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Abstract
Discovering causal relations among genes from observational data is a fundamental problem in
systems biology, especially in humans where direct gene interventions or perturbations are
unethical/infeasible. Furthermore, causality is emerging as an integral factor for building
interpretable and generalizable machine-learning models of complex phenotypes. Existing
methods can discover causal relations from observed gene expression and matched genetic data
using the well-established framework of Mendelian Randomization. But, the prevalence of
expression measurement errors can mislead most existing methods into making wrong causal
discoveries, especially among genes transcribed at low to moderate levels and using data with
large sample size (say thousands as in modern genomic or GWAS studies).

In this study, we propose a new framework for causal discovery that is robust against
measurement noise by extending an established statistical approach CIT (Causal Inference Test).
We specifically developed a two-stage approach called RCD (Robust Causal Discovery), wherein
we first estimate measurement error from gene expression data and then incorporate it to get
consistent parameter estimates that could be used with appropriately extended statistical tests of
correlation or mediation done in the original CIT. By quantifying and accounting for noise in the
data, our RCD method is able to significantly outperform the baseline method in recovering
ground-truth causal relations among simulated noisy genes and transcription factor to target gene
relations among noisy yeast genes using data on 1012 yeast segregants. Encouraged by these
results, we applied our RCD to a human setting where perturbations are infeasible and identified
several causal relations, including ones involving transcriptional regulators in the skeletal muscle
tissue.

Data and Code Availability
The code that implements our two-stage RCD framework is available here:
https://github.com/BIRDSgroup/RCD; code for reproducing the figures/tables in this
manuscript is also provided in this link.
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Introduction 1

Deciphering the genotype→phenotype map and its underlying cause-effect relations has been a 2

longstanding goal of systems biology ([1]), and very recently also a key step in realizing 3

machine learning models that can use causal information to make interpretable and generalizable 4

predictions of disease endpoints ([2]). Discovering the causal network among genes and disease 5

traits is a challenging endeavor. Established means of causal inference using 6

perturbation/knockout experiments or randomized controlled trials are infeasible or unethical in 7

in vivo settings like human studies, and it becomes necessary to use observational data alone to 8

learn causality ([3]). In this regard, analysis of data from observational studies such as GWAS 9

(Genome-Wide Association Study) or eQTL (expression Quantitative Trait Loci) studies have 10

revealed not only genetic variants associated with disease and gene expression traits but also 11

gene regulatory networks ([4–8]) and causal mediators of clinical/disease endpoints ([9–11]). 12

Many of the established gene regulatory network discovery methods are based on Mendelian 13

Randomization (MR, [12]), which is a framework that uses a genetic variant as an instrumental 14

variable to test for a causal relationship between two other trait variables (e.g., two gene 15

expression traits) using mediation/conditional-independence or other similar tests. Another 16

well-established method CIT (Causal Inference Test ([5])) uses a statistical testing framework 17

that is more similar to the Baron and Kenny framework ([13]) than the MR framework, but its 18

goal is similar to other MR-based methods, which is to discover causal relations and provide a 19

score or p-value that quantifies the strength or uncertainty of the inferred causality. 20

A key aspect of observational data often underlooked in current causal discovery studies is 21

measurement errors, despite the prevalence of such errors in high-throughput data ([14–16]) and 22

convincing evidence from a few studies on the deleterious impact of these errors on causal 23

discovery ([1, 7, 17]). Some alternatives have been suggested to tackle this issue ([17]), but 24

mitigating the harmful effects of noise on causal calls remains an important open problem, 25

especially when dealing with noisy genes and datasets of large sample sizes (as is the case with 26

modern GWAS or other genomics datasets). To elaborate, it is well-known that measurement 27

noise is prevalent in gene expression data, like in the integer gene counts measured via the RNA 28

sequencing (RNAseq) technology; and the error magnitude is different for different genes with 29

low to moderately expressed genes typically more noisy than highly expressed genes ([14–16]). 30

These errors, also known as technical variability or noise, could arise from different sources 31

([18]) like random sub-sampling steps involved in library preparation or sequencing, and bias 32

due to read-mapping ambiguity. Noisy measurements of genes can result in inconsistent or 33

attenuated estimates of the parameters of a linear regression model relating multiple genes ([19]). 34

Since many MR-based or other causal discovery methods rely on parameter estimates of linear 35

regression models, this would mean a loss of power for detecting causal relations at best (or) 36

reversal of the causal direction at worst in the presence of measurement noise ([1]). 37

While almost all differential gene expression methods acknowledge the prevalence of 38

technical noise in expression data and adopt the best practice of accounting for this noise in their 39

analysis to derive reliable findings (e.g., [20],[18]), only a few gene network discovery studies 40

have assessed the impact of measurement errors on inferring gene coexpression networks 41

([21, 22]) or gene regulatory networks ([7, 17, 19]). It is high time that this issue is addressed 42

adequately to enable reliable discovery of the causal networks underlying the 43

genotype→phenotype map. 44

In this work, we propose a two-stage framework for causal discovery that is robust against 45

measurement error by extending the well-established CIT method ([5]) mentioned above. We 46

call our newly proposed method RCD for Robust Causal Discovery – RCD’s first stage estimates 47

the magnitude (variance) of measurement errors when gene expression is quantified using 48

RNAseq, and the second stage uses these error variances to correct the relevant statistics, 49

parameters, and p-values of CIT’s four regression-based statistical tests, which verify a chain of 50

conditions of causality. Our method RCD shows increased statistical power than the baseline 51

method CIT in both simulated data and real-world 1012 yeast segregants’ data, yielding in 52
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general more causal calls among noisy genes, at similar false-positive rates. Furthermore, RCD 53

was able to discover an in vivo human gene regulatory network operating in the skeletal muscle 54

tissue, comprising known and novel causal relations. 55

Results 56

Our RCD method overview 57

RCD takes genetic and gene expression data from the same set of individuals as input and infers 58

causal relations among gene expression variables, one pair at a time. If 𝐺, 𝑇 are a pair of genes 59

to be tested for causal relationship and 𝐿 is a SNP associated with both 𝐺 and 𝑇 , then RCD 60

takes such a query trio (𝐿,𝐺, 𝑇 ) as three input vectors (see Figure 1), estimates the measurement 61

error of 𝐺 and 𝑇 , and performs a chain of statistical tests by incorporating the measurement 62

errors. Please see Figure 1 for an overview of RCD. In a bit more detail, RCD works in the 63

following two stages to be robust against measurement errors. 64

Stage 1: Measurement Error Estimation: For each gene, this stage uses the gene’s expression data 65

to estimate the magnitude/variance of measurement error of the gene (denoted 𝜎2𝑒𝑔 for 𝐺 66

and 𝜎2𝑒𝑡 for 𝑇 ). RCD can work with different error estimation techniques (see Methods); 67

however our main contribution in Stage 1 is to propose an error estimation technique that 68

works for any gene whose expression is quantified via RNAseq read counts, specifically 69

by modeling sampling noise as a Poisson distribution. One challenge here is to estimate 70

error variance in the normalized gene count space, which we address by sampling dummy 71

integer gene counts from a Poisson distribution with average expression matching the 72

actual gene counts, and performing standard normalization and transformation before 73

computing its variance. 74

Stage 2: RCD Causal Test: This stage uses the observed data (𝐿,𝐺′, 𝑇 ′) and the two gene’s error 75

estimates (denoted 𝜎2𝑒∗) from Stage 1 as input to perform statistical tests of causality 76

between genes 𝐺 and 𝑇 under certain assumptions about the trio. Our main contribution 77

in Stage 2 is to extend the statistical tests of CIT to incorporate measurement error 78

estimates, and more specifically to infer error-corrected estimates of regression model 79

coefficients, residuals, and p-values associated with these tests (thereby making the tests 80

more consistent and robust against noise). 81

Please refer Methods for a complete description of our error-aware, two-stage RCD method. 82

Robustness of RCD on Simulated Data 83

Methods such as CIT use conditional independence tests as one of the component statistical tests. 84

