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Abstract

We propose an approach to address data uncertainty for discrete optimization and network flow

problems that allows controlling the degree of conservatism of the solution, and is computationally

tractable both practically and theoretically. In particular, when both the cost coefficients and the

data in the constraints of an integer programming problem are subject to uncertainty, we propose a

robust integer programming problem of moderately larger size that allows controlling the degree of

conservatism of the solution in terms of probabilistic bounds on constraint violation. When only the

cost coefficients are subject to uncertainty and the problem is a 0− 1 discrete optimization problem

on n variables, then we solve the robust counterpart by solving at most n+1 instances of the original

problem. Thus, the robust counterpart of a polynomially solvable 0−1 discrete optimization problem

remains polynomially solvable. In particular, robust matching, spanning tree, shortest path, matroid

intersection, etc. are polynomially solvable. We also show that the robust counterpart of an NP -hard

α-approximable 0 − 1 discrete optimization problem, remains α-approximable. Finally, we propose

an algorithm for robust network flows that solves the robust counterpart by solving a polynomial

number of nominal minimum cost flow problems in a modified network.
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1 Introduction

Addressing data uncertainty in mathematical programming models has long been recognized as a central

problem in optimization. There are two principal methods that have been proposed to address data

uncertainty over the years: (a) stochastic programming, and (b) robust optimization.

As early as the mid 1950s, Dantzig [9] introduced stochastic programming as an approach to model

data uncertainty by assuming scenarios for the data occurring with different probabilities. The two

main difficulties with such an approach are: (a) Knowing the exact distribution for the data, and thus

enumerating scenarios that capture this distribution is rarely satisfied in practice, and (b) the size of

the resulting optimization model increases drastically as a function of the number of scenarios, which

poses substantial computational challenges.

In recent years a body of literature is developing under the name of robust optimization, in which we

optimize against the worst instances that might arise by using a min-max objective. Mulvey et al. [14]

present an approach that integrates goal programming formulations with scenario-based description of

the problem data. Soyster, in the early 1970s, [17] proposes a linear optimization model to construct

a solution that is feasible for all input data such that each uncertain input data can take any value

from an interval. This approach, however, tends to find solutions that are over-conservative. Ben-Tal

and Nemirovski [3, 4, 5] and El-Ghaoui et al. [11, 12] address the over-conservatism of robust solutions

by allowing the uncertainty sets for the data to be ellipsoids, and propose efficient algorithms to solve

convex optimization problems under data uncertainty. However, as the resulting robust formulations

involve conic quadratic problems (see Ben-Tal and Nemirovski [4]), such methods cannot be directly

applied to discrete optimization. Bertsimas and Sim [7] propose a different approach to control the

level of conservatism in the solution that has the advantage that leads to a linear optimization model

and thus, as we examine in more detail in this paper, can be directly applied to discrete optimization

models. We review this work in Section 2.

Specifically for discrete optimization problems, Kouvelis and Yu [13] propose a framework for robust

discrete optimization, which seeks to find a solution that minimizes the worst case performance under

a set of scenarios for the data. Unfortunately, under their approach, the robust counterpart of many

polynomially solvable discrete optimization problems becomes NP-hard. A related objective is the

minimax-regret approach, which seeks to minimize the worst case loss in objective value that may

occur. Again, under the minimax-regret notion of robustness, many of the polynomially solvable discrete

optimization problems become NP -hard. Under the minimax-regret robustness approach, Averbakh [2]
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showed that polynomial solvability is preserved for a specific discrete optimization problem (optimization

over a uniform matroid) when each cost coefficient can vary within an interval (interval representation of

uncertainty); however, the approach does not seem to generalize to other discrete optimization problems.

There have also been research efforts to apply stochastic programming methods to discrete optimization

(see for example Schultz et al. [16]), but the computational requirements are even more severe in this

case.

Our goal in this paper is to propose an approach to address data uncertainty for discrete optimization

and network flow problems that has the following features:

(a) It allows to control the degree of conservatism of the solution;

(b) It is computationally tractable both practically and theoretically.

Specifically, our contributions include:

(a) When both the cost coefficients and the data in the constraints of an integer programming prob-

lem are subject to uncertainty, we propose, following the approach in Bertsimas and Sim [7], a

robust integer programming problem of moderately larger size that allows to control the degree of

conservatism of the solution in terms of probabilistic bounds on constraint violation.

(b) When only the cost coefficients are subject to uncertainty and the problem is a 0 − 1 discrete

optimization problem on n variables, then we solve the robust counterpart by solving n+1 nominal

problems. Thus, we show that the robust counterpart of a polynomially solvable 0 − 1 discrete

optimization problem remains polynomially solvable. In particular, robust matching, spanning

tree, shortest path, matroid intersection, etc. are polynomially solvable. Moreover, we show that

the robust counterpart of an NP -hard α-approximable 0−1 discrete optimization problem, remains

α-approximable.

(c) When only the cost coefficients are subject to uncertainty and the problem is a minimum cost flow

problem, then we propose a polynomial time algorithm for the robust counterpart by solving a

collection of minimum cost flow problems in a modified network.

Structure of the paper. In Section 2, we present the general framework and formulation of robust

discrete optimization problems. In Section 3, we propose an efficient algorithm for solving robust

combinatorial optimization problems. In Section 4, we show that the robust counterpart of an NP -

hard 0 − 1 α-approximable discrete optimization problem remains α-approximable. In Section 5, we

propose an efficient algorithm for robust network flows. In Section 6, we present some experimental
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findings relating to the computation speed and the quality of robust solutions. Finally, Section 7 contains

some remarks with respect to the practical applicability of the proposed methods.

