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Robust Digital Image Reconstruction via the
Discrete Fourier Slice Theorem

Shekhar S. Chandra, Member, IEEE, Nicolas Normand, Andrew Kingston, Jeanpierre Guédon, and Imants Svalbe

Abstract—The discrete Fourier slice theorem is an important
tool for signal processing, especially in the context of the exact
reconstruction of an image from its projected views. This paper
presents a digital reconstruction algorithm to recover a two dimen-
sional (2-D) image from sets of discrete one dimensional (1-D) pro-
jected views. The proposed algorithm has the same computational
complexity as the 2-D fast Fourier transform and remains robust
to the addition of significant levels of noise. A mapping of discrete
projections is constructed to allow aperiodic projections to be con-
verted to projections that assume periodic image boundary condi-
tions. Each remapped projection forms a 1-D slice of the 2-D Dis-
crete Fourier Transform (DFT) that requires no interpolation. The
discrete projection angles are selected so that the set of remapped
1-D slices exactly tile the 2-D DFT space. This permits direct and
mathematically exact reconstruction of the image via the inverse
DFT. The reconstructions are artefact free, except for projection
inconsistencies that arise from any additive and remapped noise.
We also present methods to generate compact sets of rational pro-
jection angles that exactly tile the 2-D DFT space. The improve-
ment in noise suppression that comes with the reconstruction of
larger sized images needs to be balanced against the corresponding
increase in computation time.

Index Terms—Discrete Fourier slice theorem, discrete Radon
transform, discrete tomography, image reconstruction, Mojette
Transform.

I. INTRODUCTION

T HEDiscrete Fourier Transform (DFT) is an important tool
for various signal processing problems ranging from fil-

tering and convolution to inverse problems, where it is used as
a mechanism to recover an object from its discrete projected
“views” or projections [1].
The Discrete Fourier Slice Theorem (FST) property of the

DFT, independently developed by Grigoryan and others [2]–[5],
provides an exact partitioning of two dimensional (2-D) DFT
space into a finite number of one dimensional (1-D) discrete
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Fig. 1. A schematic of the main processes within the fast Mojette reconstruc-
tion. The Mojette projections (I), acquired using a new Mojette set definition,
are converted to the periodic projections (II) via a new discrete projection map-
ping, and placed into Discrete Fourier Transform space (DFT) space (III) ready
for inversion. Parts (I) & (II) can be a logical step, i.e. the projections can be
converted in-place.

“slices” of equal length. In this work, we present a method
for recovering an image from a number of its discrete (rational
angle, aperiodic) projected views using the slice theorem of the
DFT that is both fast and robust in the presence of noise. The
projected views are those of the discrete linogram also known
as the Mojette Transform (MT) [6]. The proposed method al-
lows these discrete projections to be exactly packed within the
slices of the DFT, so that the inverse 2-D DFT is used to recover
the image without any reconstruction artefacts apart from those
formed from noise (see schematic in Fig. 1). An optimally com-
pact rational angle set is also constructed for this reconstruction
algorithm to improve response to noise and reduce its computa-
tional complexity.
The paper is structured as follows. A brief introduction to the

discrete FST is made and the case for a digital reconstruction
scheme for discrete rational angle projections made in the re-
maining parts of this section. Section II presents the proposed
method and Section III discusses the results of this method.

A. Discrete Fourier Slice Theorem

The discrete FST, also known as the Finite Radon Transform,
is a property of the DFT discovered and rediscovered a number
of times over the last 150 years [7]–[10], [2]–[5], [11], [12]. The
slices resulting from this theorem are the 1-D DFTs of periodic
projections taken as sums along the lines

(1)

(2)
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with slopes and , intercepts and for a
square image of size , where is prime and includes the
powers of two [12]. The lines (1) & (2) are equivalently formed
by the vectors and , i.e. pixels across and one
pixel down or one pixel across and pixels down. Rectangular
( ) images have to be zero padded to the nearest square
size.
The lines (1) and (2) are utilised for the set of slopes

(3)

(4)

and the set of translates

(5)

where represents whole numbers, i.e. the set of natural num-
bers including zero. To completely tile all elements of the en-
tire space at least once, i.e. cover all possible coefficients in the