Previous studies have shown that the presence of measurement errors in gene expression data 85

can lead to the failure of conditional independence tests ([1, 23]). Such failures make causal 86

discovery approaches like CIT suffer from high false negatives, which worsen as the sample size 87

increases ([17]). Our RCD method uses a handle on noise magnitude to make conditional 88

independence tests more robust against noise. To verify if this is indeed the case, we generated 89

simulated data according to a variety of parameter configurations (648 in number; see Methods 90

section on “Simulation Setup”). Across a subset of these configurations, a basic power (True 91

Positive Rate) and type 1 error (False Positive Rate) comparison of CIT and RCD is shown in 92

Figure 2. The level of noise 𝜎𝑒𝑡 in the outcome variable is fixed, and the level of noise 𝜎𝑒𝑔 in the 93

mediator is varied in Figure 2(A). As the level of noise increases in the mediator, the power of 94

CIT decreases rapidly than RCD across all sample sizes. For CIT, the power (TPR) decreases as 95

the sample size increases. In contrast, our RCD performs better with large sample sizes and its 96

power is almost equal to the configuration when measurement noise is zero, thus validating our 97
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Fig 1. RCD (Robust Causal Discovery) Study Overview. Gene expression and genetic data
observed across a set of individuals are analyzed, one trio at a time, using our error-aware
two-stage RCD method; and the resultant causal relations are collated and assessed under
different simulation/real-world application scenarios. For each trio (𝐿,𝐺, 𝑇 ) observed across a
set of individuals, RCD analyzes the input genotype vector 𝐿 and the expression vectors of two
genes associated with 𝐿 (with 𝐺′ and 𝑇 ′ indicating noisy measurements of the true unobserved
gene counts 𝐺 and 𝑇 ). RCD works in two stages as shown to infer the causal relation between 𝐺
and 𝑇 using 𝐿 as an instrumental variable. Please see text for more details.

strategy of incorporating error information for reliable causal discovery. Increased power at 98

similar false-positive rates is also observed when the model is independent (𝐺 ← 𝐿 → 𝑇 ) as 99

shown in Supplementary Figure S1. 100

To inspect RCD’s performance more extensively, we also allow the error magnitude of 𝑇 to 101

vary from 0 to 1, and the resulting performance of RCD relative to CIT is shown in Figure 102

2(B,C). For almost all configurations, the difference of power between RCD and CIT 103

4/24

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 10, 2023. ; https://doi.org/10.1101/2023.05.09.540002doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.09.540002
http://creativecommons.org/licenses/by/4.0/


(Δ𝑇𝑃𝑅 = 𝑅𝐶𝐷𝑇𝑃𝑅 −𝐶𝐼𝑇𝑇𝑃𝑅) is positive and also larger for higher levels of noise in 𝐺 (Figure 104

2(B)). Figure 2(C) shows that RCD is not compromising in terms of false positive rates also.
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Fig 2. Performance comparisons of our method RCD on simulated data. (A) The top graph
plots the true positive rate (fraction of all true causal relations that are inferred as causal by RCD
or the baseline method CIT), when data pertaining to 100 true causal pairs are simulated
according to the causal model 𝐿 → 𝐺 → 𝑇 (with correlation coefficient 𝜌2𝑔𝑡 = 0.4). The bottom
graph plots the false positive rate (fraction of all non-causal/independent pairs inferred as causal
by a method), when data on 100 independent pairs are simulated using the model 𝐺 ← 𝐿 → 𝑇 .
Measurement error in trait 𝐺 (𝜎2𝑒𝑔) is varied along the x-axis keeping the measurement error in
trait 𝑇 fixed at 𝜎2𝑒𝑡 = 0.4. The power (TPR) of CIT decreases steeply with increasing noise in 𝐺,
whereas RCD performs almost the same as on error-free data (for higher sample sizes; columns
show different sample sizes, 𝑛 = 300, 500, 1000). (B, C) The effect of varying measurement
errors in both 𝐺, 𝑇 is shown (for 𝑛 = 500). RCD has better TPR than CIT when measurement
error in 𝐺 is higher than that of 𝑇 at similar FPR rates.

105

RCD’s Recovery of GRN among Noisy Yeast Genes 106

To compare the performance of RCD with CIT on a real-world network, we applied both the 107

methods on a ground-truth yeast causal network (DNA binding plus Expression network from 108

Yeastract ([24]). This ground-truth network captures transcription factors (TF) and regulated 109

target genes (TG) experimentally validated through TF-DNA binding interactions or differential 110

expression upon perturbation of TF. To verify that RCD can recover causal relations among 111

highly noisy genes, we used two subsets of the ground-truth networks (i) On the overall trios, 112

both methods are better than a random classifier, with RCD having AUPRk% better than CIT for 113

various values of 𝑘%. (ii) On trios whose technical to total variance ratio is high (≥ 0.4; see 114

Figure 3(B)), specifically when
𝜎2𝑒𝑔
𝜎2
𝑔′

≥ 0.4 or 𝜎2𝑒𝑡
𝜎2
𝑡′
≥ 0.4, the performance of CIT on these highly 115
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noisy trios drops because it results in more false negatives and at some point becomes worse 116

than a random classifier, whereas RCD is performing better than CIT and the random classifier 117

(Figure 3(C)). For both the methods, identifying the target trios filtered on highly noisy genes is 118

more challenging than the overall trios. The gap between CIT and RCD on the filtered trios is 119

much wider and hence shows the robustness of RCD in the presence of noise and potentially a 120

better causal mediation test in such real-world settings. When trying two other technical to total 121

variance cutoffs, 0.3 and 0.5, similar performance trend of RCD outperforming CIT is observed 122

for the latter high-noise cutoff (Supplementary Figure S2). 123

The better performance of RCD over CIT in a real-world setting is promising as it validates 124

our overall framework comprising both Stage 1 error estimates and Stage 2 correction 125

procedures. Many of our model assumptions like linear causal relations among genes and 126

independent additive Gaussian errors could be viewed as very simplistic representations of a 127

real-world dataset, still we can see tangible benefits among noisy genes in terms of the relative 128

performance of RCD over CIT. Another way to see the better performance of RCD is to observe 129

how many calls each method makes at different FDR cutoffs (i.e. Benjamini-Hochberg adjusted 130

p-values that account for multiple testing) and the precision of these causal calls (Figure 3(D,E)). 131

D

Yeast dataset (all gene pairs)

Yeast dataset (noisy genes)

A B

E

0.23

0.24

0.25

0.26

0.27

0.28

5 95452515 35 6555 75 85

Av
g 

AU
PR

A

0.14

0.16

0.18

0.20

5 95452515 35 6555 75 85

top % predictions

Av
g 

AU
PR

B

method CIT ECITRCD

C

Performance on all tested gene pairs

Performance on noisy gene pairs

Yeast genes (red, with black highlighting noisy genes); 
Poisson-simulated genes (blue)

Performance on yeast dataset (noisy genes)

Fig 3. Performance of our RCD relative to the baseline CIT on yeast dataset. The goal is to
recover ground-truth causal regulation matrix of TFs→TGs. From the ground-truth regulation
matrix, these two query trios sub-lists are constructed and tested separately: (A) a complete
query list of trios having 62052 causal relations and 207933 non-associations, and (B) a noisy
subset comprising only trios with high measurement errors (see Methods; specifically trios with
genes whose error variance is at least 40% of the total variance (C), yielding 4773 causal
relations and 28022 non-associations). (A, C) Among the 𝑡𝑜𝑝𝑘% causal pairs (selected based on
CIT or RCD causality p-values), average AUPR is computed. The average performance across
four runs for different values of 𝑘 is shown, with error bars indicating standard deviation across
these runs. (D, E) We also show the performance of RCD vs. CIT using standard
Benjamini-Hochberg adjusted p-values (FDR cutoff in x-axis). At different FDR cutoffs, relative
to CIT, our method RCD gives more causal calls (D) at comparable or better precision (E).
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RCD’s Inferred Transcriptional Regulators in Human Muscle 132

Gene regulatory networks encode the complexity of the biological system. In humans, we have 133

about 20,000 genes and hence roughly 200 million gene pairs to consider to test for causality. 134

With such a large search space, conducting gene perturbation or intervention experiments is 135

infeasible, and on top of that, the unknown consequences of such perturbation would make it 136

unethical. Hence in such a real-world human setting, using observational data to identify novel 137

putative causal gene pairs will be of great value. 138

We would like to assess the value of RCD in such a human setting. To do so, we applied 139

RCD to the human skeletal muscle tissue of the NIH GTEx (National Institutes of Health, 140

Genotype-Tissue Expression [25]) data. RCD was able to uncover a gene regulatory network 141

having 314 genes and 164 edges, and the degree properties of this whole human-muscle-specific 142

network is summarized in Table 1.