2 Robust Formulation of Discrete Optimization Problems

Let c, l, u be n-vectors, let A be an m × n matrix, and b be an m-vector. We consider the following

nominal mixed integer programming (MIP) on a set of n variables, the first k of which are integral:

minimize c′x

subject to Ax ≤ b

l ≤ x ≤ u

xi ∈ Z, i = 1, . . . , k,

(1)

We assume without loss of generality that data uncertainty affects only the elements of the matrix

A and c, but not the vector b, since in this case we can introduce a new variable xn+1, and write

Ax− bxn+1 ≤ 0, l ≤ x ≤ u, 1 ≤ xn+1 ≤ 1, thus augmenting A to include b.

In typical applications, we have reasonable estimates for the mean value of the coefficients aij and its

range âij . We feel that it is unlikely that we know the exact distribution of these coefficients. Similarly,

we have estimates for the cost coefficients cj and an estimate of its range dj . Specifically, the model of

data uncertainty we consider is as follows:

Model of Data Uncertainty U:

(a) (Uncertainty for matrix A): Let N = {1, 2, . . . , n}. Each entry aij , j ∈ N is modeled as

independent, symmetric and bounded random variable (but with unknown distribution) ãij , j ∈ N

that takes values in [aij − âij , aij + âij ].

(b) (Uncertainty for cost vector c): Each entry cj , j ∈ N takes values in [cj , cj + dj ], where dj

represents the deviation from the nominal cost coefficient, cj .

Note that we allow the possibility that âij = 0 or dj = 0. Note also that the only assumption that

we place on the distribution of the coefficients aij is that it is symmetric.

2.1 Robust MIP Formulation

For robustness purposes, for every i, we introduce a number Γi, i = 0, 1, . . . ,m that takes values in the

interval [0, |Ji|], where Ji = {j| âij > 0}. Γ0 is assumed to be integer, while Γi, i = 1, . . . , m are not

necessarily integers.
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The role of the parameter Γi in the constraints is to adjust the robustness of the proposed method

against the level of conservatism of the solution. Consider the ith constraint of the nominal problem

a′
ix ≤ bi. Let Ji be the set of coefficients aij , j ∈ Ji that are subject to parameter uncertainty, i.e.,

ãij , j ∈ Ji independently takes values according to a symmetric distribution with mean equal to the

nominal value aij in the interval [aij− âij , aij + âij ]. Speaking intuitively, it is unlikely that all of the aij ,

j ∈ Ji will change. Our goal is to be protected against all cases in which up to bΓic of these coefficients

are allowed to change, and one coefficient ait changes by at most (Γi − bΓic)âit. In other words, we

stipulate that nature will be restricted in its behavior, in that only a subset of the coefficients will

change in order to adversely affect the solution. We will then guarantee that if nature behaves like this

then the robust solution will be feasible deterministically. We will also show that, essentially because

the distributions we allow are symmetric, even if more than bΓic change, then the robust solution will

be feasible with very high probability. Hence, we call Γi the protection level for the ith constraint.

The parameter Γ0 controls the level of robustness in the objective. We are interested in finding an

optimal solution that optimizes against all scenarios under which a number Γ0 of the cost coefficients

can vary in such a way as to maximally influence the objective. Let J0 = {j| dj > 0}. If Γ0 = 0, we

completely ignore the influence of the cost deviations, while if Γ0 = |J0|, we are considering all possible

cost deviations, which is indeed most conservative. In general a higher value of Γ0 increases the level of

robustness at the expense of higher nominal cost.

Specifically, the proposed robust counterpart of Problem (1) is as follows:

minimize c′x + max
{S0| S0⊆J0,|S0|≤Γ0}





∑

j∈S0

dj |xj |




subject to
∑

j

aijxj + max
{Si∪{ti}| Si⊆Ji,|Si|≤bΓic,ti∈Ji\Si}





∑

j∈Si

âij |xj |+ (Γi − bΓic)âiti |xti |


 ≤ bi, ∀i

l ≤ x ≤ u

xi ∈ Z, ∀i = 1, . . . , k.

(2)

We next show that the approach in Bertsimas and Sim [7] for linear optimization extends to discrete

optimization.
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Theorem 1 Problem (2) has an equivalent MIP formulation as follows:

minimize c′x + z0Γ0 +
∑

j∈J0
p0j

subject to
∑

j

aijxj + ziΓi +
∑

j∈Ji

pij ≤ bi ∀i

z0 + p0j ≥ djyj ∀j ∈ J0

zi + pij ≥ âijyj ∀i 6= 0, j ∈ Ji

pij ≥ 0 ∀i, j ∈ Ji

yj ≥ 0 ∀j
zi ≥ 0 ∀i
−yj ≤ xj ≤ yj ∀j
lj ≤ xj ≤ uj ∀j
xi ∈ Z i = 1, . . . , k.

(3)

Proof : We first show how to model the constraints in (2) as linear constraints. Given a vector x∗, we

define:

βi(x∗) = max
{Si∪{ti}| Si⊆Ji,|Si|≤bΓic,ti∈Ji\Si}





∑

j∈Si

âij |x∗j |+ (Γi − bΓic)âiti |x∗ti |


 . (4)

This equals to:

βi(x∗) = maximize
∑

j∈Ji

âij |x∗j |zij

subject to
∑

j∈Ji

zij ≤ Γi

0 ≤ zij ≤ 1 ∀i, j ∈ Ji.

