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ABSTRACT

In this paper we propose a new technique for robust keyword spot-

ting that uses bidirectional Long Short-Term Memory (BLSTM) re-

current neural nets to incorporate contextual information in speech

decoding. Our approach overcomes the drawbacks of generative

HMM modeling by applying a discriminative learning procedure

that non-linearly maps speech features into an abstract vector space.

By incorporating the outputs of a BLSTM network into the speech

features, it is able to make use of past and future context for phoneme

predictions. The robustness of the approach is evaluated on a key-

word spotting task using the HUMAINE Sensitive Artificial Listener

(SAL) database, which contains accented, spontaneous, and emo-

tionally colored speech. The test is particularly stringent because the

system is not trained on the SAL database, but only on the TIMIT

corpus of read speech. We show that our method prevails over a

discriminative keyword spotter without BLSTM-enhanced feature

functions, which in turn has been proven to outperform HMM-based

techniques.

Index Terms— Speech recognition, Robustness, Recurrent neu-

ral networks

1. INTRODUCTION

The goal of keyword spotting is to reliably detect the presence of a

specific word in a given speech utterance. This is most commonly

done with Hidden Markov Models (HMM) [1, 2]. However, the

use of HMMs has various drawbacks, such as the need for an ad-

equate ”garbage model“ to handle non-keyword speech. Designing

a garbage-model is a nontrivial problem since the garbage model can

potentially model any phoneme sequence — including the keyword

itself. Further disadvantages of HMM modeling are the suboptimal

convergence of the Expectation Maximization (EM) algorithm to lo-

cal maxima, the assumption of conditional independence of the ob-

servations, and the fact that HMMs do not directly maximize the

keyword detection rate.

For these reasons we follow [3] in using a supervised, discrim-

inative approach to keyword spotting, that does not require the use

of HMMs. In general, discriminative learing algorithms are likely

to outperform generative models such as HMMs since the objective

function used during training more closely reflects the actual deci-

sion task. The discriminative method described in [3] uses feature

functions to non-linearly map the speech utterance, along with the

target keyword, into an abstract vector space. It was shown to pre-

vail over HMM modeling. However, in contrast to state-of-the-art

HMM recognizers which use triphones to incorporate information

from past and future speech frames, the discriminative system does

not explicitly consider contextual knowledge. In this work we build

in context information by including the outputs of a bidirectional

Long Short-Term Memory (BLSTM) recurrent neural network [4, 5]

in the feature functions. Similar neural network architectures have

been successfully applied to speech or emotion recognition related

tasks [6, 5, 7], where they exploit contextual information whenever

speech production or perception is influenced by emotion, strong ac-

cents, or background noise. In contrast to [6], our keyword spotting

approach uses BLSTM for phoneme discrimination and not for the

recognition of whole keywords. As well as reducing the complex-

ity of the network, the use of phonemes makes it applicable to any

keyword spotting task.

In the experimental section we evaluate the robustness of our

discriminative BLSTM keyword spotter on the Belfast Sensitive Ar-

tificial Listener (SAL) database [8]. We show that applying BLSTM

significantly increases the area under the Receiver Operating Char-

acteristics (ROC) curve, which is a common measure for keyword

spotting performance.

The paper is structured as follows: Section 2 describes the train-

ing algorithm of our keyword spotter, Section 3 explains the BLSTM

architecture, Section 4 introduces the various BLSTM enhanced fea-

ture functions, Section 5 presents the experimental setup as well as

the keyword spotting results, and conclusions are given in Section 6.

2. DISCRIMINATIVE KEYWORD SPOTTING

The goal of the discriminative keyword spotter applied in this work

is to determine the likelihood that a specific keyword is uttered in

a given speech sequence. Thereby each keyword k consists of a

phoneme sequence p̄k = (p1, ..., pL) with L being the length of

the sequence and pl denoting a phoneme out of the domain P of

possible phoneme symbols. The speech signal is represented by a

sequence of feature vectors x̄ = (x1, ...,xt, ...,xT ) where T is the

length of the utterance. X and K mark the domain of all possible

feature vectors and the lexicon of keywords respectively. The align-

ment of the keyword phonemes is defined by the start times sl of

the phonemes as well as by the end time of the last phoneme eL:

s̄k = (s1, ..., sL, eL). We assume that the start time of phoneme

pl+1 corresponds to the end time of phoneme pl, so that el = sl+1.

The keyword spotter f takes as input a feature vector sequence x̄ as

well as a keyword phoneme sequence p̄k and outputs a real valued

confidence that the keyword k is uttered in x̄. In order to make the

final decision whether k is contained in x̄, the confidence score is

compared to a threshold b. The confidence calculation is based on

a set of non-linear feature functions {φj}
n
j=1 (see Section 4) which



take a sequence of feature vectors x̄, a keyword phoneme sequence

p̄k, and a suggested alignment s̄k to compute a confidence measure

for the candidate keyword alignment.