Number of putative regulators Number of target-genes (Out-degree)
1 5
3 2

153 1
Table 1. Out-degree property of the inferred human network. The human skeletal muscle
gene regulatory network discovered by RCD has 314 genes and 164 directed edges. Direction
𝐺 → 𝑇 is predicted if p-value𝑅𝐶𝐷,𝐺→𝑇 < 0.05 and p-value𝑅𝐶𝐷,𝑇→𝐺 > 0.05. Of the 157
putative regulators identified, 153 are predicted to regulate one gene.
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Fig 4. Gene regulatory network in human skeletal muscle identified by RCD. (A) Only
connected components of this gene network having more than 2 genes are shown (see
Supplementary Figure S3 for the full network). Network shows KLF5 as one of the potential
transcription factors in the skeletal muscle tissue regulating many genes. (B) An illustration of
causal mediation using a potential transcription factor KLF5 identified in skeletal muscle. A
SNP 13_74110412 (𝐿) is used as the instrument (encoded as 0, 1 or 2, based on the copy
number of alternate allele) to detect causal relation 𝐿 → 𝐺 (KLF5) → 𝑇 (PHETA1). The causal
relation is evident from the effect of the SNP on 𝐺 and 𝑇 in the first two plots, and the vanishing
of this effect on PHETA1 once conditioned on the mediating regulator KLF5.

A part of the whole network having module (connected component) sizes of more than 2 is 144

shown in Figure 4(A). The network inferred by the RCD in Figure 4(A), identified KLF5 as a 145

potential hub regulator driving 5 target genes in human skeletal muscle tissue. Previous studies 146

have experimentally shown the pivotal role of KLF5 in the skeletal muscle tissue of mice ([26]). 147

In brief, they have shown essential roles of KLF5 such as deletion of KLF5 impairs muscle 148

7/24

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 10, 2023. ; https://doi.org/10.1101/2023.05.09.540002doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.09.540002
http://creativecommons.org/licenses/by/4.0/


regeneration after injury, knockdown of KLF5 suppresses differentiation of myogenesis process, 149

and inhibition of KLF5 affects transcription regulation of muscle-related genes. For instance, 150

Figure 4(B) shows one such example of SNP 13_74110412→KLF5→PHETA1 causal relation 151

identified by RCD, where KLF5 is regulating the target gene PHETA1 and the SNP’s effect on 152

PHETA1 vanishes when conditioned on KLF5. We also show an example gene pair in 153

Supplementary Figure S4 where there is lack of evidence for such a vanishing of the SNP’s 154

effect, and therefore RCD calls the gene pair as spuriously coexpressed due to the shared 155

confounding SNP. These results taken together, in a complex human setting where perturbation 156

experiments are infeasible, show that RCD offers a route to reliable causal discovery and 157

identifies tissue-relevant TFs. 158

Discussion 159

Measurement error is prevalent in gene expression data and can mislead causal gene network 160

discovery methods into making wrong or inconsistent causal inferences ([7]). In this study, we 161

have proposed a statistical approach for causal discovery to be robust against measurement noise, 162

with a specific focus on extending the well-established CIT method. Our two-stage RCD method 163

quantifies and accounts for measurement errors in the data. By doing so, RCD showed power 164

improvements over CIT across different levels of measurement errors in simulation studies, and 165

especially for genes with moderate-to-high error levels and at large sample sizes. When applied 166

to yeast data comprising 1000+ segregants, RCD was able to recover causal relations among 167

noisy genes better than CIT. Our method, when applied to the muscle tissue of the NIH GTEx 168

data ([25]), revealed transcriptional regulators in muscle such as KLF5 and led us to build an in 169

vivo human gene regulatory network. 170

There are certain caveats with any MR-based causal discovery method in general and our 171

RCD method in particular that is worth mentioning. All MR-based methods can typically 172

recover only a small fraction of all ground-truth causal gene interactions from observational data, 173

since not all causal gene pairs will have a shared associated genetic variant 𝐿, not all trios will 174

satisfy MR assumptions, and samples sizes may be insufficient to detect weak causality. 175

Nevertheless, the significant causal relations detected by MR-based methods or RCD are reliable, 176

and could potentially reveal hundreds of novel gene regulatory interactions, which can then be 177

probed experimentally. Regarding RCD-specific caveats, our gene-specific error estimates are 178

average error magnitude across all samples, and not sample-specific for simplicity. By focusing 179

on the CIT framework in RCD, we also inherit some of the assumptions of CIT such as Gaussian 180

distribution for continuous variables, and linear relationships among the variables. It would be 181

interesting to see how non-linear causal relationships can be learnt under different distributional 182

assumptions (such as Negative Binomial) robustly in the presence of measurement noise. 183

Despite the simplifying model assumptions adopted by our RCD method, we show that 184

incorporating error information has clear benefits for causal discovery from both simulated and 185

real-world genomic datasets. We can foresee reaping more benefits with richer models of gene 186

expression data and causal relations among genes. 187

The measurement error modelling we employ in our current study is based on the 188

mean-variance relationship of a Poisson model for estimating technical noise. We could also 189

employ machine learning methods that use features other than average (mean) gene expression, 190

such as gene length, GC content, etc., to refine our predictions of measurement noise in the 191

future. Quantifying uncertainty in gene expression data can be from multiple sources such as 192

measurement error due to random sampling involved in library preparation steps (shot noise) or 193

due to sequencing bias or due to mapping ambiguity or any others factors. In a recent study, the 194

decomposition of variance of the gene into biological variance and inferential variance is 195

reported and estimated ([27]). It would be interesting to explore how RCD would work with 196

such different types of error variance estimates. 197

In summary, whenever measurement error variances are available or can be predicted, our 198
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method RCD provides an opportunity to make reliable causal calls. This would immediately be 199

of value to transform large-scale genetic and gene expression datasets into causal gene regulatory 200

networks operating in vivo from yeast to human. 201

Methods 202

Background on MR framework 203

In the MR framework ([12]), a genetic variant denoted 𝐿 (say a single-nucleotide polymorphism 204

or SNP) is used as an instrumental variable to infer a causal relationship between two other trait 205

variables denoted 𝐺, 𝑇 (e.g., two gene expression traits in our setting) using mediation or other 206

similar tests. More specifically, given an 𝐿 that is correlated to both 𝐺 and 𝑇 , then under certain 207

model assumptions pertaining to natural randomization of 𝐿 that happens during meiosis and 208

absence of confounding factors, statistical tests for correlation and conditional independence 209

(also known as mediation) applied on the data collected on 𝐿,𝐺, 𝑇 can help distinguish between 210

the causal models 𝐿 → 𝐺 → 𝑇 and 𝐿 → 𝑇 → 𝐺, the (non-causal) independent model 211

𝐺 ← 𝐿 → 𝑇 , and other similar models. Note that the non-causal independent model is called so, 212

because 𝐺 and 𝑇 are independent when conditioned on 𝐿, but spuriously correlated otherwise 213

(via the shared confounding factor 𝐿). Determining whether 𝐿 is an instrument vs. a confounder 214

is a key challenge in distinguishing between models where 𝐺 and 𝑇 are causally related (𝐺 215

regulating 𝑇 or vice versa) vs. non-causally related. 216

Given that technical noise is inherent in any measurement including RNAseq measurements, 217

we only have access to imprecise/noisy observations 𝐺′, 𝑇 ′ of 𝐺, 𝑇 respectively, and the natural 218

question of interest then is: Can we develop a method that can work robustly even in the midst of 219

different levels of technical noise in different genes? 220

Background on CIT Causal Test 221

Since we extend the CIT ([5]) method, here we are summarizing the main points of the method. 222