(5)

Clearly the optimal solution value of Problem (5) consists of bΓic variables at 1 and one variable at

Γi − bΓic. This is equivalent to the selection of subset {Si ∪ {ti}| Si ⊆ Ji, |Si| ≤ bΓic, ti ∈ Ji\Si} with

corresponding cost function
∑

j∈Si
âij |x∗j | + (Γi − bΓic)âiti |x∗ti |. We next consider the dual of Problem

(5):

minimize
∑

j∈Ji

pij + Γizi

subject to zi + pij ≥ âij |x∗j | ∀j ∈ Ji

pij ≥ 0 ∀j ∈ Ji

zi ≥ 0 ∀i.

(6)

By strong duality, since Problem (5) is feasible and bounded for all Γi ∈ [0, |Ji|], then the dual problem

(6) is also feasible and bounded and their objective values coincide. We have that βi(x∗) is equal to

the objective function value of Problem (6).
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Similarly we can covert the objective function of Problem (2) to a linear one as follows:

β0(x∗) = max
{∑

j∈S0
dj |x∗j | : |S0| ≤ Γ0, S0 ⊆ J0

}

= max
{∑

j∈J0
dj |x∗j |z0j :

∑
j∈J0

z0j ≤ Γ0, 0 ≤ z0j ≤ 1, ∀j ∈ J0

}

= min
{∑

j∈J0
p0j + Γ0z0 : z0 + p0j ≥ dj |x∗j |, z0 ≥ 0, p0j ≥ 0, ∀j ∈ J0

}
(7)

Substituting to Problem (2), we obtain that Problem (2) is equivalent to Problem (3).

While the original Problem (1) involves n variables and m constraints, its robust counterpart Prob-

lem (3) has 2n + m + l variables, where l =
∑m

i=0 |Ji| is the number of uncertain coefficients, and

2n + m + l constraints.

As we discussed, if less than bΓic coefficients aij , j ∈ Ji participating in the ith constraint vary, then

the robust solution will be feasible deterministically. We next show that even if more than bΓic change,

then the robust solution will be feasible with very high probability.

Theorem 2 (Bertsimas and Sim [7]) Let x∗ be an optimal solution of Problem (3).

(a) Suppose that the data in matrix A are subject to the model of data uncertainty U, the probability

that the ith constraint is violated satisfies:

Pr


∑

j

ãijx
∗
j > bi


 ≤ B(n, Γi) =

1
2n



(1− µ)

n∑

l=bνc

(
n

l

)
+ µ

n∑

l=bνc+1

(
n

l

)

 , (8)

where n = |Ji|, ν = Γi+n
2 and µ = ν − bνc. Moreover, the bound is tight.

(b) The bound (8) satisfies

B(n,Γi) ≤ (1− µ)C(n, bνc) +
n∑

l=bνc+1

C(n, l), (9)

where

C(n, l) =





1
2n

, if l=0 or l=n,

1√
2π

√
n

(n− l)l
exp

(
n log

(
n

2(n− l)

)
+ l log

(
n− l

l

))
, otherwise.

(10)

(c) For Γi = θ
√

n,

lim
n→∞B(n,Γi) = 1− Φ(θ), (11)

where

Φ(θ) =
1√
2π

∫ θ

−∞
exp

(
−y2

2

)
dy

is the cumulative distribution function of a standard normal.
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Remarks:

(a) The bound (8) is independent of x∗.

(b) While Bound (8) is best possible it poses computational difficulties in evaluating the sum of combi-

nation functions for large n. For this reason, we have calculated Bound (9), which is simple to compute

and, as Bertsimas and Sim [7] show, very tight.

(c) Eq. (11) is a formal asymptotic theorem that applies when Γi = θ
√

n. We can use the De Moivre-

Laplace approximation of the Binomial distribution to obtain the approximation

B(n, Γi) ≈ 1− Φ
(

Γi − 1√
n

)
, (12)

that applies, even when Γi does not scale as θ
√

n.

(d) We make no theoretical claims regarding suboptimality given that we made no probabilistic as-

sumptions on the cost coefficients. In Section 6.1, we apply these bounds in the context of the zero-one

knapsack problem.

3 Robust Combinatorial Optimization

Combinatorial optimization is an important class of discrete optimization whose decision variables are

binary, that is x ∈ X ⊆ {0, 1}n. In this section, the nominal combinatorial optimization problem we

consider is:
minimize c′x

subject to x ∈ X.
(13)

We are interested in the class of problems where each entry c̃j , j ∈ N = {1, 2, . . . , n} takes values in

[cj , cj +dj ], dj ≥ 0, j ∈ N , but the set X is fixed. We would like to find a solution x ∈ X that minimizes

the maximum cost c′x such that at most Γ of the coefficients c̃j are allowed to change:

Z∗ = minimize c′x + max
{S| S⊆N,|S|≤Γ}

∑

j∈S

djxj

subject to x ∈ X.

(14)

Without loss of generality, we assume that the indices are ordered in such that d1 ≥ d2 ≥ . . . ≥ dn.

We also define dn+1 = 0 for notational convenience. Examples of such problems include the shortest

path, the minimum spanning tree, the minimum assignment, the traveling salesman, the vehicle routing

and matroid intersection problems. Data uncertainty in the context of the vehicle routing problem for

example, captures the variability of travel times in some of the links of the network.
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In the context of scenario based uncertainty, finding an optimally robust solution involves solving

the problem (for the case that only two scenarios for the cost vectors c1, c2 are known):

minimize max(c′
1x, c′

2x)

subject to x ∈ X.

