvironmental heterogeneity across

patients. Also, while ER+ and triple-negative share a similar slope (-1.3 and -1.1; Figure 5A

and 4B), HER2+ shows a distinct cohort-level heterogeneity profile. A markedly smaller

slope indicates a more similar relative variability across cell types and potentially distinct

microenvironmental processes acting for this subtype.

13

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 6, 2022. ; https://doi.org/10.1101/2022.03.04.482758doi: bioRxiv preprint 

https://paperpile.com/c/O6xBD0/MfQb
https://paperpile.com/c/O6xBD0/MfQb
https://paperpile.com/c/O6xBD0/MfQb
https://doi.org/10.1101/2022.03.04.482758


Figure 5. Sccomp unveiled novel results from public data from Wu et al. (3), and five single-cell RNA

sequencing datasets (1, 3–5, 17). The cell groups used here were already defined in each study. A: UMAP

projection of cells for three breast cancer subtypes. Cells are shaded according to the type of finding (e.g. green

shades for novel differential composition associations). As triple-negative (TNBC) was compared with the other

subtypes, only the cell groups with new findings were labelled for HER2+ and ER+ facets. B: Proportion

distributions of the cell types with novel results (both positive and negative). The blue box plots represent the

posterior predictive check. C: Correlation of the estimated difference in composition (x-axis) and variability

(y-axis) for the triple-negative versus ER+ comparison. Error bars are the 95% credible interval. Red error bars

represent significant associations. Grey dashed lines represent the minimum difference threshold of 0.2.
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Significant associations for cancer populations are shown in the supplementary material. D: Correlation of the

estimated difference in composition and variability for the triple-negative versus HER2+ comparison. E:

Mean-variability associations (in log scale) for the three cancer subtypes (see Methods subsection Reanalysis of

single-cell RNA sequencing datasets). Each dot represents a cell group. The dashed lines are the sccomp

estimate of such association. F: Posterior distributions of the intercept and slope parameters for the three

subtypes, shown in panel E. G: UMAP projection of cells for the Bach et al. (17) dataset. Cells are shaded

according to the type of finding. Only cell groups part of novel findings are labelled as text. H: Proportion

distributions of the cell types with novel (green, red, purple, blue) and non-novel (dark and light grey) results. I:

Count of cell groups for each dataset and the number of consistent, novel and rejected associations. The datasets

are ordered by the number of novel results. J: Number of outliers for each dataset. Red represents outliers

observation identified for differentially abundant cell groups (after outlier quarantine). Dots represent the

number of cell groups per dataset. The datasets are ordered by the number of outliers identified.

Sccomp leads to novel discoveries from public datasets
To further assess the ability of sccomp in generating novel results, we expanded our analysis

on a time-resolved BRCA1 model of tumorigenesis (E-MTAB-10043 (17)). Using a robust

log-linear model followed by a robust F test, this study estimated 17 significant differences

along the tumour developmental timeline, including fibroblast, dendritic, monocyte, and T

cells. We confirmed the majority of those associations and identified 15 new associations,

such as tumour-associated fibroblasts (Fb7, Fb8) and macrophages (Tam1, Tam2),

neutrophils and mig dendritic cells (migDC). Five associations proposed by the study were

labelled as non-significant by sccomp (Figure 5H), two of those including outliers.

To assess the usefulness of sccomp more broadly, we analysed four other single-cell

RNA sequencing public datasets (Table S1). Overall, sccomp was able to generate novel

results, including differential composition and variability for all datasets (Figure 5I, Figure

S5B). We identified and excluded outlier observations in all datasets, with 19% of cell groups

containing one or more outliers (Figure 5J). The 20% of those cell groups presented

significant compositional differences after excluding outliers. The comparison between

sccomp estimation and the estimation from the selected studies revealed that 15% of the calls

that disagreed included one or more outliers.

Discussion

We have introduced sccomp, a method for differential analysis of count-based compositional

data. It is based on sum-constrained independent Beta-binomial distributions that share

compositional characteristics with the Dirichlet-multinomial but allow group-specific

variability and exclusion of outlier observation from the fit. Our model shares features with
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the generalised Dirichlet-multinomial (38). However, it allows for missing observations and

suits outlier exclusion.