CIT is a mediation based causal discovery method which uses an instrumental variable (𝐿) and 223

checks whether its effect on the outcome variable (𝑇 ) vanishes when conditioned on the 224

mediating variable (𝐺). The below description of the CIT is taken from ([5]). The three 225

equations of the linear regression models are: 226

𝑇 = 𝛼1 + 𝛽1𝐿1 + 𝛽2𝐿2 + 𝜀1 (1)
227

𝐺 = 𝛼2 + 𝛽3𝑇 + 𝛽4𝐿1 + 𝛽5𝐿2 + 𝜀2 (2)
228

𝑇 = 𝛼3 + 𝛽6𝐺 + 𝛽7𝐿1 + 𝛽8𝐿2 + 𝜀3 (3)

CIT tests causality conditions ([4]) using these 4 statistical tests: 229

1. 𝐻0 ∶ {𝛽1, 𝛽2} = 0, 𝐻1 ∶ {𝛽1, 𝛽2} ≠ 0; (𝐿 ∼ 𝑇 ), 230

2. 𝐻0 ∶ {𝛽4, 𝛽5} = 0, 𝐻1 ∶ {𝛽4, 𝛽5} ≠ 0; (𝐿 ∼ 𝐺|𝑇 ), 231

3. 𝐻0 ∶ 𝛽6 = 0, 𝐻1 ∶ 𝛽6 ≠ 0; (𝐺 ∼ 𝑇 |𝐿), 232

4. 𝐻0 ∶ {𝛽7, 𝛽8} ≠ 0, 𝐻1 ∶ {𝛽7, 𝛽8} = 0; (𝐿 ⟂ 𝑇 |𝐺). 233

And among the four p-values, it takes the worst as the final p-value because the strength of all 234

the tests is only as strong as the worst one. 235
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In simulations and real-world data, CIT differentiates between the causal (𝐿 → 𝐺 → 𝑇 ), 236

reactive (𝐿 → 𝑇 → 𝐺), and independent (𝐺 ← 𝐿 → 𝑇 ) models using the cit.cp function 237

implemented in its CRAN package ([28]) as follows. CIT first tests the 𝐿 → 𝐺 → 𝑇 and 238

𝐿 → 𝑇 → 𝐺 models, and then applies the 𝛼 = 0.05 cutoff on the two resulting p-values as 239

shown below to make the appropriate calls. The below description of model selection is taken 240

from an earlier paper ([17]). 241

1. if p-value𝑐𝑖𝑡,𝐺→𝑇 < 𝛼 and p-value𝑐𝑖𝑡,𝑇→𝐺 > 𝛼, CIT predicts causal model. 242

2. if p-value𝑐𝑖𝑡,𝐺→𝑇 > 𝛼 and p-value𝑐𝑖𝑡,𝑇→𝐺 < 𝛼, CIT predicts reactive model. 243

3. if p-value𝑐𝑖𝑡,𝐺→𝑇 > 𝛼 and p-value𝑐𝑖𝑡,𝑇→𝐺 > 𝛼, CIT predicts independent model. 244

4. if p-value𝑐𝑖𝑡,𝐺→𝑇 < 𝛼 and p-value𝑐𝑖𝑡,𝑇→𝐺 < 𝛼, CIT predicts “No Call”. 245

RCD Framework 246

Stage 1: Measurement Error Estimation 247

The aim of Stage 1 is to estimate the error variance 𝜎2𝑒𝑔 , for any gene 𝐺. For cases when we have 248

technical replicates, it is estimated directly as the sample variance of 𝐺 across the replicates. If 249

the technical replicates are unavailable, the error variance (𝜎2𝑒𝑔) can be represented using 250

different sources of technical variability, like sampling noise that arises due to differences in 251

RNAseq library preparation steps ([15]) or noise due to alignment ambiguity ([27]) or can be any 252

other unknown technical factor such as instrument error. Since Stage 2 of the framework is 253

independent of any form of error variance estimates, in our current work we are modelling only 254

sampling noise as the error variance estimate and show that we can obtain benefits even in this 255

setup. As the mRNA fragments are selected randomly and independently from a large pool, they 256

may or may not be sequenced and hence capturing it is a rare event that may reasonably be 257

modelled as a Poisson distribution ([15, 20]). Since the count of technical replicates follows a 258

Poisson distribution ([15]), we simulate dummy technical replicates to estimate the sampling or 259

shot noise, the specifics of which are described next. 260

Estimating Noise in Normalized Gene Expression Data: A challenge in estimating 261

measurement noise in normalized RNAseq data pertains to converting measurement noise in 262

RNAseq read count space to noise magnitude in normalized RNAseq gene expression space (i.e., 263

after standard normalization or log-transformation of the counts data). We are not aware of any 264

analytical formula for this conversion, and we propose an empirical solution to address this 265

challenge. We simulated technical replicate measurements of a dummy gene with the same 266

average expression count as the original gene and subjected them to the same set of RNAseq 267

normalization and log-transformation steps before estimating noise. In detail, let the observed 268

count data be represented as an 𝑛 × 𝑚 matrix, where 𝑛 is the number of genes and 𝑚 is the 269

number of samples. We first use a standard differential expression analysis method called 270

DESeq ([20]) to estimate the sequencing depths or size factors �̂�𝑗 for 𝑗 = 1,… , 𝑚 - these factors 271

can be used to normalize the count data. The geometric mean of all size factors is used to 272

estimate a single size factor �̂� that is robust to the differences in size factors across samples (note 273

that geometric mean is considered a better average metric over arithmetic mean for gene counts 274

data). For any given gene 𝑔𝑒𝑛𝑒𝑖, counts data for the dummy version of this gene, denoted 𝑔𝑒𝑛𝑒𝑖𝑏, 275

are simulated from a Poisson distribution with mean parameter 𝜆𝑖 = �̂�𝑞𝑖, where 𝑞𝑖 is the average 276

of the DESeq-normalized-counts of 𝑔𝑒𝑛𝑒𝑖 across all samples ([20]). The simulated dummy 277

count data is log-transformed with an offset of 0.5 to avoid issues with zero counts (specifically 278

log2(𝑔𝑒𝑛𝑒𝑖𝑏 + 0.5)). The variance of this transformed dummy 𝑔𝑒𝑛𝑒𝑖𝑏 is taken as the estimate of 279

the noise variance. We bootstrap the above sampling process for 500 runs and average the 280

estimated noise across these runs as a final estimate of the noise variance for 𝑔𝑒𝑛𝑒𝑖. The above 281
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process is repeated separately for each gene (i.e., 𝑔𝑒𝑛𝑒𝑖 for each 𝑖) to get gene-specific error 282

variances 𝜎2𝑒∗. The process can be summarised as the below steps: 283

1. Take the count data matrix 𝑘𝑖𝑗 of size 𝑛 × 𝑚, where 𝑖 = 1, 2,… , 𝑛 is the gene index and 284

𝑗 = 1, 2,… , 𝑚 is the sample index. 285

2. Estimate size factors: �̂�𝑗 = median𝑖
𝑘𝑖𝑗

( 𝑚
∏

𝑣=1
𝑘𝑖𝑣

)1∕𝑚
286

3. Normalize the count data matrix: 𝑞𝑖𝑗 =
𝑘𝑖𝑗
�̂�𝑗

287

4. Estimate a single size factor: �̂� =

( 𝑚
∏

𝑗=1
𝑠𝑗

)1∕𝑚

288

5. Repeat these two steps for 𝑏 = 1, 2,… , 𝐵: 289

(a) Dummy gene counts: Simulate/draw 𝑔𝑒𝑛𝑒𝑖𝑏 ∼ Poisson(𝜆𝑖 = �̂�𝑞𝑖), where 290

𝑞𝑖 = Average𝑗{𝑞𝑖𝑗} = 1
𝑚

𝑚
∑

𝑗=1
𝑞𝑖𝑗 . Here 𝑔𝑒𝑛𝑒𝑖𝑏 refers to a vector of 𝑚 independent 291

draws from this Poisson distribution. 292

(b) Sample variance: 293

𝜎2𝑖𝑏 =
1

𝑚 − 1

𝑚
∑

𝑗=1

(

log2(𝑔𝑒𝑛𝑒𝑖𝑏,𝑗 + 0.5) − Average𝑣{log2(𝑔𝑒𝑛𝑒𝑖𝑏,𝑣 + 0.5)}
)2

294

6. Noise estimate: 𝜎2𝑒𝑖 = Average𝑏{𝜎2𝑖𝑏} = 1
𝐵

𝐵
∑

𝑏=1
𝜎2𝑖𝑏 295

Stage 2: RCD Causal Tests 296

The aim of Stage 2 is to develop a causal discovery method that is robust against measurement 297

errors by incorporating the noise estimates from Stage 1 (i.e., 𝜎2𝑒∗ representing gene-specific 298

error variances, with 𝜎2𝑒𝑔 being the error variance of a particular gene 𝐺). In this section, we first 299

describe our models explicitly in terms of their likelihoods and underlying assumptions such as 300

linear causal relationships among variables; and next describe how the parameters of our linear 301

models (with true variables) can be estimated from the corresponding noisy observed variables. 302

