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ABSTRACT This paper proposes a robust digital signal recovery (DSR) technique to tackle the high signal-

to-noise ratio (SNR) variation and transmitter memory effects for broadband power efficient down-link in

next-generation low Earth orbit (LEO) satellite constellations. The robustness against low SNR is achieved

by concurrently integrating magnitude normalization and noise feature filtering using a filtering block

built with one batch normalization (BN) layer and two bidirectional long short-term memory (BiLSTM)

layers. Moreover, unlike existing deep neural network-based DSR techniques (DNN-DSR), which failed to

effectively take into account the memory effects of radio-frequency power amplifiers (RF-PAs) in the model

design, the proposed BiLSTM-DSR technique can extracts the sequential characteristics of the adjacent

in-phase (I) and quadrature (Q) samples, and hence can obtain superior memory effects compensation

compared with the DNN-DSR technique. Experimental validation results of the proposed BiLSTM-DSR

with a 100 MHz bandwidth OFDM signal demonstrate an excellent performance of 11.83 dB and 9.4%

improvement for adjacent channel power ratio (ACPR) and error vector magnitude (EVM), respectively.

BiLSTM-DSR also outperforms the existing DNN-DSR technique in terms of the ACPR and EVM by

2.4 dB and 0.9%, which provides a promising solution for developing deep learning-assisted receivers for

high-throughput LEO satellite networks.

INDEX TERMS
Bidirectional long short-term memory (BiLSTM), robust digital signal recovery (DSR), radio-frequency

power amplifiers (RF-PAs), low Earth orbit (LEO), broadband communications.

I. INTRODUCTION

L
OW Earth orbit (LEO) satellite constellations have

grown drastically in recent years and have attracted

great attention from both academia and industry. Unlike

geostationary Earth orbit (GEO), medium Earth orbit (MEO),

and high Earth orbit (HEO) satellites, LEO satellites are

deployed at altitudes between 500 and 2000 km to ensure low

latency. Owing to their attractive features of vast global cov-

erage, low propagation latency, and low costs of manufactur-

ing and deployment [1]–[3], LEO satellites are a key enabling

technology in expanding the coverage of fifth-generation

(5G) networks and are expected to play a significant role in

sixth-generation (6G) communication networks [4].

The increasing demands of higher data rates and the re-

sultant use of efficient high-frequency signals pose severe

challenges for spaceborne radio-frequency power amplifiers

(RF-PAs) while maintaining high power efficiency and lin-

earity. High-frequency efficiency signals with a high peak-

to-average power ratio (PAPR), such as OFDM signals, are

promising candidates for broadband satellite links [5]. Due to

the extremely limited power supplies, RF-PAs prefer to work

near the saturation region, where the gain is compressed.
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FIGURE 1: System architecture comparison between con-

ventional DPD and the proposed BiLSTM-DSR techniques.

(a) DPD technique, (b) BiLSTM-DSR technique.

This causes out-of-band spectral regrowth and in-band non-

linear signal distortion, resulting in an increased adjacent

channel power ratio (ACPR) and a deteriorated error vector

magnitude (EVM) at ground stations. Hence, mitigating the

performance degradation caused by the nonlinear distortion

of RF-PAs has become urgent for broadband LEO satellite

communication systems. Different from RF-PA linearization

techniques for narrow band terrestrial communication sys-

tems, the mitigation of nonlinear distortion in broadband

LEO satellite systems features a few unique challenges in-

cluding the remarkably varying SNR of the received signal

due to the low obit, the strong memory effects that are

uneasy to characterize when signal bandwidth increases, and

the stringent requirement of high power efficiency and low

system complexity for the satellites.

The power back-off technique developed in previous years

for terrestrial systems is not suitable for LEO satellites due

to the low efficiency of RF-PAs. Although the digital pre-

distortion (DPD) [6]–[8] technique can achieve excellent

results in improving linearity while maintaining the high

efficiency of RF-PAs, it requires a feedback path as well as

extra power for signal processing, which is a major challenge

for LEO communication systems (Fig. 1). According to the

Consultative Committee for Space Data Systems (CCSDS)