The present study describes the proportion mean-variability association for cell omic

compositional data. We tested such associations across 18 single-cell RNA sequencing,

CyTOF and microbiome datasets. Our results have fundamental implications. They challenge

the use of the Dirichlet-multinomial distribution, a standard in count-based compositional

analysis, and the use of unconstrained, independent distributions. We showed that cell omic

compositional data (e.g. EGAS00001004481) with N groups can be modelled with no more

than N+1 degrees of freedom (N-1 for the means and 2 for the variability). This finding

implies that such unconstrained models tend to be heavily overparameterised (using 2N

degrees of freedom).

Our description of mean-variability association also has implications for differential

variability testing. Ignoring the mean-variability association would result in biased estimates

of the differential variability necessarily associated with the differential composition

estimates. Defining the correlation line in log space allowed us to disentangle differential

composition and variability and provide a meaningful estimate of how cell/taxonomic

proportion variability varies across samples.

While the impact of outlier observations has been approached for metagenomic data

(39), our study proposes that single-cell compositional data are also outlier-rich. Our outlier

identification approach overcomes the challenges of using residuals to identify outliers

caused by the heteroscedastic nature of count-based compositional data and potential low

sample size. We identified outliers in all single-cell RNA sequencing datasets that we have

re-analysed, present in differentially and non-differentially large groups.

In real-world analyses, it is crucial to assess whether a statistical model is

descriptively adequate for a specific query dataset. Sccomp offers a convenient functionality

for posterior-predictive checks. Being able to generate data from a fitted model, sccomp

offers a data simulation framework that reflects the properties of any target dataset while also

allowing arbitrary simulation designs. Data simulation is possible using the sum-constrained

Beta-binomial, Dirichlet-multinomial and logit-linear-multinomial distributions. Our realistic

benchmarks (using a foreign distribution) show that sccomp confers an up to 2-fold

incremental performance gain compared to previous methods.

Our reanalysis of public data demonstrates the practical application and efficacy of

sccomp, which identified novel differential variability and compositional associations. We

show that some of the differential composition associations proposed by the respective
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studies might be false-negative due to the presence of outliers. For the breast cancer dataset

introduced by Wu et al. (3), we unveil differential constraints for the subtypes triple-negative,

ER+ and HER2+.

This study, introducing several innovations in the field of cell omics compositional

analyses such as differential variability analysis, a log-linear mean-variability relation,

probabilistic outlier identification, cross-study information transfer, aims to enrich the field of

single cell omics. Also, this study challenges established methodologies and provides a robust

and flexible tool for the single-cell and microbiome scientific community. Being the first

statistical model that fits data compositionality and group-wise variability while allowing the

exclusion of outliers, we anticipate its wide adoption in other scientific fields. Sccomp is

available as an R package via Bioconductor and GitHub.

Methods

Statistical model
The regression model underlying sccomp is based on sum-constrained independent

Beta-binomial distributions. The beta distribution is a continuous probability distribution

defined between zero and one. The binomial distribution is the discrete probability

distribution of the number of successes obtained in a specified number of mutually

independent trials, each with the same probability of success. The Beta-binomial probability

distribution is the compound binomial distribution obtained when the binomial success

probability is given a beta distribution. While a single Beta-binomial distribution can model

the distribution of the number of elements belonging to a particular group, it cannot model

the compositional nature of the data from a number of independent Beta-binomials embodied

in the constraint that the underlying expected proportions belonging to the different groups

must sum to one. This dependence induces a small negative correlation among the observed

proportions of elements across groups, similar to that seen in the multinomial distribution.

We impose this negative correlation by constraining the expected values of the group

proportions (i.e. the means of our beta distributions) to sum to one.

We introduce here the common notation used in the mathematical formulation of the

model. G is the number of groups, S is the number of samples, ns is the total number of cells

probed for sample s, kg,s is the number of cells in sample s belonging to a group g. For clarity,

we introduce our model in four steps. First, we describe the single-mean model; second, we

describe the single-mean model with a log-linear constraint between variabilities and means;
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third, we introduce a two-mean model; fourth, we describe the linear model generalisation

that is used in sccomp.