These noise-corrected parameter estimates can then be used to adjust/correct four F-statistics 303

based statistical tests of causality to account for noise (the same four tests proposed by CIT in a 304

noise-free setting). Our techniques for incorporating noise magnitudes are similar to the 305

errors-in-variables approach in linear regression ([29]), but we extend it to a causal discovery 306

framework wherein noise magnitudes are incorporated to adjust not only parameter estimates of 307

linear regression models but also associated residuals, F statistics and p-values pertaining to 308

statistical tests of causality. 309

Model Assumptions, Description and Selection: In this work, we represent the causal 310

relations among a trio of random variables (SNP 𝐿 and two genes 𝐺, 𝑇 ) using appropriately 311

defined linear regression (linear Gaussian) models. We consider three possible models as in CIT: 312

causal (𝐿 → 𝐺 → 𝑇 ), reactive (𝐿 → 𝑇 → 𝐺), and independent (𝐺 ← 𝐿 → 𝑇 ) models. We are 313

asked to select one of these three models using noisy observations 𝐺′, 𝑇 ′ of 𝐺, 𝑇 respectively 314
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(the true gene expression values 𝐺, 𝑇 are hidden from us), and noise-free measurements of 𝐿. 315

We assume independent additive Gaussian noise distribution for the measurement errors of 316

genes. The above model assumptions can be made more explicit by writing down the joint 317

distribution (or likelihood of the model as a function of all model parameters 𝜃). Consider the 318

causal model above where 𝐺 regulates 𝑇 . Then, the joint distribution can be given by: 319

𝑝(𝐿,𝐺, 𝑇 , 𝐺′, 𝑇 ′
| 𝜃) = 𝑝(𝐿) 𝑝(𝐺|𝐿) 𝑝(𝑇 |𝐺) 𝑝(𝐺′

|𝐺) 𝑝(𝑇 ′
|𝑇 )

= 𝜋𝐿  (𝐺 | 𝜇𝐺(𝐿), 𝜎2𝐺) (𝑇 | 𝜇𝑇 (𝐺), 𝜎2𝑇 )

 (𝐺′ − 𝐺 | 0, 𝜎2𝑒𝑔) (𝑇 ′ − 𝑇 | 0, 𝜎2𝑒𝑡)

Here, 𝑝(.) denotes the probability density function (pdf) and  (𝑥|𝜇, 𝜎2) denotes the pdf of a 320

Gaussian distribution with parameters 𝜇, 𝜎2 evaluated at 𝑥. Note that 𝜇𝐺(𝐿) above indicates that 321

the expectation (average expression) of 𝐺 is a function of 𝐿 (specifically a linear function of 𝐿 322

according to our model assumptions, as explained in detail below in the linear regression 323

equations). Note that 𝜋𝐿 is simply a parameter of the discrete or categorical distribution 324

followed by 𝐿. Recall that 𝜎2𝑒∗ are the gene-specific error variances fixed in Stage 1 of RCD. 325

The joint distribution above can also be viewed as the joint distribution of a Bayesian 326

network ([30]) comprising the directed edges: 𝐿 → 𝐺,𝐺 → 𝑇 ,𝐺 → 𝐺′, and 𝑇 → 𝑇 ′. The 327

description of the reactive and independent models would be similar, and can also be viewed as 328

alternative Bayesian networks defined over the same set of three random variables. 329

Distinguishing between these three Bayesian network models to select one model using a series 330

of association or conditional independence tests can then be viewed as structure learning of a 331

Bayesian network using the constraints-based approach ([30]), which employs conditional 332

independence tests to decide which edges to keep or remove in the learnt Bayesian network. 333

Coefficient Estimates from Noisy Data: The general linear regression equation is given as: 334

𝑇 = 𝛽0 + 𝛽1𝐺 + 𝛽2𝐿1 + 𝛽3𝐿2 + 𝜀

, where 𝐺 and 𝑇 represent genes, and 𝐿1/𝐿2 are variables encoding the genotype (or the number 335

of non-reference alleles) as 0/0, 1/0 and 0/1 in that order. The ordinary least squares or 336

maximum likelihood based estimates of the regression coefficients are given by: 337

⎡

⎢

⎢

⎢

⎣

𝛽0
𝛽1
𝛽2
𝛽3

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

1 E[G] E[L1] E[L2]
E[G] E[GG] E[GL1] E[GL2]
E[L1] E[GL1] E[L1L1] E[L1L2]
E[L2] E[GL2] E[L1L2] E[L2L2]

⎤

⎥

⎥

⎥

⎦

−1
⎡

⎢

⎢

⎢

⎣

E[T]
E[GT]
E[L1T]
E[L2T]

⎤

⎥

⎥

⎥

⎦

(4)

Here and in the rest of this paper, we assume that the sample averages are accurate 338

approximations of model averages (i.e., expectations E[.]), which is a reasonable assumption if 339

the sample size is sufficiently large. We also assume that the matrix that is being inverted in the 340

above expression (call it 𝐴) is actually invertible. If that is not the case, we replace 𝐴−1 with the 341

Moore-Penrose pseudo-inverse 𝐴+ to get a minimum-norm solution for 𝛽. 342

The above matrix formula can be reformulated in terms of observed noisy variables 𝐺′ and 343

𝑇 ′ in our model described above, with 𝐺′ = 𝐺 + 𝜀𝑒𝑔 , 𝑇 ′ = 𝑇 + 𝜀𝑒𝑡, and 𝜀𝑒∗ being the technical 344

noise. We assume that the variance of the independent additive Gaussian measurement noise of 345

a gene depends only on its average expression. Specifically, for any gene 𝑋, 346

(𝜀𝑒𝑥|𝑋 = 𝑥) ∼  (0, 𝜎2𝑒𝑥)

where 𝜎2𝑒𝑥 is the estimated error in Stage 1 of a dummy gene whose average expression is the 347

same as that of the original gene 𝑋 (in the count space, as detailed in Stage 1 of RCD 348

framework). Note that this way of modeling 𝜀𝑒𝑥 makes it independent not only of all other 349
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random variables in the system, but also of 𝑋 (since the error 𝜀𝑒𝑥 is not a function of the actual 350

value x of 𝑋, but rather drawn independently based on the average expression count of 𝑋). 351

Hence, the estimates of various 𝐺 and 𝑇 statistics from 𝐺′ and 𝑇 ′ are calculated as: 352

1.
E[G] = E[G′]

2.

E[GG] = E[(G′ − 𝜀eg)(G′ − 𝜀eg)]

= E[G′2] − 2E[G′𝜀eg] + E[𝜀2eg]

= E[G′2] − 2E[(G + 𝜀eg)𝜀eg] + E[𝜀2eg]

= E[G′2] − 2E[G𝜀eg] − 2E[𝜀2eg] + E[𝜀2eg]

= E[G′2] − E[𝜀2eg] (sinceE[𝜀eg] = 0)

= E[G′2] − Var[𝜀eg]

= E[G′2] − 𝜎2eg

3.
E[GL1] = E[(G′ − 𝜀eg)L1] = E[G′L1]

4.
E[T] = E[T′ − 𝜀et] = E[T′]

5.