The keyword spotting algorithm searches for the best alignment

s̄ producing the highest possible confidence for the phoneme se-

quence of keyword k in x̄. Merging the feature functions φj to an

n-dimensional vector function φ and introducing a weight vector w,

the keyword spotter is given as

f(x̄, p̄
k) = max

s̄
w · φ(x̄, p̄

k
, s̄). (1)

Consequently f outputs a weighted sum of feature function scores

maximized over all possible keyword alignments. This output then

corresponds to the confidence that the keyword k is uttered in the

speech feature sequence x̄. Since the number of possible alignments

is exponentially large, the maximization is calculated using dynamic

programming.

In order to evaluate the performance of a keyword spotter, it is

common to compute the Receiver Operating Characteristics curve

[1, 2] which shows the true positive rate as a function of the false

positive rate. The operating point on this curve can be adjusted by

changing the keyword rejection threshold b. If a high true positive

rate shall be obtained at a preferably low false positive rate, the area

under the ROC curve (AUC) has to be maximized. With X+
k denot-

ing a set of utterances that contains the keyword k and X−
k a set that

does not contain the keyword respectively, the AUC for keyword k

is calculated as

Ak =
1

|X+
k ||X−

k |

X

x̄
+∈X+

k

x̄
−∈X−

k

I{f(x̄+,p̄k)>f(x̄−,p̄k)} (2)

and can be thought of as the probability that an utterance contain-

ing keyword k (x̄+) produces a higher confidence than a sequence

in which k is not uttered (x̄−). Thereby I{·} denotes the indicator

function. When speaking of the average AUC, we refer to

A =
1

K

X

k∈K

Ak. (3)

In [3] an algorithm for the computation of the weight vector w in

Equation 1 is presented. The algorithm aims at training the weights

w in a way that they maximize the average AUC on unseen data.

One training example {p̄ki , x̄+
i , x̄−

i , s̄
ki

i } consists of an utterance in

which keyword ki is uttered, one sequence in which the keyword is

not uttered, the phoneme sequence of the keyword, and the correct

alignment of ki. With

s̄
′ = arg max

s̄
wi−1 · φ(x̄−

i , p̄
ki , s̄) (4)

representing the most probable alignment of ki in x̄
−
i according to

the weights wi−1 of the previous training iteration i − 1, a term

∆φi =
1

|X+
ki
||X−

ki
|

“

φ(x̄+
i , p̄

ki , s̄
ki) − φ(x̄−

i , p̄
ki , s̄

′)
”

(5)

is computed which is the difference of feature functions for x̄
+
i and

x̄
−
i . For the update rule of w the Passive-Aggressive algorithm for

binary classification (PA-I) outlined in [9] is applied. Consequently

w is updated according to

wi = wi−1 + αi∆φi (6)

whereas αi can be calculated as

αi = min



C,
[1 − wi−1 · ∆φi]+

||∆φi||
2

ff

. (7)

The parameter C controls the ”aggressiveness“ of the update rule

and [1 − wi−1 · ∆φi]+ can be interpreted as the ”loss“ suffered on

iteration i. After every training step the AUC on a validation set is

computed whereas the vector w which achieves the best AUC on the

validation set is the final output of the algorithm.

3. BIDIRECTIONAL LSTM

The basic idea of bidirectional recurrent neural networks [10] is to

use two recurrent network layers, one that processes the training se-

quence forwards and one that processes it backwards. Both networks

are connected to the same output layer, which therefore has access to

complete information about the data points before and after the cur-

rent point in the sequence. The amount of context information that

the network actually uses is learned during training, and does not

have to be specified beforehand. This makes bidirectional networks

a very flexible tool for sequence labeling, and they have been suc-

cessfully applied to areas as diverse as protein secondary structure

prediction [11] and speech recognition [10].

Analysis of the error flow in conventional recurrent neural nets

(RNNs) resulted in the finding that long time lags are inaccessible

to existing RNNs since the backpropagated error either blows up or

decays over time (vanishing gradient problem). This led to the intro-

duction of Long Short Term Memory (LSTM) RNNs [4]. An LSTM

layer is composed of recurrently connected memory blocks, each

of which contains one or more recurrently connected memory cells,

along with three multiplicative “gate” units: the input, output, and

forget gates. The gates perform functions analogous to read, write,

and reset operations. More specifically, the cell input is multiplied

by the activation of the input gate, the cell output by that of the out-

put gate, and the previous cell values by the forget gate. Their effect

is to allow the network to store and retrieve information over long

periods of time. If, for example the input gate remains closed, the

activation of the cell will not be overwritten by new inputs and can

therefore be made available to the net much later in the sequence

by opening the output gate. This principle overcomes the vanishing

gradient problem and gives access to long range context information.