For many classical combinatorial problems (for example the shortest path problem), finding such a

robust solution is NP -hard, even if minimizing c′
ix subject to x ∈ X is polynomially solvable (Kouvelis

and Yu [13]).

Clearly the robust counterpart of an NP -hard combinatorial optimization problem is NP -hard. We

next show that surprisingly, the robust counterpart of a polynomially solvable combinatorial optimiza-

tion problem is also polynomially solvable.

3.1 Algorithm for Robust Combinatorial Optimization Problems

In this section, we show that we can solve Problem (14) by solving at most n + 1 nominal problems

min f ′ix, subject to x ∈ X, for i = 1, . . . , n + 1.

Theorem 3 Problem (14) can be solved by solving the n + 1 nominal problems:

Z∗ = min
l=1,...,n+1

Gl, (15)

where for l = 1, . . . , n + 1:

Gl = Γdl + min
(

c′x +
l∑

j=1

(dj − dl)xj

)

subject to x ∈ X.

(16)

Proof : Problem (14) can be rewritten as follows:

Z∗ = min
x∈X

(
c′x + max

∑

j∈N

djxjuj

)

subject to 0 ≤ uj ≤ 1, j ∈ N
∑

j∈N

uj ≤ Γ.

Given a fixed x ∈ X, we consider the inner maximization problem and formulate its dual. Applying

strong duality to this problem we obtain:

Z∗ = min
x∈X

c′x + min
(

Γθ +
∑

j∈N

yj

)

subject to yj + θ ≥ djxj , j ∈ N

yj , θ ≥ 0,
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which can be rewritten as:
Z∗ = min c′x + Γθ +

∑

j∈N

yj

subject to yj + θ ≥ djxj , j ∈ N

yj , θ ≥ 0,

x ∈ X.

(17)

Clearly an optimal solution (x∗, y∗, θ∗) of Problem (17) satisfies:

y∗j = max(djx
∗
j − θ∗, 0),

and therefore,

Z∗ = min
x∈X,θ≥0

(
Γθ + c′x +

∑

j∈N

max(djxj − θ, 0)
)

.

Since X ⊂ {0, 1}n,

max(djxj − θ, 0) = max(dj − θ, 0) xj , (18)

Hence, we obtain

Z∗ = min
x∈X,θ≥0

(
Γθ + c′x +

∑

j∈N

max(dj − θ, 0)xj

)
. (19)

In order to find the optimal value for θ we decompose <+ into the intervals [0, dn], [dn, dn−1], . . . , [d2, d1]

and [d1,∞). Then, recalling that dn+1 = 0, we obtain

∑

j∈N

max(dj − θ, 0)xj =





l−1∑

j=1

(dj − θ)xj , if θ ∈ [dl, dl−1], l = n + 1, . . . , 2,

0, if θ ∈ [d1,∞).

Therefore, Z∗ = min
l=1,...,n+1

Z l, where for l = 1, . . . , n + 1:

Z l = min
x∈X,θ∈[dl,dl−1]

(
Γθ + c′x +

l−1∑

j=1

(dj − θ)xj

)
,

where the sum for l = 1 is equal to zero. Since we are optimizing a linear function of θ over the interval

[dl, dl−1], the optimal is obtained for θ = dl or θ = dl−1, and thus for l = 1, . . . , n + 1:

Z l = min


Γdl + min

x∈X

(
c′x +

l−1∑

j=1

(dj − dl)xj

)
, Γdl−1 + min

x∈X

(
c′x +

l−1∑

j=1

(dj − dl−1)xj

)


= min


Γdl + min

x∈X

(
c′x +

l∑

j=1

(dj − dl)xj

)
, Γdl−1 + min

x∈X

(
c′x +

l−1∑

j=1

(dj − dl−1)xj

)
 .
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Thus,

Z∗ = min


Γd1 + min

x∈X
c′x, . . . , Γdl + min

x∈X

(
c′x +

l∑

j=1

(dj − dl)xj

)
, . . . , min

x∈X

(
c′x +

n∑

j=1

djxj

)
 .

Remark: Note that we critically used the fact that the nominal problem is a 0-1 discrete optimization

problem, i.e., X ⊆ {0, 1}n, in Eq. (18). For general integer optimization problems Eq. (18) does not

apply.

Theorem 3 leads to the following algorithm.

Algorithm A

1. For l = 1, . . . , n + 1 solve the n + 1 nominal problems Eqs. (16):

Gl = Γdl + min
x∈X

(
c′x +

l∑

j=1

(dj − dl)xj

)
,

and let xl be an optimal solution of the corresponding problem.

2. Let l∗ = arg min
l=1,...,n+1

Gl .

3. Z∗ = Gl∗ ; x∗ = xl∗ .

Note that Z l is not in general equal to Gl. If f is the number of distinct values among d1, . . . , dn,

then it is clear that Algorithm A solves f + 1 nominal problems, since if dl = dl+1, then Gl = Gl+1. In

particular, if all dj = d for all j = 1, . . . , n, then Algorithm A solves only two nominal problems. Thus, if

τ is the time to solve one nominal problem, Algorithm A solves the robust counterpart in (f +1)τ time,

thus preserving the polynomial solvability of the nominal problem. In particular, Theorem 3 implies

that the robust counterpart of many classical 0-1 combinatorial optimization problems like the minimum

spanning tree, the minimum assignment, minimum matching, shortest path and matroid intersection,

are polynomially solvable.