131.2.B.1 standard, the Application Specific Integrated Cir-

cuit (ASIC) design includes a pre-distorter module providing

5th order static pre-distortion [9], which means that there

is no feedback path at the transmitter to receive RF-PAs

output signals for adjusting the pre-distortion parameters

in real-time. The pre-distortion parameter is fixed and the

outputs of RF-PAs cannot be tracked. Thus, the conventional

DPD techniques with feedback path have not been widely

used due to limited spaceborne resources. To overcome this

challenge, several techniques have been studied to recover

distorted signals at the receiver. In the digital post-distortion

technique [10], the RF-PA and the channel are first modeled

using a digital detector based on a Volterra model, and the

Volterra kernels and the transmitted symbols are estimated

using a Kalman filter (KF)-based algorithm. In [11], a parti-

tioned distortion mitigation technique incorporates the phase-

DPD technique at the transmitter and the amplitude-post-

compensation technique at the receiver. These techniques

can improve the overall power efficiency and bit error rate

(BER) performance of the transceiver. However, they cannot

handle the time-varying signal power caused by the varying

transmission distance between LEO satellites and ground

stations [12]. Actually, there are several techniques to deal

with varying power in the receiver. In [13], a new method

based on time varying gain amplifier (TVGA) is proposed

for obtaining a wider dynamic range of the received power

and an adaptive sweep optimization (ASO) method is applied

for increasing the linearity of TVGA. In a novel Automatic

gain control (AGC) circuit [14], a flexible gain compensation

scheme with hybrid gamma parameters is adapted to accom-

modate different types of applications. Nevertheless, these

techniques cannot cope with high signal-to-noise ratio (SNR)

variation well.

Deep neural network-based digital signal recovery (DNN-

DSR) is a novel technique allowing spaceborne RF-PAs to

operate with high efficiency by compensating for the nonlin-

ear distortion in the signals received at ground stations [12].

The DNN-DSR technique has demonstrated its capability of

handling varying power and additive white Gaussian noise

(AWGN). This allows LEO spaceborne RF-PAs to operate

near their saturation regions for high power efficiency while

maintaining satisfactory EVM performance at ground sta-

tions. However, the DNN pays little attention to the time

series characteristics of the data, which is closely related to

the memory effects of RF-PAs and hence leaves much room

for improvement.

Long short-term memory (LSTM) networks have a pow-

erful capability of capturing features in time series data,

benefiting from their recurrent structure [15]–[18]. Given

this advantage, LSTM networks have been applied to the

behavioral modeling of RF-PAs and the linearization of RF-

PAs in recent years [19]–[22]. However, the correlation be-

tween the memory effects of RF-PAs and LSTM networks is

not studied deeply and intuitively in these papers, especially

for broadband systems. Besides, they are mainly to prevent

interference to adjacent channels, and are not EVM quan-

titative evaluation based RF-PAs nonlinear modeling and

linearization. These neural network-based DPD techniques

not only require feedback paths, but also need to store more

parameters than memory polynomial (MP) methods. There-

fore, the system complexity and high power consumption

brought by these DPD techniques applied to transmitters are

unacceptable for LEO satellites.

In this paper, a novel DSR technique that directly improves

the signal quality by reducing the EVM at the receiver based

on bidirectional LSTM (BiLSTM) is proposed. As illustrated

in Fig. 1, the distorted signal caused by RF-PAs can be
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FIGURE 2: Geometry graph of the satellite-to-ground data

transmission link.

removed by BiLSTM networks at the receiver side. The intu-

itive connection between BiLSTM networks and the memory

effects of RF-PAs is established by training the BiLSTM

model using data measured from the RF-PAs. In addition

to retaining the robustness against power variation of the

DNN-DSR, the proposed technique achieves better recovery

performance in terms of ACPR and EVM. In particular, the

better robustness of high SNR variation is obtained. Exper-

iments were conducted to compare the DNN-DSR, LSTM-

DSR, and BiLSTM-DSR techniques under both narrowband

and broadband conditions for performance validation.

This paper is organized as follows: Section I is the in-

troduction. Section II describes problem formulation. Sec-

tion III presents the proposed BiLSTM-DSR technique. The

experimental results of different techniques are provided in

Section IV. Finally, the conclusion of this paper is presented

in Section V.

II. PROBLEM FORMULATION

In this section, we pay close attention to the high SNR

variation and inherent memory effects of RF-PAs.

A. DYNAMIC SATELLITE-TO-GROUND LINK

CONDITIONS AND SNR VARIATION

For the transmission performance of downlink telemetry

data, the SNR of the received signal is a very important

indicator. This is because the free space loss (FSL) is affected

by the distance variation between the satellite and the ground

station, thereby affecting the link budget.

As is illustrated in Fig. 2, the satellite-to-ground data

transmission link changes dynamically, where ε0 represents

the elevation angle, d is the distance of data transmission, H
denotes the orbital altitude of LEO satellite, Re = 6371 km

is the earth radius.

When the satellite reaches point O, the elevation angle

ε0 is 5
◦

, and the data transmission link is established. The

distance d has the largest value at this point. When the

satellite moves to point M , the elevation angle increases to

90
◦

and the distance d0 is the shortest. In the ∆NOP , there’s

the geometric relationship expressed as

(H +Re)
2
= Re

2 + d2 − 2Red cos
(π

2
+ ε0

)

, (1)

therefore, the distance can be written as a function of ε0

d(ε0) = Re





√

(

H +Re

Re

)2

− cos2ε0 − sin ε0



 . (2)

The FSL is the main loss of the transmission link, and it

can be decided by the carrier frequency f and the distance d
[23]:

L(ε0) =

(

4πd(ε0)

λ

)2

=

(

4πfd(ε0)

c

)2

. (3)

In the receiver model, the noise comes from the received

background and the receiver itself. These noises are fixed

values, regardless of the distance. Therefore, the varying

SNR can be represented by

∆
S

N
(dB/Hz) =

(

S

N

)

5
◦

−

(

S

N

)

90
◦

= ∆L(ε0). (4)

Assuming that the orbital altitude of LEO satellite is 800

km, then the distance variation brings a approximately 12

dB link budget variation in received signal power. Thus, the

variation range of SNR would be as big as 12 dB. Further-

more, as the down-link window is typically around 10 to 15

minutes, the drastic change in SNR of the received down-link

signal within the short window exhibits great challenge for

reliable signal recovery and therefore calls for novel robust

DSR techniques.