E[GT] = E[(G′ − 𝜀eg)(T′ − 𝜀et)]

= E[G′T′] − E[G′𝜀et] − E[T′𝜀eg] + E[𝜀et𝜀eg]

= E[G′T′]

Using the above expressions, the reformulated estimates are given by: 353

⎡

⎢

⎢

⎢

⎢

⎣

𝛽0
𝑎𝑑𝑗

𝛽1
𝑎𝑑𝑗

𝛽2
𝑎𝑑𝑗

𝛽3
𝑎𝑑𝑗

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

1 E[G′] E[L1] E[L2]
E[G′] E[G′2] − 𝜎𝟐𝐞𝐠 E[G′L1] E[G′L2]
E[L1] E[G′L1] E[L1L1] E[L1L2]
E[L2] E[G′L2] E[L1L2] E[L2L2]

⎤

⎥

⎥

⎥

⎦

−1
⎡

⎢

⎢

⎢

⎣

E[T′]
E[G′T′]
E[L1T′]
E[L2T′]

⎤

⎥

⎥

⎥

⎦

(5)

Please note that this reformulation of coefficient estimates offers one approach to correct 354

measurement errors in the independent variables of a regression model, and suited our purpose 355

in terms of performing reasonably well in simulated and real-world genomic data. However, 356

other existing errors-in-variables regression modeling approaches, such as the total least squares 357

methods or the Frisch scheme ([29]), could also be tried in the future. 358

Adjustment of F-statistic based Causality Tests to Handle Noise: The F statistic for testing 359

the restriction of a complex linear regression model with 𝑝 free parameters to a simple one with 360

𝑞 free parameters is given by ([31]): 361

𝑜𝑏𝑠 =

(

Var(𝜀0) − Var(𝜀1)
)

∕ (p − q)
Var(𝜀1) ∕ (n − p)

Here, Var(𝜀0) and Var(𝜀1) are the variance of residual of the nested simple and complex model 362

respectively. This statistic follows an 𝐹𝑝−𝑞,𝑛−𝑝 distribution under the null hypothesis (𝐻0) that 363
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the simple model is the true model. Under the alternate hypothesis (𝐻1), the complex model is 364

the true model generating the data. 365

We next show how RCD incorporates measurement error estimates into the four statistical 366

tests of CIT. In the first three tests, 𝐻0 is given by the simple model and 𝐻1 by the complex 367

model as above; but the fourth test is the converse as detailed below. 368

1. Is 𝐿 and 𝑇 associated: (𝐿 ∼ 𝑇 )? 369

𝐻0 ∶ 𝑇 = 𝛽0 + 𝜀0
𝑇 ′ = 𝛽0 + 𝜀0 + 𝜀𝑒𝑡

Var(𝜀0) = Var(T′) − 𝜎2𝑒𝑡

𝐻1 ∶ 𝑇 = 𝛽0 + 𝛽2𝐿1 + 𝛽3𝐿2 + 𝜀1
𝑇 ′ = 𝛽0 + 𝛽2𝐿1 + 𝛽3𝐿2 + 𝜀1 + 𝜀𝑒𝑡

Var(𝜀1) = Var(T′ − 𝛽0 − 𝛽2L1 − 𝛽3L2) − 𝜎2𝑒𝑡
Since the variables in the LHS (Left Hand Side) of the above regression equations are 370

noisy and all the RHS (Right Hand Side) variables are noise-free, we can use a formula 371

similar to Formula 4 to estimate the above coefficients. 372

2. Is 𝐺 and 𝑇 associated given 𝐿: (𝐺 ∼ 𝑇 |𝐿)? 373

Adjusted F statistic Formula: 374

𝐻0 ∶ 𝑇 = 𝛽0 + 𝛽2𝐿1 + 𝛽3𝐿2 + 𝜀0
𝑇 ′ − 𝜀𝑒𝑡 = 𝛽0 + 𝛽2𝐿1 + 𝛽3𝐿2 + 𝜀0
Var(𝜀0) = Var(T′ − 𝛽0 − 𝛽2L1 − 𝛽3L2) − 𝜎2𝑒𝑡

Since only the LHS variables are noisy, we use a formula similar to Formula 4 to estimate 375

the above coefficients. 376

𝐻1 ∶ 𝑇 = 𝛽0 + 𝛽1𝐺 + 𝛽2𝐿1 + 𝛽3𝐿2 + 𝜀1
𝑇 ′ − 𝜀𝑒𝑡 = 𝛽0 + 𝛽1(𝐺′ − 𝜀𝑒𝑔) + 𝛽2𝐿1 + 𝛽3𝐿2 + 𝜀1

𝑇 ′ = 𝛽0 + 𝛽1𝐺
′ + 𝛽2𝐿1 + 𝛽3𝐿2 + (𝜀𝑒𝑡 − 𝛽1𝜀𝑒𝑔 + 𝜀1)

𝑇 ′ = 𝛽𝑎𝑑𝑗0 + 𝛽𝑎𝑑𝑗1 𝐺′ + 𝛽𝑎𝑑𝑗2 𝐿1 + 𝛽𝑎𝑑𝑗3 𝐿2 + (𝜀𝑒𝑡 − 𝛽𝑎𝑑𝑗1 𝜀𝑒𝑔 + 𝜀1)

Var(𝑇 ′ − (𝛽𝑎𝑑𝑗0 + 𝛽𝑎𝑑𝑗1 𝐺′+

𝛽𝑎𝑑𝑗2 𝐿1 + 𝛽𝑎𝑑𝑗3 𝐿2)) = Var(𝜀et − 𝛽adj1 𝜀eg + 𝜀1)

Var(𝑇 ′ − (𝛽𝑎𝑑𝑗0 + 𝛽𝑎𝑑𝑗1 𝐺′+

𝛽𝑎𝑑𝑗2 𝐿1 + 𝛽𝑎𝑑𝑗3 𝐿2)) = 𝜎2𝑒𝑡 + 𝛽𝑎𝑑𝑗
2

1 Var(𝜀𝑒𝑔) + Var(𝜀1)

Var(𝜀1) = Var(T′ − (𝛽adj0 + 𝛽adj1 G′ + 𝛽adj2 L1 + 𝛽adj3 L2)) − 𝛽𝑎𝑑𝑗
2

1 𝜎2𝑒𝑔 − 𝜎2𝑒𝑡

To handle noise in both LHS and RHS variables, we use adjusted Formula 5 to estimate 377

the above coefficients. 378

3. Is 𝐿 and 𝐺 associated given 𝑇 : (𝐿 ∼ 𝐺|𝑇 )? 379

Adjusted F statistic Formula: 380

𝐻0 ∶ 𝐺 = 𝛽0 + 𝛽1𝑇 + 𝜀0
𝐺′ = 𝛽0 + 𝛽1𝑇

′ − 𝛽1𝜀𝑒𝑡 + 𝜀𝑒𝑔 + 𝜀0

Var(𝜀0) = Var(G′ − 𝛽adj0 − 𝛽adj1 T′) − 𝛽adj
2

1 𝜎2et − 𝜎2𝑒𝑔
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We use a formula similar to adjusted Formula 5 to estimate the above coefficients. 381

𝐻1 ∶ 𝐺 = 𝛽0 + 𝛽1𝑇 + 𝛽2𝐿1 + 𝛽3𝐿2 + 𝜀1
Similar to test 2, by interchanging 𝑇 and 𝐺 we obtain the result as follows: 382

Var(𝜀1) = Var(G′ − 𝛽adj0 − 𝛽adj1 T′ − 𝛽adj2 L1 − 𝛽adj3 L2) − 𝛽𝑎𝑑𝑗
2

1 𝜎2𝑒𝑡 − 𝜎2𝑒𝑔

We use adjusted Formula 5 (after interchanging 𝑇 and 𝐺) to estimate the above 383

coefficients. 384

Empirical Null Distribution using the Bootstrap and 𝐹 ∗ statistic: For the test 385