4 Robust Approximation Algorithms

In this section, we show that if the nominal combinatorial optimization problem (13) has an α-

approximation polynomial time algorithm, then the robust counterpart Problem (14) with optimal

solution value Z∗ is also α-approximable. Specifically, we assume that there exists a polynomial time

11



Algorithm H for the nominal problem (13), that returns a solution with an objective ZH : Z ≤ ZH ≤ αZ,

α ≥ 1.

The proposed algorithm for the robust Problem (14) is to utilize Algorithm H in Algorithm A,

instead of solving the nominal instances exactly. The proposed algorithm is as follows:

Algorithm B

1. For l = 1, . . . , n+1 find an α-approximate solution xl
H using Algorithm H for the nominal problem:

Gl − Γdl = min
x∈X


c′x +

l∑

j=1

(dj − dl)xj


 . (20)

2. For l = 1, . . . , n + 1, let

Z l
H = c′xl

H + max
{S| S⊆N,|S|≤Γ}

∑

j∈S

dj(xl
H)j .

3. Let l∗ = arg min
l=1,...,n+1

Z l
H .

4. ZB = Z l∗
H ; xB = xl∗

H .

Theorem 4 Algorithm B yields a solution xB with an objective value ZB that satisfies:

Z∗ ≤ ZB ≤ αZ∗.

Proof : Since Z∗ is the optimal objective function value of the robust problem, clearly Z∗ ≤ ZB. Let

l the index such that Z∗ = Gl in Theorem 3. Let xl
H be an α-optimal solution for Problem (20). Then,

we have
ZB ≤ Z l

H

= c′xl
H + max

{S| S⊆N,|S|≤Γ}

∑

j∈S

dj(xl
H)j

= min
θ≥0



c′xl

H +
∑

j∈N

max(dj − θ, 0)(xl
H)j + Γθ



 (from Eq. (19))

≤ c′xl
H +

l∑

j=1

(dj − dl)(xl
H)j + Γdl

≤ α(Gl − Γdl) + Γdl (from Eq. (20))

≤ αGl (since α ≥ 1)

= αZ∗.
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Remark : Note that Algorithm A is a special case of Algorithm B for α = 1. Note that it is critical to

have an α-approximation algorithm for all nominal instances (20). In particular, if the nominal problem

is the traveling salesman problem under triangle inequality, which can be approximated within α = 3/2,

Algorithm B is not an α-approximation algorithm for the robust counterpart, as the instances (20) may

not satisfy the triangle inequality.

5 Robust Network Flows

In this section, we apply the methods of Section 3 to show that robust minimum cost flows can also

be solved by solving a collection of modified nominal minimum cost flows. Given a directed graph

G = (N ,A), the minimum cost flow is defined as follows:

minimize
∑

(i,j)∈A
cijxij

subject to
∑

{j:(i,j)∈A}
xij −

∑

{j:(j,i)∈A}
xji = bi ∀i ∈ N

0 ≤ xij ≤ uij ∀(i, j) ∈ A.

(21)

Let X be the set of feasible solutions of Problem (21).

We are interested in the class of problems in which each entry c̃ij , (i, j) ∈ A takes values in

[cij , cij + dij ], dij , cij ≥ 0, (i, j) ∈ A. From Eq. (14) the robust minimum cost flow problem is:

Z∗ = min c′x + max
{S| S⊆A,|S|≤Γ}

∑

(i,j)∈S

dijxij

subject to x ∈ X.

(22)

From Eq. (17) we obtain that Problem (22) is equivalent to solving the following problem:

Z∗ = min
θ≥0

Z(θ), (23)

where
Z(θ) = Γθ + min c′x +

∑

(i,j)∈A
pij

subject to pij ≥ dijxij − θ ∀(i, j) ∈ A
pij ≥ 0 ∀(i, j) ∈ A
x ∈ X.

(24)

We next show that for a fixed θ ≥ 0, we can solve Problem (24) as a network flow problem.

Theorem 5 For a fixed θ ≥ 0, Problem (24) can be solved as a network flow problem.
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Proof :

We eliminate the variables pij from Formulation (24) and obtain:

Z(θ) = Γθ + min c′x +
∑

(i,j)∈A
dij max

(
xij − θ

dij
, 0

)

subject to x ∈ X.

(25)

For every arc (i, j) ∈ A, we introduce nodes i′ and j′ and replace the arc (i, j) with arcs (i, i′), (i′, j′),

(j′, j) and (i′, j) with the following costs and capacities (see also Figure 1):

cii′ = cij uii′ = uij

cj′j = 0 uj′j = ∞

ci′j = 0 ui′j =
θ

dij

ci′j′ = dij ui′j′ = ∞.

Let G′ = (N ′,A′) be the new direceted graph. We show that solving a linear minimum cost flow

ji

j’

ji’i

(cij, uij)

(cij, uij) (0, θ/ dij)

(d ij
, !

) (0, !)

(cost, capacity)

Figure 1: Conversion of arcs with cost uncertainties.

problem with data as above, leads to the solution of Problem (25). Consider an optimal solution of

Problem (25). If xij ≤ θ/dij for a given arc (i, j) ∈ A, then the flow xij will be routed along the arcs

(i, i′) and (i′, j) an the total contribution to cost is

cii′xij + ci′jxij = cijxij .