B. MEMORY EFFECTS IN RF-PAS

With the increasing need for broadband signal formats such

as OFDM in LEO satellite communications, the memory

effects of RF-PAs tend to be significant and cannot be

ignored [24]. To fully understand the nonlinearity of RF-

PAs, memory effects must be taken into account. As RF

microwave devices, the memory effects of RF-PAs based on

the GaN/GaAs process result from dynamic self-heating and

dynamic trapping [25]. Generally, memory effects make the

output power of RF-PAs depend not only on the current input

signal but also on the previous input signal of the RF-PAs.

One impact of these “memory” effects is that the gain of the

RF-PA is much larger than that of the corresponding RF car-

rier period on the same time scale. These so-called memory

effects can be expressed by several mathematical methods,

including the MP [26], Generalized MP (GMP) [27], Volterra

[28], and Wiener-Hammerstein [29] methods.

For the narrowband case, the MP model is the most com-

monly used RF-PA modeling method due to its low complex-

ity. A typical MP of nonlinearity order K and memory depth

Q is represented by

yMP (n) =
K−1
∑

k=0

Q−1
∑

q=0

ck,qx(n− q)|x(n− q)|k, (5)
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where x(n) and yMP (n) represent the input signal and

the output signal of the RF-PAs, respectively. ck,q are the

complex polynomial coefficients.
For multi-carrier and wideband signals, the GMP model is

required, which can be mathematically expressed as

yGMP (n) =

Ka−1
∑

k=0

La−1
∑

l=0

aklx(n− l)|x(n− l)|
k

+

Kb
∑

k=1

Lb−1
∑

l=0

Mb
∑

m=1

bklmx(n− l)|x(n− l −m)|
k

+

Kc
∑

k=1

Lc−1
∑

l=0

Mc
∑

m=1

cklmx(n− l)|x(n− l +m)|
k
.

(6)

where x(n) and yGMP (n) are the input signal and the out-

put signal of the RF-PAs, respectively. Ka and La are the

order and memory depth of the MP sub-model, respectively.

(Kb, Lb, Mb) and (Kc, Lc, Mc) are the order, the memory

depth, and the maximum orders of the lagging and leading

cross-terms, respectively. akl, bklm and cklm are the model

coefficients.
An illustration of the gain compression and baseband elec-

trical memory effects of the large-amplitude signal caused by

the nonlinearity of the RF-PAs is shown in Fig. 3(a). Two sets

of five adjacent samples are indicated with circles. The actual

outputs (i.e., points C and D) are different for the expected

outputs of the same value (i.e., points A and B) subject to

the memory effects. The difference is indicated as δh in

Fig. 3(a). In addition, more different outputs can be obtained

throughout the entire transmission waveform. In particular,

in a broadband scenario with a high PAPR, such a difference

is more prominent [30], resulting in the AM-AM curves of

Fig. 3(b). For the same normalized input amplitude of 0.4,

the normalized output amplitude ranges from 0.54 to 0.66

due to the different previous states. The transmitter memory

effects of RF-PAs have a great impact on the transmission

performance.

III. PROPOSED TECHNIQUE BASED ON BILSTM

NETWORK

In this section, we exhibit the complete BiLSTM-based net-

work structure and propose solutions for high SNR variation

and transmitter memory effects. Furthermore, we also briefly

discuss the training process and complexity analysis.

A. BILSTM-DSR NETWORK STRUCTURE

As illustrated in Fig. 4, the proposed BiLSTM-DSR is a

technique involving off-line training phase and on-line im-

plementation. During off-line training phase, the proposed

BiLSTM-based network captures the nonlinear features of

the RF-PA by extracting the sequential characteristics of

adjacent sampled data. With the result of the loss function

gradually decreasing to the preset threshold, the training is

completed. The structure and parameters of the proposed net-

work are fixed and integrated into the receiver. Subsequently,
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(a) Gain compression and memory effects manifested in amplitude curves.
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FIGURE 3: Illustration of (a) the gain compression and

memory effects manifested in the amplitude curves, and (b)

output diffusion due to memory effects.