(𝐿 ∼ 𝐺|𝑇 ), the null model is 𝐿 ⟂ 𝐺|𝑇 . We followed an empirical approach to obtain 𝐹 ∗
386

distribution under the null. We use the below approach to simulate from 𝐿 ⟂ 𝐺|𝑇 in 387

noisy settings. 388

𝐺 = 𝛽0 + 𝛽1𝑇 + 𝛽2𝐿1 + 𝛽3𝐿2 + 𝜀1
𝐺 − (𝛽2𝐿1 + 𝛽3𝐿2) = 𝛽0 + 𝛽1𝑇 + 𝜀1

𝐺∗ = 𝛽0 + 𝛽1𝑇 + 𝜀1

where 𝐺∗ = 𝐺 − 𝛽2𝐿1 − 𝛽3𝐿2. From this we can see that dependency between 𝐺 and 𝐿 is 389

broken while maintaining other dependencies, i.e. (𝐿 ⟂ 𝐺∗
|𝑇 ), but when we have a noisy 390

version of 𝐺 as 𝐺′, we can get a similar result as follows: 391

𝐺′∗ = (𝐺 − (𝛽2𝐿1 + 𝛽3𝐿2)) + 𝜀𝑒𝑔
= (𝐺 + 𝜀𝑒𝑔) − (𝛽2𝐿1 + 𝛽3𝐿2)
= 𝐺′ − (𝛽2𝐿1 + 𝛽3𝐿2)

= 𝐺′ − (𝛽𝑎𝑑𝑗2 𝐿1 + 𝛽𝑎𝑑𝑗3 𝐿2)

Since (𝐿 ⟂ 𝐺′∗
|𝑇 ′), we can compute 𝐹 ∗ statistic under null distribution as follows: 392

Var(𝜀0) = Var(T′ − (𝛽adj0 + 𝛽adj1 G′∗)) − 𝛽𝑎𝑑𝑗1 𝜎2𝑒𝑔 − 𝜎2𝑒𝑡
393

Var(𝜀1) = Var(T′ − 𝛽adj0 − 𝛽adj1 G′∗ − 𝛽adj2 L1 − 𝛽adj3 L2) − 𝛽𝑎𝑑𝑗
2

1 𝜎2𝑒𝑔 − 𝜎2𝑒𝑡
We use formula similar to adjusted Formula 5 to estimate the above coefficients. We can 394

bootstrap from this (𝐿,𝐺′∗, 𝑇 ′∗) dataset 𝐵 times (for a sufficiently large 𝐵) to get the 395

empirical distribution of 𝐹 ∗, and compare the observed test statistic 𝐹 directly against this 396

empirical distribution of 𝐹 ∗ to get the relevant p-value, as done in CIT ([5]). 397

4. Is 𝐿 and 𝑇 independent given 𝐺: (𝐿 ⟂ 𝑇 |𝐺)? 398

Here we use an equivalence test where the alternate hypothesis is (conditional) 399

independence rather than association; so in contrast to the above three tests, the complex 400

model corresponds to the null hypothesis 𝐻0, and the nested simple model to 𝐻1. 401

Adjusted F statistic Formula: 402

𝐻1 ∶ 𝑇 = 𝛽0 + 𝛽1𝐺 + 𝜀0
𝑇 ′ − 𝜀𝑒𝑡 = 𝛽0 + 𝛽1(𝐺′ − 𝜀𝑒𝑔) + 𝜀0

𝑇 ′ = 𝛽0 + 𝛽1𝐺
′ − 𝛽1𝜀𝑒𝑔 + 𝜀0 + 𝜀𝑒𝑡

𝑇 ′ = 𝛽𝑎𝑑𝑗0 + 𝛽𝑎𝑑𝑗1 𝐺′ − 𝛽𝑎𝑑𝑗1 𝜀𝑒𝑔 + 𝜀0 + 𝜀𝑒𝑡

Var(𝜀0) = Var(T′ − (𝛽adj0 + 𝛽adj1 G′)) − 𝛽𝑎𝑑𝑗
2

1 𝜎2𝑒𝑔 − 𝜎2𝑒𝑡
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We use a formula similar to adjusted Formula 5 to estimate the above coefficients. 403

𝐻0 ∶ 𝑇 = 𝛽0 + 𝛽1𝐺 + 𝛽2𝐿1 + 𝛽3𝐿2 + 𝜀1
It is the same as test 2 (𝐻1), so we obtain the below result: 404

Var(𝜀1) = Var(T′ − 𝛽adj0 − 𝛽adj1 G′ − 𝛽adj2 L1 − 𝛽adj3 L2) − 𝛽𝑎𝑑𝑗
2

1 𝜎2𝑒𝑔 − 𝜎2𝑒𝑡

We use adjusted Formula 5 to estimate the above coefficients. 405

Empirical Null Distribution using the Bootstrap and 𝐹 ∗ Statistic: For the test 406

(𝐿 ⟂ 𝑇 |𝐺), the null model is 𝐺 ← 𝐿 → 𝑇 . We followed an empirical approach to obtain 407

𝐹 ∗ distribution under the null. We use the below approach to simulate from 𝐺 ← 𝐿 → 𝑇 408

in noisy settings. A random variable 𝐺′∗ is simulated such that 𝐿 and 𝐺′∗ is associated, 409

but dependence between 𝐺′∗ and 𝑇 is broken. We do so, as in CIT ([5]), using these steps: 410

(a) First, we estimate the association parameters by regressing 𝐺′ on 𝐿 as 411

𝐺′ = 𝛽∗0 + 𝛽∗1𝐿1 + 𝛽∗2𝐿2 + 𝜀∗

, and using a formula similar to Formula 4. 412

(b) Then, the residual vector 𝜀∗ is randomly permuted and used along with the estimated 413

parameters to obtain 𝐺′∗ as 414

𝐺′∗ = 𝛽∗0 + 𝛽∗1𝐿1 + 𝛽∗2𝐿2 + 𝑃𝑒𝑟𝑚(𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙(𝐺′ ∼ 𝐿1 + 𝐿2))

Now, the 𝐹 ∗ is estimated as follows: 415

Var(𝜀0) = Var(T′ − (𝛽adj0 + 𝛽adj1 G′∗)) − 𝛽𝑎𝑑𝑗1 𝜎2𝑒𝑔 − 𝜎2𝑒𝑡
416

Var(𝜀1) = Var(T′ − 𝛽adj0 − 𝛽adj1 G′∗ − 𝛽adj2 L1 − 𝛽adj3 L2) − 𝛽𝑎𝑑𝑗
2

1 𝜎2𝑒𝑔 − 𝜎2𝑒𝑡
We use formula similar to adjusted Formula 5 to estimate the above coefficients. We 417

bootstrap 𝐵 times (for sufficiently large 𝐵), i.e., repeat the (independent) random 418

permutation step above 𝐵 times to obtain an empirical distribution of 𝐹 ∗. Against this 419

empirical null distribution, the observed test statistic 𝐹 is compared to obtain a p-value, 420

again as in CIT. 421

Simulation Setup 422

Simulations were performed on different parameter combinations. 𝐿 is the instrument variable,
𝐺 is the hidden causal mediator variable, 𝑇 is the hidden outcome variable, and 𝐺′ and 𝑇 ′ are
the corresponding observed noisy variables as shown in Figure 1. The simulation settings are
taken from ([17]). Causal data is simulated following the model as described:

𝐿 ∼ Bernoulli(0.5)
𝐺 = 𝛽𝑔𝐿𝑠𝑡𝑑 + 𝜀𝑟𝑔; 𝐺′ = 𝐺 + 𝜀𝑒𝑔
𝑇 = 𝛽𝑡𝐺 + 𝜀𝑟𝑡; 𝑇 ′ = 𝑇 + 𝜀𝑒𝑡

𝜀𝑟∗ ∼  (0, 𝜎2𝑟∗); 𝜀𝑒∗ ∼  (0, 𝜎2𝑒∗)

𝐿𝑠𝑡𝑑 above refers to the standardized (z-score transformed) 𝐿. Residual variances (i.e., variances 423

unexplained by the causal factor) are captured using independent Gaussian-distributed random 424

variables 𝜀𝑟∗, whereas measurement error variances are captured using the independent Gaussian 425

variables 𝜀𝑒∗. In the expressions above and in the text, ∗ is a shorthand for 𝐺, 𝑇 , which indicates 426

that the corresponding expression applies separately for each of the genes 𝐺 and 𝑇 . 427
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We can set the 𝛽∗ and 𝜎2𝑟∗ parameters in such a way that:

𝜌2𝑙𝑔 = 𝑐𝑜𝑟(𝐿,𝐺)2 = 0.1

𝜌2𝑔𝑡 = 𝑐𝑜𝑟(𝐺, 𝑇 )2 ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}.