The Beta-binomial distribution is commonly defined using the (latent) shape

parameters ɑ and β (Equation 1) from the Beta distribution. Here and elsewhere B (ɑ, β)

denotes the classical Beta function with argument ɑ and β. Here, we use the mean and

concentration (the inverse of variability) parameterisation (π,σ) with 𝜋g representing the mean

and 𝜎g representing the concentration parameter of cell group g, this being the sum of the

corresponding α and β. This parameterisation is convenient for our linear modelling. The

mean is the average value of the underlying Beta distribution, while the concentration

captures how concentrated the underlying Beta distribution is around its mean. The

equivalence of the standard (ɑ, β) and the alternative (π,σ) parameterisation is shown in

Equations 1-3.

Step 1, Single-mean model. The parameters of the single-mean model are elements 𝜋 = (𝜋g)

∈ SG+1 (simplex) of the sum-to-one-constrained vector of size G and a vector 𝜎 = (𝜎g)∈ R+
G

of concentrations. The data are an G×S matrix K = (kg,s) of counts, and a vector n = (ns) of

length S is the sum of ks ( ). The joint probability mass function is defined by𝑛
𝑠

=
𝑔=1

𝐺

∑ 𝑘
𝑔,𝑠

two observed quantities, K and n, depending on the parameters 𝜋 and 𝜎, see (Equations 4-7).

Statement 5 includes the sum constraint that induces the weak negative correlation of

proportions characteristic of compositional data. The underlying assumption of this model is

that the counts kg,s from the total counts ns are mutually independent Beta-binomially

distributed random variables with the alternative parameters given.

18

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 6, 2022. ; https://doi.org/10.1101/2022.03.04.482758doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.04.482758


Step 2, Single-mean model with a (log) linear relation between concentrations and

means. For this model, we transform the parameters 𝜋 and 𝜎 to μ and ⍵ (see Equation 6 and

below). The parameters 𝜋 and 𝜎 are suitable for an unconstrained single-mean model. Still, to

permit a (log) linear relationship between our mean and concentration (the inverse of

variability) parameters and the extension to more general linear models, we must use a

different but equivalent set of parameters appropriate for linear subspaces of RG. The

inverse-logit-multinomial (also known as softmax) function (Equation 6) takes a vector μ∈

RG and converts it into a vector of G proportions that sum to 1, the components being

proportional to the exponentials of the corresponding components of μ. However, this

mapping is many-to-one. If inverse-logit-multinomial (μ) = 𝜋, then also

inverse-logit-multinomial (μ + c1M) = 𝜋, where c is any real constant and 1M is the G-vector

of 1s. To make it one-to-one and so permit invertibility on its range, we need to restrict its

domain. Write ℒ0,G for the linear subspace of RG consisting of all μ = (μg) such that

. We will see that for every 𝜋 ∈ SG+1 there is a unique μ ∈ ℒ0,G such that
𝑔=1

𝐺

∑ µ
𝑔
 =  0

inverse-logit-multinomial (μ) = 𝜋. We call the µ the logit-multinomial proportion mean

parameters, or just mean parameters when no confusion is likely. Letting GM denote the

geometric mean, we write GM (𝜋) = . Then μ = (μg) where μg = log (𝜋g/GM𝐺  𝜋
1
 𝜋

2
 ...  𝜋

𝐺

(𝜋)) is readily checked to satisfy our requirements, i.e. μ ∈ ℒ0,G and softmax (µ) =

inverse-logit-multinomial (μ) = 𝜋. This function of π is known as its center (ed) log-ratio

(CLR). We see from (7) that ⍵g = log (𝜎g), so our new parameter space is ℒ0,G x RG. This

process is also known as stick-breaking, which underlies the Dirichlet process (40, 41).

19

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 6, 2022. ; https://doi.org/10.1101/2022.03.04.482758doi: bioRxiv preprint 

https://paperpile.com/c/O6xBD0/vIqz+GLUq
https://doi.org/10.1101/2022.03.04.482758


Given µ, the parameter ⍵ will be given a normal prior distribution. The linear relation

between μ and ⍵ which underlies our development is shown in Equation (8). where λ0 and λ1

are scalars. The likelihood and priors for the single-mean model with log-linear

concentration-mean relation are represented by the formulae 8-9. The complete parameter set

is now μ ∈ ℒ0 ⊂ RG, ⍵ ∈ RG, λ0 ∈ R, λ1 ∈ R, and the standard deviation 𝜙 ∈ R+ going

with the normal conditional distribution of the ωgs given the µgs, see (11) below. The dataset

is unchanged from the original single-mean model. Before generalising this model, we

introduce and use the matrix M = (µg,s) of mean parameters, where µg,s is the mean parameter

for sample s and group g. The single-mean model is characterised by M having all its

columns identical.