the LEO satellite with the RF-PA is launched, and the re-

ceiver with the proposed network can correct the distortion of

the RF-PA in the on-line real-time application scenario. The

proposed BiLSTM-DSR architecture consists of five layers,

an input layer, two BiLSTM layers, a fully connected layer,

and an output layer. Unlike DNN-DSR, which accepts only

one-dimensional (1D) inputs, the proposed technique accepts

two-dimensional (2D) signals as inputs. Each sample is fed

into the network in a 2D data format (i.e., (It, Qt)), preserv-

ing the original amplitude and phase information. To capture

the memory effects while maintaining a reasonable training

time, a memory depth of 3 is chosen for the narrowband

case. Thus, the numbers of neurons in the input layer and

output layer are set to 5 (i.e., the timestep is set to 5) and 2,

respectively. The BiLSTM layer receives a signal sequence

consisting of advanced and delayed items.
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Î

Q̂

Input layerOutput 

layer

Forward 

LSTM

Backward 

LSTM

BiLSTM layer (100*2)

BiLSTM-based network

BiLSTM layer (100*2)

Filtering block
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Hyperbolic tangent and sigmoid functions are used as

activation functions in each BiLSTM layer. Then, the outputs

from each BiLSTM layer are fed into a batch normalization

(BN) layer. The output of the last BN layer is used as the

input of the fully connected layer. In the final layer, the output

with two neurons provides the desired outputs (Ît, Q̂t).

B. NORMALIZATION AND FILTERING FOR HANDLING

HIGH SNR VARIATION

It is the simplest and most effective way to train the net-

work by mapping the highly distorted signal directly to

the pure noiseless signal. During the training process, the

BiLSTM-based network obtains the anti-noise capability by

capturing the long-term and short-term correlation of signals.

Therefore, as shown by the filtering block in BiLSTM-based

network in Fig. 4, we explicitly design two BiLSTM layers

and one BN layer to make the network more robust against

AWGN.

The extra BN layer with normalization is adopted to handle

the high SNR variation in this work. The formula for the BN

layer can be expressed as

ŷi = γ
yi − E[yi]

√

V ar[yi] + ε
+ β, (7)

where yi and ŷi are the input and output of the BN layer,

respectively. γ and β represent the scaling and shifting

parameters, respectively. Besides, ε is set to 0.001 to prevent

the denominator from being zero. Through normalization of

the input data by recentering and rescaling [31], BN layer

can allows artificial neural networks to quickly and stably

respond to the high SNR variation signals.

In the on-line application phase, when the SNR of the

received signal is 15 dB, the normalized output amplitude of

each layer is plotted in Fig. 5 to show the process of the signal

FIGURE 5: Normalized outputs of each layer in the proposed

BiLSTM network.

recovery performance. After the filtering block of BiLSTM-

based network in Fig. 4, the noise in the received signal is

clearly suppressed, and the SNR is increased by 6.63 dB (the

four subplots on the top in Fig. 5). At the same time, the

useful signal is maintained intact without distortion. With the

subsequent BN layer and FC layer, the output of the FC layer

matches the perfect signal to the RF-PA well, which means

the original signal transmitted by the RF-PA is recovered with

high precision (the two subplots at the bottom in Fig. 5).
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FIGURE 6: Schematic diagram of LSTM cell. The symbols

of ⊕, ⊗, and σ represent the operation of addition, element-

wise multiplication, and Sigmoid function, respectively.

C. BILSTM BASED NETWORK FOR TACKLING MEMORY

EFFECTS

Unlike traditional methods, an LSTM cell is applied to cap-

ture the memory effects of RF-PAs in this work. Additionally,

LSTM networks can not only store short-term states but

also maintain long-term states. LSTM utilizes a special unit,

named a cell, as illustrated in Fig. 6, to overcome the problem

of vanishing and exploding gradients in common RNNs.

LSTM carries out the preservation or removal of model input

information according to its importance by adding a forget

gate, input gate, output gate, and nonlinear output. All the

gates of the cell calculate the activation (using an activation

function) of a weighted sum (wx + b), similar to standard

neurons, where w, x, and b stand for weights, inputs, and

biases, respectively.

In Fig. 6, the forget gate ft determines whether to retain

the previous data in the cell state Ct−1. The input gate it
selectively records new data into the cell state. The output

gate ot decides which data will be outputted. The temporary

status C̃t denotes a vector of the new candidate values. The

specific data flow of the LSTM network is described as

follows:

ft = σ(Wf [ht−1,xt] + bf ), (8)

it = σ(Wi[ht−1,xt] + bi), (9)

C̃t = tanh(WC [ht−1,xt] + bC), (10)

and

ot = σ(Wo[ht−1,xt] + bo), (11)

where Wf , Wi, WC , and Wo represent the weight matrices

for the joint vector (i.e., [ht−1,xt]) composed of the current

input vector (i.e., xt) and the previous hidden state (i.e.,

ht−1). bf , bi, bC , and bo are the corresponding bias terms.