We specifically set 𝛽𝑔 = 𝜌𝑙𝑔 , 𝜎2𝑟𝑔 = 1 − 𝜌2𝑙𝑔 , and 𝛽𝑡 = 𝜌𝑔𝑡, 𝜎2𝑟𝑡 = 1 − 𝜌2𝑔𝑡. The range of values for
parameters above, along with the range of values of the noise magnitudes and sample size 𝑛
below, results in a total of 648 configurations for the causal model. For each configuration, CIT
and RCD are run 100 times.

𝜎2𝑒𝑔 ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}

𝜎2𝑒𝑡 ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}
𝑛 ∈ {300, 500, 1000}

Note that the above configurations correspond to the causal model 𝐿 → 𝐺 → 𝑇 (including 428

the model where 𝐺, 𝑇 link is severed due to 𝑐𝑜𝑟(𝐺, 𝑇 )2 = 0). For the non-causal or 429

independence model 𝐺 ← 𝐿 → 𝑇 , we simulate data by changing the dependence of 𝑇 from 𝐺 to 430

𝐿, i.e., by replacing the 𝑇 expression in the causal model above by 𝑇 = 𝛽𝑙𝑡𝐿𝑠𝑡𝑑 + 𝜀𝑟𝑡, with 𝛽𝑙𝑡 431

set to 𝜌𝑙𝑡 and 𝜎2𝑟𝑡 set to 1 − 𝜌2𝑙𝑡, and leaving other models/expressions unchanged. 432

We used the implementation of CIT in the CRAN package ([28]). We implemented RCD 433

using the R programming language ([32]). 434

Evaluation Setup for Yeast GRN Inference 435

Estimating Measurement Noise: To estimate shot noise variance, we applied the Stage 1 436

procedure (see Methods section on “RCD Framework”) to the 1012-segregants yeast mRNA 437

counts data1. 438

Selecting Strongest cis-eQTLs: To run CIT or RCD, we need an eQTL which can be used as 439

the 𝐿 in the model. We used cis-eQTLs and cis-egene reported in ([33]). For a single cis-egene, 440

there can be more than one eQTLs; so we grouped eQTLs based on cis-egene and selected the 441

strongest cis-eQTL for each cis-egene based on the absolute correlation coefficient. We obtained 442

a total of 2433 eQTLs, out of which 2044 are associated with one cis-egene, and 337, 44, 6, and 443

2 are associated respectively with two, three, four and five cis-egenes. 444

Target Network Inference: The mRNA counts matrix is available for 5720 genes across 1012 445

yeast segregants. We applied DESeq (size-factors-based) normalization on this counts data, 446

followed by the log-transformation, log2(DESeq_normalised + 0.5). Measured covariates 447

provided in ([33]) are regressed out from the log-transformed data using categorical regression 448

model and causality analysis is done on the final regressed-out gene expression data. From 449

YEASTTRACT+ database ([24]), DNA plus Expression binary regulation matrix on previously 450

studied 80 TFs and 3394 TGs ([34]) is used as ground-truth network, where for each TF/Gene 451

pair, the Regulatory Association (RA) is represented by 0 or 1, representing a non-existing or 452

existing association, respectively. Excluding self-regulations, it has 62052 existing and 207933 453

non-existing associations. A subset of this complete list of trios involving genes with high 454

measurement error is also used in our analysis. A trio is called a noisy or high measurement 455

error trio with respect to a certain cutoff, for instance 40%, if:
𝜎2𝑒𝑔
𝜎2
𝑔′

≥ 0.4 or 𝜎2𝑒𝑡
𝜎2
𝑡′
≥ 0.4. Here the 456

total gene variance in the denominator (𝜎2𝑔′ or 𝜎2𝑡′ ) is the sample variance of the gene after 457

1Yeast mRNA counts data https://github.com/joshsbloom/eQTL_BYxRM/blob/master/RData/counts.
RData
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adjustment for covariates (specifically two covariates in the case of our yeast dataset, optical 458

density indicating growth-rate and batch/date of RNAseq processing of the sample). 459

Dataset Description for Human Tissue 460

We performed skeletal muscle analysis on the NIH GTEx ([25]) V7 data (dbGaP Accession 461

phs000424.v7.p2). 462

Estimating Measurement Noise: GTEx has provided mRNA counts data for all tissues in 463

data-source2. Using the annotation data-source3, we keep only samples specific to skeletal 464

muscle, and then estimate shot noise variance by applying our RCD framework’s Stage 1 465

procedure described above to the skeletal muscle mRNA counts data. 466

Selection of trios: To get a query list of trios (𝐿,𝐺, 𝑇 ) on which to run RCD, we considered 𝐿 467

and 𝐺 directly given in the GTEx portal as cis-eQTL data-source4. For multiple eQTLs of the 468

same cis-egene, we used only one based on the best q-value. We used a 𝑞 ≤ 0.05 cutoff as 469

recommended in the GTEx portal to get significant cis-eQTLs. This gives us a list of (𝐿,𝐺), 470

where 𝐿 is the cis-eQTL of the corresponding cis-egene 𝐺. Corresponding to each significantly 471

identified eQTL association (𝐿,𝐺), we used significant trans-egenes identified by Matrix eQTL 472

([35]) that are also at least 1 Mb distance away from 𝐿 as possible 𝑇 genes. Pairs (𝐿, 𝑇 ) with 473

trans-association p-value < 10−5 is considered as significant, which gives a query list of trios 474

(𝐿,𝐺, 𝑇 ) for downstream analysis. Covariates and other PEER factors given in the GTEx 475

data-source5 are used to adjust the data before causality analysis. 476
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Supplementary Figure S1. Performance comparisons of RCD on simulated independent vs.
causal pairs. (top) Top graph plots the true positive rate (fraction of all true independent
relations that are inferred as independent by RCD or the baseline method CIT), when data
pertaining to 100 true independent pairs are simulated according to the independent model
𝐺 ← 𝐿 → 𝑇 (with correlation coefficient 𝜌𝑔𝑡 = 0.004; note that this is spurious correlation due
to 𝐿). (bottom) Bottom graph plots the false positive rate (fraction of all causal pairs inferred as
independent by a method), when data on 100 causal pairs are simulated using the model
𝐿 → 𝐺 → 𝑇 . Measurement error in mediator 𝐺 (𝜎2𝑒𝑔) is varied along the x-axis keeping the
measurement error in trait 𝑇 fixed at 𝜎2𝑒𝑡 = 0.4. Power (TPR) of both the methods are similar,
whereas RCD exhibits somewhat higher FPR than CIT at low sample sizes (column panels show
different sample sizes: 𝑛 = 300, 500, 1000).
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Supplementary Figure S2. Performance of our RCD relative to the baseline CIT on yeast
dataset at different noise cutoffs. The goal is to recover ground-truth causal regulation of
TFs→TGs, after keeping only those interactions for which either TF or TG have high
measurement errors. Performance on ground-truth causal interactions with TF or TG having
error variance at least 30% of the total variance (left) and at least 50% of the total variance
(right).
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Supplementary Figure S3. Entire human muscle gene regulatory network discovered by
RCD. A human muscle gene regulatory network comprising 314 genes and 164 directed edges
inferred by RCD from NIH GTEx skeletal muscle tissue data. Direction 𝐺 → 𝑇 is predicted if
p-value𝑅𝐶𝐷,𝐺→𝑇 < 0.05 and p-value𝑅𝐶𝐷,𝑇→𝐺 > 0.05.
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Supplementary Figure S4. Illustration of how RCD detects spurious correlation between
two genes. An illustration of two genes that RCD revealed to be spuriously coexpressed due to
the effect of a shared confounding SNP. A SNP 𝐿 at 11_9242168, encoded as 0, 1 or 2 based on
the number of copies of the non-reference allele, is correlated to both genes 𝐺 and 𝑇 as shown in
(a) and (b) respectively. An independent model, 𝐺 ← 𝐿 → 𝑇 is supported by the data as (a)
𝐿 → 𝐺: SNP is associated with a candidate regulator gene, DENND5A (b) 𝐿 → 𝑇 : SNP is
associated with a candidate target gene, STX1A and (c) importantly, 𝐿 ̸⟂ 𝑇 |𝐺: effect of SNP on
STX1A does not vanish once conditioned on the candidate regulator DENND5A.
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