Step 3, Two-mean model. We now introduce the two-mean model. In this case, the matrix M

= (µg,s) has two potentially distinct columns, one for each of two sets of samples. For

simplicity, we will call these the control and treated samples and introduce the 2×S matrix X,

whose 2 rows are the indicator vectors (i.e. vectors of zeros and ones) of the control and

treated samples, respectively. If we now define a G×2 matrix Γ whose columns are any two

mean parameter vectors, say μc∈ ℒ0, μt∈ ℒ0, then our two-mean model has matrix M = ΓX.

Step 4, Arbitrary linear model. The approach of the previous paragraph can easily be

generalised to arbitrary linear models. For this generalisation, we replace the 2×S design

matrix X above by an arbitrary C×S design matrix X, where C is the number of covariates

associated with the samples (including one for an intercept if that is appropriate), and the

G×2 matrix Γ above becomes a general G×C matrix whose C columns are all elements of ℒ0.

As before, M = ΓX.
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We now define the full hierarchical linear model based on the sum-constrained Beta-binomial

distribution. This model is defined through the G×C parameter matrix Γ; ⍵ of length G; 𝜙,

the scalars λ0 and λ1; and the dataset includes the G×S matrix K of counts, the S×1 vector n

of totals, and the C×S design matrix X. The prior normal distributions are parameterised by

their means and standard deviations. Xs denotes the design vector (sth column) for sample s,

and γg indicates the coefficient vector (gth row) of Γ for cell-group g. Since M = ΓX , we must

have µg,s = γgXs.

Inference. This set of sampling statements and the data (Formulae 12-16) are provided to

Stan (25) to sample from a joint posterior distribution of the model parameters. Stan uses a

dynamic Hamiltonian Monte Carlo sampling algorithm, a variation on the Markov-chain

Monte Carlo sampling method. By default, four Markov chains are run. The number of

burn-in iterations is 300 for each chain, and the number of sampling iterations is 500 per

chain, giving a base of 50 draws for the 2.5% and 97.5% quantiles.

The probability of the null hypothesis (i.e. no effect across conditions) for each group

is obtained by calculating the posterior probability of γg,c being larger (or smaller) than a

fold-change threshold (0.2 by default). The false-discovery rate (FDR) is obtained by sorting

in ascending order the probability of the null hypothesis (for any coefficient) and calculating

the cumulative average as described by Stephens (26).

Differential variability analyses
By default, the data variability is modelled with one concentration (inverse of variability)

parameter ωg per group (variability independent of covariates). However, the user can provide

a more general variability model using a variability design matrix. For example, the

concentration can be estimated conditional on a factor of interest to perform differential

variability analyses. We now introduce a two-group differential variability model. The

following notation is the same as in the paragraph “Step 3, Two-mean model.” of the

Methods subsection “Statistical model”. As ⍵g is the log-concentration for the cell-group g,
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we introduce ⍵g,i as the concentration for cell-group g and condition i. In this model, we

increase the dimensionality of ⍵ from G to 2G, where each ⍵g,1 and ⍵g,2 represents the

concentration of group g for two conditions (e.g. treatment and control). The expected value

of ⍵ for a two-group differential model and the prior distribution is described in Equations 17

and 18.

Since group proportion means and variabilities are associated (see Proportion means and

variabilities are log-linearly correlated in cell-omic data) differences in composition and

variability will be associated. To test the biological effects that lead to differential variability

that are not explained by differences in composition, we need to subtract the contribution of

differential composition from the apparent differential variability. We compute the adjusted

differential variability (independent of differential composition) using Formula (19). The left

side of the formula represents the (apparent) difference between variabilities, the right side of

the formula represents the contribution of differential composition.