The current long-term status Ct and the LSTM cell’s

output yt can be calculated by

Ct = ft ⊗Ct−1 + it ⊗ C̃t (12)

LSTM
cell

LSTM
cell

LSTM
cell

LSTM
cell

LSTM
cell

LSTM
cell

LSTM
cell

LSTM
cell

LSTM
cell

LSTM
cellForward LSTM

Backward LSTM

Input data 2 2( , )t tI Q− − 1 1( , )t tI Q− − ( , )t tI Q 1 1( , )t tI Q+ + 2 2( , )t tI Q+ +

FIGURE 7: The forward and backward LSTM process of the

BiLSTM layer.

and

yt = ht = ot ⊗ tanh(Ct), (13)

where Ct−1 denotes the previous long-term status. The

symbol ⊗ represents element-wise multiplication [20]. As is

clearly shown, the current output depends not only on the

current long-term status and input but also on the previous

short-term status.

There is an intuitive timing relation between the marked

samples in Fig. 3(a). Due to the memory effects of the RF-

PAs, (It, Qt) is affected by the data at previous moments (i.e.,

(It−2, Qt−2) and (It−1, Qt−1)) and prominently affects the

next data (i.e., (It+1, Qt+1) and (It+2, Qt+2)). Therefore,

to extract the memory features of RF-PAs more completely,

we utilize a bidirectional mechanism for the LSTM network.

The forward and backward LSTM processes of the BiLSTM

layer are shown in Fig. 7. Each training process loops the

five input samples forward and backward, and the BiLSTM

layer records the timing characteristics of the input data

accordingly. In this way, the network can better retrieve

memory effects of RF-PAs.

D. NETWORK TRAINING

To conveniently predict the intermediate sequences of both

forward and backward LSTM networks, we set the data

format of the training data and labels to that shown in Table

1. The characteristic information used for off-line training is

extracted from the received signal containing the nonlinearity

of the RF-PAs. The labels are allocated according to the I/Q

signal of the transmitter constellation trace.

TABLE 1: Training data and Lables

Training data Lables

(It−2, Qt−2)(It−1, Qt−1)(It, Qt)(It+1, Qt+1)(It+2, Qt+2) (Ît, Q̂t)

(It−1, Qt−1)(It, Qt)(It+1, Qt+1)(It+2, Qt+2)(It+3, Qt+3) (Ît+1, Q̂t+1)

(It, Qt)(It+1, Qt+1)(It+2, Qt+2)(It+3, Qt+3)(It+4, Qt+4) (Ît+2, Q̂t+2)

(It+1, Qt+1)(It+2, Qt+2)(It+3, Qt+3)(It+4, Qt+4)(It+5, Qt+5) (Ît+3, Q̂t+3)
...... ......

According to the proposed network architecture, the back

propagation (BP) algorithm is used to train the network. First,

we chose Huber loss as the loss function of the BP algorithm,

as it can strengthen the robustness of the mean square error

(MSE) against outliers, which stand for the abnormal I/Q
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TABLE 2: Model training configurations

Maximum Epochs 500
Minimum Batch Size 512

Optimizer RMSprop
Loss Function Huber loss

State Activation Function Tanh
Gate Activation Function Sigmoid

Initial Learning Rate 0.001
Early Stop Patience 50 epochs

Learn Rate Drop Factor 0.1

Minimum Learning Rate 10-5

Dropout 0.05
Time Step 5

Bias Regularizer L2(1e-3)

Testing Samples 105

samples that are excessively far from the actual samples,

as shown in Fig. 10(a). The Huber loss function can be

expressed as

Lδ(y, f(x)) =

{

1

2
(y − f(x))

2
for |y − f(x)| ≤ δ

δ |y − f(x)| − 1

2
δ2 otherwise

,

(14)

where δ is the parameter of Huber loss, which is set to 1.

y and f(x) represent the observed and predicted values, re-

spectively. The root-mean-square prop (RMSprop) is usually

an appropriate choice for LSTM network training due to its

adaptive learning rate. In this work, we adopted the RMSprop

algorithm to calculate the optimal parameters of the proposed

network. Additionally, the detailed simulation parameters of

the BiLSTM-based network are shown in Table 2.

E. COMPUTATIONAL COMPLEXITY ANALYSIS

In our scenario, the input size is samples× timesteps×M ,

where M represents the number of features of one sam-

ple, which are 2D data containing I/Q information. For the

proposed BiLSTM-based network, the computational com-

plexity is relevant to the number of units in the network.

The computational complexity of each BiLSTM layer is

O(2× 4× (M + n)× n+ n), where n denotes the number

of neurons of each gate in an LSTM cell and the number 2

represents the forward LSTM and backward LSTM. It should

be noted that timesteps affects only the training time, not the

computational complexity of the BiLSTM layer.

Then, the computational complexity of the BN layer is

O(4 × L), where L is the number of output units in the

previous layer. The number 4 represents the mean, variance,

scaling parameter, and shifting parameter. Finally, the com-

putational complexity of the FC layer is O((s + 1) × d),
where s and d stand for the number of output units in

the previous layer and the neurons of the current FC layer,

respectively. Overall, the computational complexity of the

proposed network is O(a×(2×4×(M+n)×n+n)+b×(4×
L)+c×((s+1)×d)), where a, b, and c represent the number

of BiLSTM layers, BN layers, and FC layers, respectively.