DFT space, a total of slices (and hence pro-
jections) are required [13]. For the simplest prime case ,

projections are required and space is then tiled exactly
[11]. For the case , projections are required re-
sulting in a certain amount of oversampling, which is easily and
exactly corrected by dividing each coefficient for all
slices by [13]. Orthogonal forms of the discrete FST
also exist which do not require this sampling correction [14],
[15]. The image can then be recovered from the projections
by computing the 1-D DFT of these projections, placing these
slices along the vectors and into 2-D DFT
space directly (without interpolation) and computing the inverse
2-D DFT.
The discrete FST has been successfully applied to clas-

sical tomographic geometries, but no algorithm has resulted
that is experimentally suitable and computationally practical
[16]–[19]. Chandra [20] also showed that the projections can
be mapped to the number theoretic transform, an integer only
transform analogous to the DFT but with better performance
for digital data. See Chandra et al. [21] for a recent detailed
description of the discrete FST.
Unfortunately in most practical cases, only aperiodic discrete

projections (generally from the MT [6]) exist in various signal
and image processing applications ranging from psychovisual
analysis [6], data integrity [22], [23], packet networks via
an -dimensional MT [24], lossless networking [25], image
compression [26], scalable multimedia distribution [27], image
coding [28] and watermarking [29], [30]. Recent efforts have
also been made to apply the MT to real data with the aim of
reducing the number of projections and thus reducing the dose
to the subject or object being scanned [31], [32], [18], [19],
[33]. Fig. 2 shows a simple example of a MT for a image
using three projections. See Guédon [34] for a detailed review
of the MT.
A number of schemes have been proposed to recover images

from these types of projections, including a conjugate gradient
method [36] and a geometric graph approach [35]. The former is
robust in the presence of noise but is not suitably convergent, i.e.
an appropriate pre-conditioner is yet to be found, and the latter
is very sensitive to noise. Chandra et al. [21] recently proposed
an algorithm that recovers missing slices of the DFT applied

Fig. 2. An example of a Mojette Transform for a discrete image of size
using the three projections , and . The bold lines within
the right-hand grid shows a possible reconstruction path using a corner-based
inversion method [35].

expressly for this purpose. However, their method requires an
accurate estimate of the noise in order successfully handle arte-
facts created. In the next section, we present a fast algorithm for
image reconstruction from noisy Mojette projected views.

II. FAST MOJETTE RECONSTRUCTION

Given an image of a digital object, the objective is to
exactly tile an DFT space, where and ,
so as to efficiently reconstruct the image with the inverse DFT
(iDFT). For the DFT space where , redundancy provides
the mechanism for suppressing the effects of noise within the
projections.
Let the discrete projections be acquired digitally, i.e. as-

suming a Dirac pixel model, so that the pixel is summed to
its corresponding bin if and only if the line passes through the
centre of the pixel. The lines of the digital MT then form a set
of non-periodic and parallel discrete lines

(6)

where the projection is taken at angle (or the
Farey vectors ) with of an object having convex
support. Convex support simply means that space does not have
any local singularities along digital lines within the space.
Assuming that the size of the image is , in order to

utilise the Cooley-Tukey [37] algorithm for the DFT, let the total
number of MT projections and thus over-satisfy
exact reconstruction requirements [38], [28]. Each Mojette pro-
jection is then mapped to a unique periodic projection or DFT
slice to tile all of DFT space. Once the mapping is completed,
the Mojette projections are converted to periodic projections1.
A schematic of these processes are given in Fig. 1.

A. Finite Projection Mapping

The analytical mapping is as follows. For the case in
, the projection of the MTmaps to the periodic

projection as

(7)

1Implementations of this MT can be found as part of an open-source library
(written by author SC) [39], including all algorithms discussed in this paper.
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Fig. 3. A visual presentation of the mapping of Mojette Transform projections
to the periodic projections of the DFT. Solving for in (a) and in (b) results
in the mappings (7) and (8).

where is the multiplicative inverse of (which can be com-
puted easily via the Extended Euclidean algorithm). For the case

, the projection maps to the and projections as
Eq. (7) when the , and

(8)

when the , respectively. These mappings cover
all possible vectors/angles because the by defi-
nition of the angles. The mapping results from solving

and respectively. Examples of how
each of these congruences are determined is shown in Fig. 3.
It is crucial to ensure that the Mojette set has a one-to-one

correspondence to the periodic projection set, so that the DFT
space is filled completely. The next section defines a new Mo-
jette discrete angle set that is finite, fully tiling and spans the
range .

B. Angle Set

The Mojette projection set has to be constructed so as to fill
DFT space completely with as little redundandacy as possible.
The number of bins in a Mojette projection depends on the
angle as

(9)

of a rectangular image. Minimising the -norm of the
Farey fractions/vectors as

(10)

is thus desirable, to keep the projections as compact as possible.
The simplest way to achieve this is to generate angles through
the vectors with in all octants of the half plane. The
or value is then checked with the periodic projection set in

question for each vector using the mappings (7) and (8).
An example of this set for an image is given in Fig. 4(a).
Note that this set is not the same as the periodic projection vec-
tors and , but shares their simplicity. These angles
are a subset of the full set of all possible minimal vectors
and is computationally inexpensive to generate. Hence, the set
is well suited when adapting to a changing image geometry.
To generate the full minimal angle set, one computes

(11)

Fig. 4. (a) shows an example of a simple angle set, formed from the vectors
with in all octants in the half plane, used within the

fast Mojette reconstruction for array. Note that this set is not necessarily
symmetric in all octants. (b) shows an example of a true minimised angle
set for the same array. Both mappings tile or cover DFT space for the image
exactly. The origin is marked as a red point.

where is the floor (round-down) operator, beginning the
computation with and until

. Eq. (11) has been derived from a standard
technique to generate Farey fractions [40]. An example of this
set for an image is given in Fig. 4(b). Once generated,
the set must be sorted by ascending and the first
mappings chosen as the periodic angle set. This set requires the
generation of a large number of fractions and sorting of these
fractions, making the computation expensive compared to the
simple set, but this set can be pre-computed for unchanging
image geometries.