14



If, however, xij ≥ θ/dij , then the flow xij will be routed along the arcs (i, i′), then θ/dij will be

routed along arc (i′, j), and the excess xij − (θ/dij) is routed through the arcs (i′, j′) and (j′, j). The

total contribution to cost is

cii′xij + ci′j
θ

dij
+ ci′j′

(
xij − θ

dij

)
+ cj′j

(
xij − θ

dij

)
=

cijxij + dij

(
xij − θ

dij

)
.

In both cases the contribution to cost matches the objective function value in Eq. (25).

Without loss of generality, we can assume that all the capacities uij , (i, j) ∈ A are finitely bounded.

Then, clearly θ ≤ θ = max{uijdij : (i, j) ∈ A}. Theorem 5 shows that the robust counterpart of the

minimum cost flow problem can be converted to a minimum cost flow problem in which capacities on

the arcs are linear functions of θ. Srinivasan and Thompsom [18] proposed a simplex based method

for solving such parametric network flow problems for all values of the parameter θ ∈ [0, θ]. Using

this method, we can obtain the complete set of robust solutions for Γ ∈ [0, |A|]. However, while the

algorithm may be practical, it is not polynomial. We next provide a polynomial time algorithm. We

first establish some properties of the function Z(θ).

Theorem 6 (a) Z(θ) is a convex function.

(b) For all θ1, θ2 ≥ 0, we have

|Z(θ1)− Z(θ2)| ≤ |A||θ1 − θ2|. (26)

Proof :

(a) Let (x1, p1) and (x2, p2) be optimal solutions to Problem (24) with θ = θ1 and θ = θ2 respectively.

Clearly, since the feasible region is convex, for all λ ∈ [0, 1], (λx1 +(1−λ)x2, λp1 +(1−λ)p2) is feasible

to the problem with θ = λθ1 + (1− λ)θ2. Therefore,

λZ(θ1)+(1−λ)Z(θ2) = c′(λx1+(1−λ)x2)+e′(λp1+(1−λ)p2)+Γ(λθ1+(1−λ)θ2) ≥ Z(λθ1+(1−λ)θ2),

where e is a vector of ones.

(b) By introducing Lagrange multiplies r to the first set of constraints of Problem (24), we obtain:

Z(θ) = max
r≥0

min
x∈X,p≥0



Γθ + c′x +

∑

(i,j)∈A
pij +

∑

(i,j)∈A
rij(dijxij − pij − θ)





= max
r≥0

min
x∈X,p≥0



(Γ−

∑

(i,j)∈A
rij)θ + c′x +

∑

(i,j)∈A
pij(1− rij) +

∑

(i,j)∈A
rijdijxij





= max
0≤r≤e

min
x∈X



(Γ−

∑

(i,j)∈A
rij)θ + c′x +

∑

(i,j)∈A
rijdijxij



, (27)

15



where Eq. (27) follows from the fact that minp≥0

{∑
(i,j)∈A pij(1− rij)

}
is unbounded if any rij > 1

and equals to zero for 0 ≤ r ≤ e. Without loss of generality, let θ1 > θ2 ≥ 0. For 0 ≤ r ≤ e, we have

−|A| ≤ Γ−
∑

(i,j)∈A
rij ≤ |A|.

Thus,

Z(θ1) = max
0≤r≤e

min
x∈X



(Γ−

∑

(i,j)∈A
rij)θ1 + c′x +

∑

(i,j)∈A
rijdijxij





= max
0≤r≤e

min
x∈X



(Γ−

∑

(i,j)∈A
rij)(θ2 + (θ1 − θ2)) + c′x +

∑

(i,j)∈A
rijdijxij





≤ max
0≤r≤e

min
x∈X



(Γ−

∑

(i,j)∈A
rij)θ2 + |A|(θ1 − θ2) + c′x +

∑

(i,j)∈A
rijdijxij





= Z(θ2) + |A|(θ1 − θ2).

Similarly,

Z(θ1) = max
0≤r≤e

min
x∈X



(Γ−

∑

(i,j)∈A
rij)(θ2 + (θ1 − θ2)) + c′x +

∑

(i,j)∈A
rijdijxij





≥ max
0≤r≤e

min
x∈X



(Γ−

∑

(i,j)∈A
rij)θ2 − |A|(θ1 − θ2) + c′x +

∑

(i,j)∈A
rijdijxij





= Z(θ2)− |A|(θ1 − θ2).

We next show that the robust minimum cost flow problem (22) can be solved by solving a polynomial

number of network flow problems.

Theorem 7 For any fixed Γ ≤ |A| and every ε > 0, we can find a solution x̂ ∈ X with robust objective

value

Ẑ = c′x̂ + max
{S| S⊆A,|S|≤Γ}

∑

(i,j)∈S

dij x̂ij

such that

Z∗ ≤ Ẑ ≤ (1 + ε)Z∗

by solving 2dlog2(|A|θ/ε)e+ 3 network flow problems, where θ = max{uijdij : (i, j) ∈ A}.

Proof : Let θ∗ ≥ 0 be such that Z∗ = Z(θ∗). Since Z(θ) is a convex function (Theorem 6(a)), we use

binary search to find a θ̂ such that

|θ̂ − θ∗| ≤ θ

2k
,
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by solving 2k + 3 minimum cost flow problems of the type described in Theorem 5. We first need to

evaluate Z(0), Z(θ/2), Z(θ), and then we need two extra points Z(θ/4) and Z(3θ/4) in order to decide

whether θ∗ belongs in the interval [0, θ/2] or [θ/2, θ] or [θ/4, 3θ/4]. From then on, we need two extra

evaluations in order to halve the interval θ∗ can belong to.