The only structural difference between the LSTM-based

network and the proposed BiLSTM-based network is that

the former contains only forward LSTM and no backward

LO CW 
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converter

Down

converter

RF-PAFrequency Multiplier

Signal Analyzer 

3G

28G

28G

1:2
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Vector Signal 
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(R&S SMBV100B) 

FIGURE 8: Schematic diagram of the measurement setup.

Vector Signal Generator

Signal Analyzer

RF-PA
LO Generator

Up-converter

Power Source

Down-converter

Frequency Multiplier

FIGURE 9: Photograph of the measurement setup.

LSTM. Based on the detailed analysis above, the computa-

tional complexity of the LSTM network is O(a× (4× (M +
n) × n + n) + b × (4 × L) + c × ((s + 1) × d)). The

meanings of the symbols are the same as above. Since the

activation function layer does not increase the computational

complexity, the computational complexity of the DNN is

O(b×(4×L)+c×((s+1)×d)). The meanings of the symbols

remain the same as above. The computational complexity

comparison of the three networks is shown in Table 3.

IV. RESULTS BASED ON MEASUREMENTS

In this section, the linearization performance of the proposed

BiLSTM-DSR technique is shown and compared with the ex-

isting DNN-DSR technique. As BiLSTM-DSR is developed

based on LSTM, the DSR results using LSTM (LSTM-DSR)

are also included in the comparison.

A. EXPERIMENTAL SETUPS

The experiments include validations with a narrowband, 10

MHz LTE OFDM signal with an 8 W CGH40006P GaN

RF-PA operating at 3.5 GHz and a wideband, 100 MHz 5G

OFDM signal with a 2 W Ducommun RF-PA operating at 28

GHz. For the narrowband experiment, the data from [12] are

used.

The experimental data for broadband validation are col-

lected in this work using the measurement platform illus-

trated in Fig. 8 and Fig. 9. The input source of the 3 GHz

signal for the measurements is generated from a vector signal

VOLUME 4, 2016 7
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TABLE 3: Layers and parameters of different architectures

Architecture BN-layer Relu layer LSTM layer (units of each layer) FC layer (units of each layer) Total parameters
DNN-DSR 3 2 0 3([500,350,2]) 182,960

LSTM-DSR 2 0 2([200,100]) 1(2) 184,202
BiLSTM-DSR 2 0 2([100*2,50*2])) 1(2) 184,202

TABLE 4: Measured EVM and ACPR of different techniques

Bandwidth 10MHz 100MHz
Scheme ACPR EVM ACPR EVM

Original signal: PA input -50.03 dB - -46.45 dB -
PA output without DSR -32.06 dB 8.03% -30.08 dB 11.92%

DNN-DSR [12] -46.43 dB 2.89% -39.48 dB 3.45%
LSTM-DSR(memoryless) -47.25 dB 1.89% -39.99 dB 8.09%

LSTM-DSR -47.82 dB 1.71% -40.16 dB 2.95%
BiLSTM-DSR(memoryless) -47.04 dB 1.88% -39.79 dB 8.07%

BiLSTM-DSR -47.80 dB 1.72% -41.91 dB 2.52%

generator (R&S SMBV100B). For both upconversion and

downconversion, an unmodulated signal of 12.5 GHz from a

local oscillator (LO) continuous wave generator is converted

to 25 GHz by a frequency multiplier and fed into a power

divider as an LO signal. After upconversion, the 28 GHz

signal is fed into the RF-PA. To ensure sufficient nonlinearity

for the validation, the RF-PA is driven into a relatively high-

compression region at its 1 dB compression point. The EVM

is 8.03% and 11.92% for narrowband and wideband signal

respectively without linearization, which is a huge challenge

for DPD with such strong nonlinearity. After downconver-

sion, the intermediate frequency (IF) signal is captured by

signal analyzer and converted to baseband digital domain for

Matlab operating.

The PAPRs of the tested narrowband and wideband signals

are 10.06 dB and 11.69 dB, respectively. Fig. 10(a) and

Fig. 11(a) show the AM-AM and AM-PM curves based on

measurements of the 10M bandwidth and 100M bandwidth

signals (without DSR), respectively. The nonlinear trajecto-

ries of the AM/AM curves reveal the gain compression in

different regions of the RF-PA. The obvious diffuse samples

in the curves indicate that the RF-PA under test exhibit strong

memory effects.