Using the dataset Wu et al., we show that without adjustment, the estimates of differential

variability and composition would appear correlated (Figure S6). Often, when a cell group is

differentially abundant seems also to be differentially variable. Again, this difference is the

result of the mean-variability association in the first place. Without adjustment, the difference

in variability would just indirectly inform us about the difference in composition without

learning anything new. We show in Figure 5C and 5D that, using λ1 to adjust for the

contribution of differential composition, we obtain estimates for differences in variability that

are uncorrelated with differences in composition.

These adjusted differential variability estimates are used to carry out a test along the

lines of our testing for differential composition (see Method section, Statistical model

subsection).

Iterative outlier detection
A robust iterative strategy for outlier identification was developed for negative-binomial data

from bulk RNA sequencing (42). Such a strategy is necessary because a fit that includes

outliers makes the model biased by definition and produces skewed estimates. Sccomp

implements a three-step approach; the first two aim to identify outliers, and the third aims to
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estimate associations. In theory, the outlier identification process should iterate until

convergence (no other outlier detected); however, our analyses across seven datasets show

that two iterations always reached convergence. In the first step, the model is fitted, and

posterior predictive distribution is produced for each data point from the fitted parameters.

95% credible intervals (the interval within which an unobserved parameter value falls with

the probability of 0.95) are calculated from those distributions. The data points outside those

intervals are labelled as outliers. This loose criterion allows (roughly because of the

outlier-derived bias) 5% false-positive outliers across sample/cell-group pairs but ensures that

the vast majority of outliers are identified. In the second step, the model is fitted on the

outlier-free data. This fit will likely be not biased by outliers and can produce reliable

posterior probability distribution to base an accurate outlier identification. The posterior

predictive distribution is then produced adjusting for observation censoring (42). This

adjustment is necessary because eliminating data at the distribution’s tails leads to

downwards biases for the estimated variance. Credible intervals are calculated from the data

distribution, allowing 5% of groups (compared to sample/cell-group pairs of the first step) to

include false-positive outliers. This second step achieves a much more accurate outlier

detection, for which we can better control the false-positive rate. In the third step, the model

is fitted on the outlier-free datasets to estimate associations between tissue composition and

biological conditions. Credible intervals of the model regression coefficients are calculated

from the joint posterior distribution. For each credible interval, enough samples are drawn

from the posterior distribution to provide support with 100 draws (by default). For example,

for a 95% credible interval, a total of 2000 draws provides 100 draws beyond the 0.025 and

0.975 quantiles.

Posterior predictive check
Sccomp simulates data from a specific fit to observed data using posterior predictive

distribution. This data can be overlaid to the observed data to assess the model descriptive

adequacy. The probabilistic framework Stan (25) is used for data simulation. The posterior

distribution draws for the parameters are used to draw from one to a maximum of 2000

datasets (by default, depending on the sampling size of the fit) from the sum-constrained

Beta-binomial distributions.
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Cross-dataset learning transfer
By default, our model uses uninformative gaussian hyperpriors (see the Statistical model

subsection) on the intercept (λ0), slope (λ1) and standard deviation (𝜙) of the prior for the

concentration parameter ⍵. Sccomp offers the possibility to integrate prior knowledge about

the mean-variability association from other, previously analysed datasets by setting

informative hyperpriors. We also provide users with a set of hyperpriors for single-cell RNA

sequencing, CyTOF and microbiome data, integrating the information from the 18 analysed

datasets (Table S1). We fit the model and calculate the posterior means and standard

deviations of the three parameters (λ0, λ1, 𝜙) from these data sources and set them as the

mean and standard deviation of the respective hyperpriors.

User interface
The function for linear modelling takes as input a table of cell counts (Figure 1D) with three

columns containing a cell-group identifier, sample identifier, integer count and the covariates

(continuous or discrete). The user can define a linear model with an input R formula, where

the first covariate is the factor of interest. Alternatively, sccomp accepts single-cell data

containers (Seurat (43), SingleCellExperiment (44), cell metadata or group-size). In this case,

sccomp derives the count data from cell metadata. The output includes the composition and

variability estimates, the probability of the effect being larger than 0.2 (by default), false

discovery rate statistics, and the Markov-chain Monte Carlo convergence measures.