C. Finite Conversion

Once the projection set is known for a given image and DFT
space, the Mojette projections need to be converted to periodic
projections. This can be done by equating Eqs in (6), as well as
Eqs (1) and (2), with the mappings (7) and (8). For a Mojette
translate and a periodic projection translate , one gets

(12)

The conversion can be done prior to the inversion of the Mojette
projections, or as the projections are being acquired. The latter is
more desirable as the Mojette projections are effectively “com-
pacted”, since the periodic projections are generally shorter than
theMojette projections and all have the same size. The next sec-
tion discusses the results of the proposed method in the presence
of noise.

III. RESULTS

Numerical simulations of the proposed method were con-
ducted of a image of Lena on a Intel Core2Duo
(2.4 GHz) processor. Fig. 5 shows an example of a simulated re-
construction using fast Mojette reconstruction of the image with
3% Gaussian noise present in the Mojette projections within a

DFT space (i.e. the redundancy parameter of ).
The reconstruction (Fig. 5(b)) shows that the result is stable
to moderate levels of noise, having a Peak-Signal-to-Noise
(PSNR) of approximately 35 dB, which is suitable precision
for lossy image and video encoding. The errors present on the
reconstruction are shown in Fig. 5(c), which has a Root Mean
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Fig. 5. A noise response numerical simulation of the fast Mojette reconstruc-
tion method using the simple angle set. (a) shows the original image
of Lena. (b) shows the reconstruction with and 3% Gaussian noise.
(c) shows the actual errors between (a) and (b) as a surface plot. On average,
the error is approximately 5 out of 256 grey-scales per pixel.

Squared Error (RMSE) of 4.8 grey-scales out of a possible 8-bit
(256) grey-scales. Note that the noise is uniformly distributed
and no image related artefacts are apparent.
Graph 6(a) shows the noise response of the two different

angle sets as a function of the redundancy parameter . The pa-
rameter values are defined as powers of two to ensure that the
DFT space is also a power of two for the Cooley-Tukey algo-
rithm [37]. Increasing the parameter spreads out the noise as
predicted and exponentially decreases the error on the recon-
struction. The simple angle set, which is a subset of the min-
imum set, has a better noise response because it possesses more
bins on average than the full minimum set. The result is a
more aggregation of bins due to the aperiodic-periodic mapping
of Eq. (12).
Graph 6(b) shows the computation times of the MT and the

fast Mojette reconstruction method in micro-seconds. The re-
construction times include the conversion of Mojette projec-
tions to slices (via Eq. (12) and 1-D DFTs) and the inverse 2-D
DFT2. The reconstruction method, although an order of magni-
tude slower than theMT for very large images due to the number
of DFTs involved, is suitably fast as the time for reconstructing
a image from 6144 projections is approximately
13 seconds. The time could be greatly reduced using Graphical
Processing Units (GPUs). Considering both graphs, the optimal
value for the parameter appears to be around or 4, in
order to balance noise response with the speed of computation.
Further work on the fast Mojette reconstructionmethod needs

to be done in selecting optimal experimental geometries and
conducting tomographic experiments with real data as well as
comparing the effects of various detector noise types.

IV. CONCLUSION

A well-conditioned algorithm for fast reconstruction of im-
ages from their discrete (rational angle) projections utilising the

2Computations of the DFT were done using the FFTW library [41].

Fig. 6. A comparison of the angle sets for the fast Mojette reconstruction with a
image of Lena. (a) shows the RootMean Squared Error (RMSE) with

increasing redundancy . (b) shows the computation times of the fast Mojette
reconstruction method and the forward Mojette Transform (MT) on a log scale
with the time in micro-seconds ( secs).

discrete FST was presented. A new analytical mapping of these
projections was constructed that allowed them to be compacted
directly and exactly into a Discrete Fourier space of desired size
(see Eq. (12)). Once the projections are mapped, the (robust
to noise) reconstruction can be obtained with a computational
complexity with for an space (see
Fig. 5). Redundancy within this space was used to control incon-
sistencies in projection data, such as detector noise. The redun-
dancy also allows the exploitation of or -norm minimising
(iterative) algorithms to values within the space to further re-
duce noise.
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