On the other hand, to avoid overfitting and underfitting

during the training of the models, an appropriate number of

neurons are selected in each layer. In addition to the proposed

BiLSTM-DSR, we adopted the DNN-DSR technique and

LSTM-DSR technique under the same circumstances. Table

3 provides details about the number of layers and units and

the total number of parameters. For fair comparison, the

memory depths of DNN-DSR, LSTM-DSR, and BiLSTM-

DSR are all set to 3 for the narrowband signal validation

case and 4 for the wideband validation case. To demonstrate

the obvious advantages of the proposed BiLSTM DSR tech-

nique in memory effect mitigation, memoryless BiLSTM-

DSR (i.e., with a memory depth of 1) is also included in the

comparison. The total number of trainable parameters also

remains the same. The training and validation of the proposed

technique are implemented using TensorFlow 1.14 through

the Keras API in Python 3.7.6. The pre- and post-processing

and data plotting are performed in MATLAB 2020b.

B. RECOVERY PERFORMANCE

In addition to the 1 dB compression point data, the input and

output signals of the RF-PA in wider operating states are col-

lected with a granularity of 1 dBm. Each set of data is trained

and tested separately to obtain the relationship between EVM

and average output power, as illustrated in Fig. 12. As the

average input power increasing, the drain efficiency and the

nonlinearity of the RF-PA enhance, while the EVM caused by

distortion deteriorates. For the 10 MHz narrowband signals,

the EVM performances of LSTM-DSR and BiLSTM-DSR

are superior to DNN-DSR by about 1.5% on average. Due to

the consistent nonlinearity in the narrowband application, the

LSTM-DSR and BiLSTM-DSR techniques with or without

memory acquire almost similar results. Whereas, for the 100

MHz wideband signals, the EVM performances of memo-

ryless LSTM-DSR and BiLSTM-DSR both are even 4% to

6% worse than that of DNN-DSR. The RF-PA features non

flatten in-band response in the wideband application so that

LSTM-DSR and BiLSTM-DSR techniques with memory

become more suitable. The EVM performance of BiLSTM-

DSR with memory is about 0.5% better than that of LSTM-

DSR, and 1% DNN-DSR, respectively.

Since the state of the RF-PA in practical application is set

near the 1 dB compression point to maintain a high power ef-

ficiency, we mainly focus on the recovery performance at the

1 dB compression point. Under 1 dB compression point, the

measured comparative results of the different techniques are

summarized in Table 4, the characteristic curve comparisons

of AM-AM, AM-PM are shown in Fig. 10 and Fig. 11, and

the power spectrum density (PSD) is depicted in Fig. 13. The

output of the RF-PA is severely distorted by the nonlinear

RF-PA for the narrowband and wideband signals when DSR

techniques are not applied.

For the 10 MHz narrowband signals, the ACPR and EVM

using BiLSTM-DSR are approximately 1.4 dB and 1.2%

better than those of the DNN-DSR technique, respectively. In

addition, the recovery effect of BiLSTM-DSR on the outliers,

shown in Fig. 10(d), is better than that on the others due to the

bidirectional mechanism of BiLSTM, which is of great ben-

efit in boosting the quality of the received signal. Compared

with DSR techniques with memory depth, EVM deteriorates

by approximately 0.2% for memoryless BiLSTM.

For the 100 MHz wideband signals, the improvements in

ACPR and EVM using BiLSTM-DSR are approximately 2.4

dB and 0.9% better than those of the DNN-DSR technique,

respectively. In this case, LSTM-DSR is only 0.68 dB and

0.50% better in terms of ACPR and EVM, respectively, in
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outliers

(a) Without DSR technique

outliers

(b) With DNN-DSR technique

outliers

(c) With LSTM-DSR technique (d) With BiLSTM-DSR technique

FIGURE 10: AM-AM and AM-PM curves with different DSR techniques for the 10MHz OFDM signal. (a) Without DSR

technique, (b) with DNN-DSR technique, (c) with LSTM-DSR technique, (d) with the proposed BiLSTM-DSR technique.

(a) Without DSR technique (b) With DNN-DSR technique

(c) With LSTM-DSR technique (d) With BiLSTM-DSR technique

FIGURE 11: AM-AM and AM-PM curves with different DSR techniques for the 100MHz 5G signal. (a) Without DSR

technique, (b) with DNN-DSR technique, (c) with LSTM-DSR technique, (d) with the proposed BiLSTM-DSR technique.

comparison with the DNN-DSR technique. The advantages

of the BiLSTM-DSR technique in wideband conditions have

far-reaching significance for applying 5G signals in satellite

communication systems. BiLSTM-DSR with memory depth

obtains an excellent EVM reduction of over 5% compared to

memoryless BiLSTM-DSR. The capability of the proposed

technique to capture features in time series data and effec-

tively compensate for the memory effects in broadband PAs

is powerfully demonstrated.
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FIGURE 12: Measured EVM vs. Average Output Power

curves with different techniques. The symbols of (*) repre-

sent memoryless.

C. NOISE ROBUSTNESS ANALYSIS

In online applications, high SNR variation and notable power

variation may affect the recovery performance. Therefore, it

is essential for the trained models to be robust against these

conditions. The impact of power variation was thoroughly

discussed in [12], and hence, this work mainly focuses on

the impact of high SNR variation.