Study of mean-variability association
To study the association between logit-multinomial mean µg (where g is one cell type ) and

log concentration ⍵g (negative of variability) across cell omic technologies, we gathered 7

datasets from single-cell RNA sequencing (1–5, 17, 30–33), 6 from CyTOF (45–50) and 6

from microbiome (51–56) studies (Table S1). The cell or taxonomic groups were defined in

the respective studies. These datasets were analysed using the design suggested in the

respective studies, assuming that the group-wise variability was independent of the

covariates. For each dataset, the parameters µg and ⍵g were first estimated using sccomp

without imposing any relationship between the two. This setting was obtained using flat,

independent priors on the µg and ⍵g. We calculated the mean, 2.5% and 97.5% quantiles from

the posterior distributions of µg and ⍵g. We then calculated the correlation between the

posterior means of ⍵g and µg using a robust linear model (rlm, MASS (57, 58)). The residuals
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of the robust regression (difference between estimated ⍵g and regression line) were

calculated, and their distribution was analysed.

To assess the shrinkage effect on the concentration ⍵g of the modelling of its linear

relationship with µg, we used sccomp including the prior of the ⍵g given the µg. We calculated

the posterior mean and quantiles as we did with the flat independent priors. We then

calculated the shrinkage as the ratio of the estimated means of µg and ⍵g for the two runs with

or without conditional priors. We model the bimodal distribution along the regression trend

present in single-cell RNA sequencing data with a mixture regression model having Gaussian

distributed errors. The mixture distribution assumes an ordering of the components. The

component with a higher intercept (λ0,high) is given a 0.9 probability, and the smaller

component (λ0,low) is given a probability of 0.1. The slope (λ1) and the standard deviation (𝜙)

are assumed to be the same for the two components (given our analyses on the single-cell

RNA sequencing data with no linear association between the means and variabilities built-in).

The implementation of sccomp gives the option to model the mean-variability association

using mixture distribution (suggested for single-cell RNA sequencing data).

Study of model adequacy to experimental data
To assess the adequacy (29) of the sccomp model fit to experimental data, we used the

posterior predictive check (27, 28) on 7 datasets from single-cell RNA sequencing (1–5, 17,

30–33), 6 from CyTOF (45–50) and 6 from microbiome (51–56) (Table S1). For comparison,

we performed the inference and analyses with both the sum-constrained Beta-binomial and

the Dirichlet-multinomial models. We first used sccomp on the cell or taxonomic groups

using the designs defined in the respective studies, assuming the concentrations are

independent of covariates. We then used the simulation feature of sccomp to replicate those

18 datasets (i.e. posterior predictive distribution). We calculated proportion from the observed

and generated counts and compared their distributions (one element being the proportion for

one sample-group pair) using linear regression (lm function from R). To assess the presence

of any over- or under-estimation bias conditional on the relative abundance, we compared the

slope of the association between observed and generated data with the baseline group

abundance (intercept coefficient).

Reanalysis of single-cell RNA sequencing datasets
To assess the ability of sccomp to generate discoveries from publicly available datasets, we

applied sccomp to 6 single-cell RNA sequencing datasets (1–5, 17). The cell groups were
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defined in the respective studies, and the concentration was set to be conditional to the factor

of interest (first covariate in the formulae in Table S1). We then compared the significant

associations and the presence of outliers identified by sccomp with the findings presented in

the respective studies. We estimated the differential composition for all datasets, while only

for the datasets with a binary factor of interest and a sample size larger than 10, we estimated

the differential variability.

For the BRCA dataset by Wu et al. (3), we went beyond the cell group

composition/variability analysis to a higher-level inference. We can think about the

mean-variability association as a signature specific to a group of samples (e.g. cancer tissue

from patients with a triple-negative breast cancer subtype). The intercept of the regression

line represents the baseline variability within a tissue across samples. The slope of the

regression line represents the uniformity of the variability across cell types. A smaller slope

indicates that all groups (cell-types) are similarly variable; a larger slope indicates that the

larger groups are relatively much more variable than small groups. We can compare these

high-level properties across groups of samples, for example, from different breast cancer

subtypes. This analysis can identify different high-level signatures that might underlie

different biological constraints and processes. For that, we ran sccomp independently for the

samples according to the factor of interest “subtype” and compared the posterior distribution

of the estimated mean-variability association (λ1) and the baseline variability (modelled in its

negative form as concentration λ0).