From Theorem 6(b)

|Z(θ̂)− Z(θ∗)| ≤ |A||θ̂ − θ∗| ≤ |A| θ

2k
≤ ε,

for k = dlog2(|A|θ/ε)e. Note that x̂ is the flow corresponding to the nominal network flow problem for

θ = θ̂.

6 Experimental Results

In this section we consider concrete discrete optimization problems and solve the robust counterparts.

6.1 The Robust Knapsack Problem

The zero-one nominal knapsack problem is:

maximize
∑

i∈N

cixi

subject to
∑

i∈N

wixi ≤ b

x ∈ {0, 1}n.

We assume that the weights w̃i are uncertain, independently distributed and follow symmetric distribu-

tions in [wi−δi, wi +δi]. The objective value vector c is not subject to data uncertainty. An application

of this problem is to maximize the total value of goods to be loaded on a cargo that has strict weight

restrictions. The weight of the individual item is assumed to be uncertain, independent of other weights

and follows a symmetric distribution. In our robust model, we want to maximize the total value of the

goods but allowing a maximum of 1% chance of constraint violation.

The robust Problem (2) is as follows:

maximize
∑

i∈N

cixi

subject to
∑

i∈N

wixi + max
{S∪{t}| S⊆N,|S|=bΓc,t∈N\S}





∑

j∈S

δjxj + (Γ− bΓc)δtxt



 ≤ b

x ∈ {0, 1}n.
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Γ Violation Probability Optimal Value Reduction

0 1 5592 0%

2.8 4.49× 10−1 5585 0.13%

36.8 5.71× 10−3 5506 1.54%

82.0 5.04× 10−9 5408 3.29%

200 0 5283 5.50%

Table 1: Robust Knapsack Solutions.

For this experiment, we solve Problem (3) using CPLEX 7.0 for a random knapsack problem of size,

|N | = 200. We set the capacity limit, b to 4000, the nominal weight, wi being randomly chosen from

the set {20, 21, . . . , 29} and the cost ci randomly chosen from the set {16, 17, . . . , 77}. We set the weight

uncertainty δi to equal 10% of the nominal weight. The time to solve the robust discrete problems to

optimality using CPLEX 7.0 on a Pentium II 400 PC ranges from 0.05 to 50 seconds.

Under zero protection level, Γ = 0, the optimal value is 5, 592. However, with full protection,

Γ = 200, the optimal value is reduced by 5.5% to 5, 283. In Table 1, we present a sample of the

objective function value and the probability bound of constraint violation computed from Eq. (8). It is

interesting to note that the optimal value is marginally affected when we increase the protection level.

For instance, to have a probability guarantee of at most 0.57% chance of constraint violation, we only

reduce the objective by 1.54%. It appears that in this example we do not heavily penalize the objective

function value in order to protect ourselves against constraint violation.

We repeated the experiment twenty times and in Figure 2 we report the tradeoff between robustness

and optimality for all twenty problems. We observe that by allowing a profit reduction of 2%, we can

make the probability of constraint violation smaller than 10−3. Moroever, the conclusion did not seem

to depend a lot on the specific instance we generated.
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Figure 2: The tradeoff between robustness and optimality in twenty instances of the 0-1 knapsack problem.

6.2 Robust Sorting

We consider the problem of minimizing the total cost of selecting k items out of a set of n items that

can be expressed as the following integer programming problem:

minimize
∑

i∈N

cixi

subject to
∑

i∈N

xi = k

x ∈ {0, 1}n.

(28)

In this problem, the cost components are subjected to uncertainty. If the model is deterministic, we

can easily solve the problem in O(n log n) by sorting the costs in ascending order and choosing the

first k items. However, under the influence of data uncertainty, we will illustrate empirically that the

deterministic model could lead to large deviations when the cost components are subject to uncertainty.

Under our proposed Problem (14), we solve the following problem,

Z∗(Γ) = minimize c′x + max
{S| S⊆J,|S|≤Γ}

∑

j∈S

djxj

subject to
∑

i∈N

xi = k

x ∈ {0, 1}n.

(29)
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We experiment with a problem of size |N | = 200 and k = 100. The cost and deviation components,

cj and dj are uniformly distributed in [50, 200] and [20, 200] respectively. Since only k items will be

selected, the robust solution for Γ > k is the same as when Γ = k. Hence, Γ takes integral values from

[0, k]. By varying Γ, we will illustrate empirically that we can control the deviation of the objective

value under the influence of cost uncertainty.

We solve Problem (29) in two ways. First using Algorithm A, and second solving Problem (3):

minimize c′x + zΓ +
∑

j∈N

pj

subject to z + pj ≥ djxj ∀j ∈ N
∑

i∈N

xi = k

z ≥ 0

pj ≥ 0

x ∈ {0, 1}n.

(30)

Algorithm A was able to find the robust solution for all Γ ∈ {0, . . . k} in less than a second. The

typical running time using CPLEX 7.0 to solve Problem (30) for only one of the Γ ranges from 30 to

80 minutes, which underscores the effectiveness of Algorithm A.

We let x(Γ) be an optimal solution to the robust model, with parameter Γ and define Z(Γ) = c′x(Γ)

as the nominal cost in the absence of any cost deviations. To analyze the robustness of the solution, we

simulate the distribution of the objective by subjecting the cost components to random perturbations.