Fig. 14(a) shows the recovery performance for the nar-

rowband signal with different techniques under the AWGN

channel. In the entire test range of the SNR, the ACPR results

for the BiLSTM-DSR technique are 1 dB better than those

of the other two techniques with the same SNR. If the SNR

is lower than 30 dB, the BiLSTM-DSR technique shows

excellent performance in terms of EVM. For instance, when

the EVM is needed to be 12%, the BiLSTM-DSR technique

can improve the SNR performance by approximately 3.5

dB. This means that 3.5 dB of transmission power can thus

be saved while maintaining the consistent EVM, with the

BiLSTM-DSR technique applied at ground stations. This

can greatly increase the satellite power efficiency. Moreover,

when the SNR is approximately 20 dB, a more than 3%

improvement in the EVM can be acquired by adopting the

BiLSTM-DSR technique in comparison with the other two

techniques.

The results for the 100 MHz wideband signal are shown in

Fig. 14(b). In the entire test range of the SNR, the ACPR

results for the BiLSTM-DSR and LSTM-DSR techniques

are 2 dB and 1 dB, respectively, better than the DNN-DSR

technique with the same SNR. Based on our previous expe-

rience [12], we know that the EVM, not the ACPR results, is

(a) 10MHz bandwidth and 10.06 dB PAPR signal.

(b) 100MHz bandwidth and 11.69 dB PAPR signal.

FIGURE 13: PSDs of the output signal with different DSR

techniques. The symbols of (*) represent memoryless. (a) 10

MHz narrow band OFDM signal, (b) 100 MHz Wide band

5G signal.

the most important evaluation metric for the recovery perfor-

mance of DSR techniques, as the EVM is closely correlated

to the bit error rate (BER). If the SNR is approximately 13

dB, BiLSTM-DSR and LSTM-DSR show approximately 5%

and 3% improvements in EVM in comparison with the DNN-

DSR technique, respectively. When the EVM is needed to

be 10%, the BiLSTM-DSR technique can equivalently relax

the SNR requirement by approximately 2.5 dB (from 20.5

dB to 18 dB). This gain is not as good as that in the test

using the narrowband signal. The possible reason for this is

that the RF components used in the satellite transmitter do

not exhibit sufficiently flat frequency responses within the

required bandwidth, which will cause phase and amplitude

fluctuations during transmission [32]. Hence, the wideband
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3.5dB

12%

3%

(a) 10MHz bandwidth and 10.06 dB PAPR signal.

10%
2.5dB

10%
2.5dB

5%

(b) 100MHz bandwidth and 11.69 dB PAPR signal.

FIGURE 14: ACPR and EVM performance about the noise

robustness comparison between different techniques. (a) 10

MHz aarrowband OFDM signal, (b) 100 MHz Wideband 5G

signal.

signals show inconsistent nonlinearities in the operation

band, which will increase the challenge for signal recovery.

However, 2.5 dB is still considered a great improvement,

as it is equivalent to an almost halved requirement in the

transmitted power for the downlink, meaning a significant

improvement in the total power efficiency of the satellites.

While the proposed technique has achieved satisfactory

results, it also leaves sufficient room for improvement, such

as by taking into account complex channel conditions. In

addition, due to the limited capability of the signal gen-

erator and signal analyzer, we only validated the proposed

technology at a 100 MHz bandwidth in this work. However,

we believe the technology has the potential for even broader

bandwidths, which could be a topic for further investigation.

V. CONCLUSION

In this paper, we proposed a novel DSR technique for broad-

band LEO satellite communications. The proposed technique

adopts BiLSTM networks to correct the nonlinear distortion

caused by spaceborne RF-PAs at ground stations. This allows

spaceborne RF-PAs to work in their saturation regions for

high power efficiency while maintaining a satisfactory EVM

at the ground station. We established a close correlation

between our BiLSTM model and the memory effects of RF-

PAs and concurrently integrated noise feature filtering and

magnitude normalization into a filtering block, which ensures

superior signal recovery performance than existing DNN-

DSR techniques. The experimental results show that the

proposed BiLSTM-DSR technique outperforms the existing

DNN-DSR technique in terms of ACPR and EVM by 2.4

dB and 0.9%, respectively, using the same broadband 100

MHz OFDM signal data set. This is equivalent to a 2.5 dB

relaxation in the required SNR, from 20.5 dB to 18 dB, to

maintain an EVM of the received signal at 10%, which is a

big boost of the robustness against low SNR. These results

indicate the high potential of the proposed BiLSTM-DSR

technique in the development of the emerging LEO satellite

communication systems aiming at high throughput and high

power efficiency.

In future work, we will extend the BiLSTM-DSR tech-

nique to broader bandwidth and higher-order modulation

schemes. Moreover, it is challenging to handle the time-

varying Doppler effects in real LEO satellite systems, and

we will explore more robust networks such as Transformer

networks for this issue. The further reduction of SNR require-

ments is also open for research.
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