Benchmark
We base our benchmark on simulated data with realistic characteristics based on the

COVID19 dataset EGAS00001004481 (4). Data was simulated based on a

logit-linear-multinomial model to ensure fairness across methods. For the simulation, we

calculated group proportions across samples and fitted a logit-linear regression model using

Stan (25). This model captures the mean-variability association similar to the default sccomp

model. We use the posterior distribution to simulate the benchmark datasets, replacing the

intercepts and slopes with given ones to establish ground truth. For each simulation, we

randomly selected 40% of the groups to be compositionally different between conditions.

With the values of the specified parameters, we simulated data from a

logit-linear-multinomial model to obtain counts. The total cell count for each sample was set

to 1000.
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We based the simulation on three variables: the magnitude of the difference, number

of samples per condition, and number of groups. The outliers were injected with realistic

frequency (10%) and magnitude (from 2 to 10 fold increase or decrease), observed in our

data-integration analyses. For each simulation, we produced a receiving-operator

characteristic (ROC) curve ranking groups by their statistics and comparing them with the

ground truth of significant/non-significant differentially abundant groups. We calculated the

area under the curve (AUC) from the receiving-operator characteristic curves to a 0.1

false-positive rate (grey shade in Figure 4B). For each combination of the simulation

parameters, we simulated 50 datasets and averaged across the areas under the curves. For

comparative purposes, we performed a benchmark (as described above) simulating data

without outliers and using the sum-constrained Beta-binomial distribution.

We assessed the leap of performance improvement that sccomp provides compared to

its next-best in relation to the performance gain of all methods. We call this measure

incremental performance gain. An incremental performance gain of one indicates that,

compared to the average performance improvement that any method had with its second-best,

a method had the same improvement. This can be thought of as linear incremental

performance gain. For each of the 15 simulation settings, we calculated the average area

under the ROC curve (AUC) to obtain a unique performance score. From this average, we

excluded the slope ranges where the performance of most algorithms approached a plateau to

calculate the difference in performance in the most informative simulation regimens. For

each simulation setting, we ranked methods based on the performance score. We calculate the

gain in performance as the difference in average AUC between each method and their

next-best ranked (e.g. first against second, second against third). The fold gain in

performance was calculated as the ratio between the gain in performance of each method and

the average of all others.

Data analysis and manipulation
The data analysis was performed in R (59). Data wrangling was done through tidyverse (60).

Single-cell data analysis and manipulation were done through Seurat (43) (version 4.0.1),

tidyseurat (61) (version 0.3.0), and tidybulk (62) (version 1.6.1). Parallelisation was achieved

through makeflow (63). Pair plots created with GGally

(cran.r-project.org/web/packages/GGally).
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Code availability

Sccomp is implemented as an open-source package in R (Github: stemangiola/sccomp) and is

installable from Bioconductor. Code used to generate figures and perform analyses can be

found at https://github.com/stemangiola/sccomp/tree/master/dev.
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Supporting information

Table S1. Publicly available datasets and studies used for re-analyses. Name refers to the abbreviations used in

the article. Multiple analysis designs tested for a study are represented by multiple rows in the Design column.

NA in the Design or Published study results is used if the published study performed no differential

composition. None refer to no significant association detected by a study.

Dataset ID Dataset
number

Name Sampl
e size

Total
counts

Design
(covariates)

Published
study results

Reference

Single-cell RNA

GSE139829 2 UVM 11 59,915 ~ metastatic NA Durante et al. (1)

SCP1288 4 RCC 9 34,326 ~ response None Bi et al. (2)

SCP1039 6 BRCA 26 100,064 ~ is_TNBC CD8+ up in
TNBC

Wu et al. (3)

EGA
S00001004481

3 COVID 32 135,600 ~ criticality Basal down
neutrophils up in
critical

Chua et al. (4)

GSE120575 1 SKCM 48 16,291 ~ response
~ treatment

None Sade-Feldman et
al. (5)

E-MTAB-10043 5 BRCA1 35 197,896 ~
pseudotime

17 cell-group
diff. abundant

Bach et al. (17)

CyTOF

FR-FCM-Z2L2 11 cytofRU
V

24 8.6x106 ~
cancer_stat
us + patient
+ batch

Trussart et al. (45)

CUAnchor 7 Batchadj
ust

24 12.2x106 ~ condition
+ batch

Schuyler et al. (46).