Under the simulation, each cost component independently deviates with probability p from the nominal

value cj to cj + dj . In Table 2, we report Z(Γ) and the standard deviation σ(Γ) found in the simulation

for p = 0.2 (we generated 20,000 instances to evaluate σ(Γ)).

Table 2 suggests that as we increase Γ, the standard deviation of the objective, σ(Γ) decreases,

implying that the robustness of the solution increases, and Z(Γ) increases. Varying Γ we can find the

tradeoff between the variability of the objective and the increase in nominal cost. Note that the robust

formulation does not explicitly consider standard deviation. We chose to represent robustness in the

numerical results with standard deviation of the objective, since standard deviation is the standard

measure of variability and it has intuitive appeal.

In Figure 3 we report the cumulative distribution of cost (for ρ = 0.2) for various values of Γ for the

robust sorting problem. We see that Γ = 20 dominates the nominal case Γ = 0, which in turn dominates

Γ = 100 that appears over conservative. In particular, it is clear that not only the robust solution for

Γ = 20 has lower variability than the nominal solution, it leads to a more favorable distribution of cost.
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Γ Z(Γ) % Change in Z(Γ) σ(Γ) % Change in σ(Γ)

0 8822 0 % 501.0 0.0 %

10 8827 0.056 % 493.1 -1.6 %

20 8923 1.145 % 471.9 -5.8 %

30 9059 2.686 % 454.3 -9.3 %

40 9627 9.125 % 396.3 -20.9 %

50 10049 13.91 % 371.6 -25.8 %

60 10146 15.00 % 365.7 -27.0 %

70 10355 17.38 % 352.9 -29.6 %

80 10619 20.37 % 342.5 -31.6 %

100 10619 20.37 % 340.1 -32.1 %

Table 2: Influence of Γ on Z(Γ) and σ(Γ).
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Figure 3: The cumulative distribution of cost (for ρ = 0.2) for various values of Γ for the robust sorting problem.

6.3 The Robust Shortest Path Problem

Given a directed graph G = (N ∪{s, t},A), with non-negative arc cost cij , (i, j) ∈ A, the shortest {s, t}
path problem seeks to find a path of minimum total arc cost from the source node s to the terminal
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node t. The problem can be modeled as a 0− 1 integer programming problem:

minimize
∑

(i,j)∈A
cijxij

subject to
∑

{j:(i,j)∈A}
xij −

∑

{j:(j,i)∈A}
xji =





1, if i = s

-1, if i = t

0, otherwise,

x ∈ {0, 1}|A|,

(31)

The shortest path problem surfaces in many important problems and has a wide range of applications

from logistics planning to telecommunications [1]. In these applications, the arc costs are estimated and

subjected to uncertainty. The robust counterpart is then:

minimize
∑

(i,j)∈A
cijxij + max

{S| S⊆A,|S|=Γ}

∑

(i,j)∈S

dijxij

subject to
∑

{j:(i,j)∈A}
xij −

∑

{j:(j,i)∈A}
xji =





1, if i = s

-1, if i = t

0, otherwise,

x ∈ {0, 1}|A|.

(32)

Using Dijkstra’s algorithm [10], the shortest path problem can be solved in O(|N |2), while Algorithm

A runs in O(|A||N |2). In order to test the performance of Algorithm A, we construct a randomly

generated directed graph with |N | = 300 and |A| = 1475 as shown in Figure 4. The starting node,

s is at the origin (0, 0) and the terminal node t is placed in coordinate (1, 1). The nominal arc cost,

cij equals to the euclidean distance between the adjacent nodes {i, j} and the arc cost deviation, dij is

set to γcij , where γ is uniformly distributed in [0, 8]. Hence, some of the arcs have cost deviations of

at most eight times of their nominal values. Using Algorithm A (calling Dijkstra’s algorithm |A| + 1

times), we solve for the complete set of robust shortest paths (for various Γ’s), which are drawn in bold

in Figure 4.

We simulate the distribution of the path cost by subjecting the arc cost to random perturbations. In

each instance of the simulation, every arc (i, j) has cost that is independently perturbed, with probability

ρ, from its nominal value cij to cij + dij . Setting ρ = 0.1, we generate 20, 000 random scenarios and

plot the distributions of the path cost for Γ = 0, 3, 6 and 10, which are shown in Figure 5. We observe

that as Γ increases, the nominal path cost also increases, while cost variability decreases.

In Figure 6 we report the cumulative distribution of cost (for ρ = 0.1) for various values of Γ for

the robust shortest path problem. Comparing the distributions for Γ = 0 (the nominal problem) and
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Figure 4: Randomly generated digraph and the set of robust shortest {s, t} paths for various Γ values.
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Figure 5: Influence of Γ on the distribution of path cost for ρ = 0.1.
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Γ = 3, we can see that none of the two distributions dominate each other. In other words, even if a

decision maker is primarily cost conscious, he might still select to use a value of Γ that is different than

zero, depending on his risk preference.
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Figure 6: The cumulative distribution of cost (for ρ = 0.1) for various values of Γ for the robust shortest path

problem.

7 Conclusions

We feel that the proposed approach has the potential of being practically useful especially for combi-

natorial optimization and network flow problems that are subject to cost uncertainty. Unlike all other

approaches that create robust solutions for combinatorial optimization problems, the proposed approach

retains the complexity of the nominal problem or its approximability guarantee and offers the modeler

the capability to control the tradeoff between cost and robustness by varying a single parameter Γ. For

arbitrary discrete optimization problems, the increase in problem size is still moderate, and thus the

proposed approach has the potential of being practically useful in this case as well.
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