FR-FCM-ZYL8 8 Bodenmi
ller

16 1.7x105 ~ condition
+ subject

Bodenmiller et al.
(47)

FR-FCM-Z2474 10 Cytonor
m

40 6.2x106 ~ condition
+ batch +
subject

Van Gassen et al.
(48)

FR-FCM-Z244 12 Hartman
n

12 9.1x105 ~ condition
+ day +
subject

Hartmann et al.
(49)

CovP 9 Chevrier 58 1.4x106 ~ condition
+ age + sex

Chevrier et al. (66)

Microbiome

Karlsson_2013 14 A-ML 96 379x106 ~ is_T2D Lactobacillus up
and Clostridium
down in T2D

Karlsson et al. (51)

Gevers_2014 13 B-ML 617 1.5x106 ~ diagnosis+
body_site +
age + sex +
race

6 species up and
4 down in CD

Gevers et al. (52)

David_2014 17 C-ML 236 13x106 ~ diet +
subjectFood

NA David et al. (53)
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DS_b17cff2c2d 15 B-DB 920 20.8x106 ~ type +
antibiotic +
diet + age +
subject

5 Bacteroida and
4
deltaproteobacte
ria up and 8
Clostridia down
in antibiotic
exposed

Bokulich et al. (54)

DS_53ce4d9a55 16 C-DB 989 23.4x106 ~ age_group
+ body_site
+ subject

8 taxa
differentially
abundant in
forehead and 10
in right-hand

Song et al. (55)

DS_bb7b589593 18 D-DB 1006 3.8x106 ~ type +
age +
country

None for healthy
stool, 43 for
diarrhoea
samples

Pop et al. (56)
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Figure S1. Study of the correlation between the proportion mean and variability from 18 datasets (1–5, 17,

30–33) (Table S1, see Methods subsection Study of mean-variability association). For panels A, B and C, the

points are the posterior means of the parameters. The error bars are the 95% credible intervals. The first row

refers to mean and variability estimates association with no constraints on their relationship. The dotted line is

the line fitted by robust linear modelling (rlm (58)). The second row has rlm residuals vs fitted values with a

(blue) lowess smoother superimposed. The third line represents the estimates with the mean-variability

association modelled. The dashed lines are the correlation estimated by sccomp. A: Mean-variability association

for the single-cell RNA sequencing data. For this data type, the bimodal association is modelled (see Methods,

Study of mean-variability association) B: CyTOF data. The association is modelled as unimodal. C:

Metagenomics data. The association is modelled as unimodal. D: The change in the size of the 95% credible

intervals without/with constraints on the mean-variability relationship (None/Prior) for all datasets.
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Figure S2. Benchmark on realistic simulated data from the COVID19 dataset EGAS00001004481 (4) using the

sum-constrained Beta-binomial model.

Figure S3. Benchmark on realistic simulated data from the COVID19 dataset EGAS00001004481 (4) using the

outlier-free logit-linear-multinomial model. The comprehensive benchmark across a range of slopes, number of

samples and groups. Each performance measure represents an average of 50 areas under the curve (up to the 0.1

false-positive rate) for 50 simulations with the same parameters.
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Figure S4. Benchmark for sccomp comparing the use of cross-dataset learning transfer in a low-sample and

low-group size regimen.
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Figure S5. Application of sccomp of publicly available dataset. This figure is a companion to Figure 5. A:

Proportion distributions of the cell types with the detected associations for cancer populations for the dataset

Wu et al. (3). The blue box plots represent the posterior predictive check. B: UMAP projection of cells for three

breast cancer subtypes and boxplots for other datasets (Table S1). Cells are shaded according to the type of

finding (e.g. green shades for novel differential composition associations).
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Figure S6. A counterpart of Figure 5C and 5D (see Methods subsection Differential variability analyses),

without adjustment for the mean-variability association. A: Estimated difference in composition (x-axis) and

variability (y-axis) for the triple-negative versus ER+ comparison, without adjusting the mean-variability

association. Error bars are the 95% credible interval. Red error bars represent significant associations. Grey

dashed lines represent the minimum difference threshold of 0.2. Significant associations for cancer populations

are shown in the supplementary material. B: Estimated difference in composition and variability for the

triple-negative versus HER2+ comparison without adjusting the mean-variability association.
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