Combining bidirectional networks with LSTM gives Bidirec-

tional LSTM (BLSTM), which has demonstrated excellent perfor-

mance in phoneme recognition [5] and keyword spotting [6].

4. FEATURE FUNCTIONS

As mentioned in Section 2, our keyword spotter is based on a set of

non-linear feature functions {φj}
n
j=1 that map a speech utterance,

together with a candidate alignment, into an abstract vector space.

We use n = 7 feature functions which proved successful for the

keyword spotter described in Section 2 [12]. We experiment with

including the output activations of the BLSTM network described

in Section 3 into the first feature function. In one variant this is

extended to a two-dimensional function, giving in an overall feature

dimension of n = 8. In what follows we describe five versions of

the first feature function, denoted φ1A - φ1E .

Feature function φ1A is the same as used in [3] and is based on

the hierarchical phoneme classifier described in [13]. The classifier

outputs a confidence gp(x) that phoneme p is pronounced in x which



is then summed over the whole phoneme sequence to give

φ1A(x̄, p̄, s̄) =

|p̄|
X

i=1

si+1−1
X

t=si

gpi
(xt). (8)

Unlike φ1A, the feature function φ1B incorporates contextual infor-

mation for the computation of the phoneme probabilities by replac-

ing the confidences gp(x) by the BLSTM output activations op(x),

thus

φ1B(x̄, p̄, s̄) =

|p̄|
X

i=1

si+1−1
X

t=si

opi
(xt). (9)

Since the BLSTM outputs tend to produce high-confidence phoneme

probability distribution spikes for the recognized phoneme of a

frame while all other activations are close to zero, it is beneficial

to also include the probability distribution g(x) (which - due to the

hierarchical structure of the classifier - consists of multiple rather

low-confidence spikes) in the first feature function, as in φ1C -

φ1E . Therefore φ1C expands the first feature function to a two-

dimensional function which can be written as

φ1C(x̄, p̄, s̄) =

 

P|p̄|
i=1

Psi+1−1
t=si

gpi
(xt)

P|p̄|
i=1

Psi+1−1
t=si

opi
(xt)

!

. (10)

Alternatively φ1D consists of a linear combination of the distribu-

tions g(x) and o(x) so that

φ1D(x̄, p̄, s̄) =

|p̄|
X

i=1

si+1−1
X

t=si

G · gpi
(xt) + O · opi

(xt), (11)

whereas G and O are constant weighting factors.

The function φ1E takes the maximum of the distributions g(x)
and o(x). This maintains the high-confidence BLSTM output acti-

vations as well as the multiple rather low-confidence hypotheses of

g(x) for p-t coordinates where opi
(xt) is close to zero:

φ1E(x̄, p̄, s̄) =

|p̄|
X

i=1

si+1−1
X

t=si

max
`

gpi
(xt), opi

(xt)
´

. (12)

The remaining feature functions φ2 - φ7 used in this work are the

same as in [3]. φ2 - φ5 measure the Euclidean distance between

feature vectors at both sides of the suggested phoneme boundaries,

assuming that the correct alignment will produce a large sum of dis-

tances, since the distances at the phoneme boundaries are likely to

be high compared to those within a phoneme. Function φ6 scores

the timing sequences based on typical phoneme durations whereas

φ7 consideres the speaking rate implied with the candidate phoneme

alignment, presuming that the speaking rate changes only slowly

over time (see [3] for formulas).

5. EXPERIMENTS AND RESULTS

For the training of our keyword spotter and for the comparison of

the different feature functions φ1A - φ1E we used the TIMIT cor-

pus. The TIMIT training set was divided into five parts whereas

1,500 utterances were used to train the framebased phoneme recog-

nizer of the first feature function. 150 utterances served as training

set for the forced alignment algorithm which we applied to initialize

the weight vector w (for details see [12]). 100 sequences formed the

validation set of the forced aligner, and from the remaining 1,946 ut-

terances two times 1 200 samples were selected for training and two

times 200 utterances for validation of the keyword spotter. From

the TIMIT test set 80 keywords were chosen randomly. For each

keyword we selected at most 20 utterances which contain the key-

word and 20 which do not contain the keyword. The feature vectors

consisted of cepstral mean normalized MFCC features 0 to 12 with

first and second order delta coefficients. As aggressiveness param-

eter C for the update algorithm (see Equation 7) we used C = 1.

For the training of the BLSTM used for feature functions φ1B - φ1E

we chose the same 1,500 utterances as for the phoneme recognizer

of φ1A, however we split them into 1,400 sequences for training and

100 for validation. The BLSTM input layer had a size of 39 (one

for each MFCC feature) and the size of the output layer was also 39

since we used the reduced set of 39 TIMIT phonemes. Both hid-

den LSTM layers contained 100 memory blocks of one cell each.

To improve generalization, zero mean Gaussian noise with standard

deviation 0.6 was added to the inputs during training. We used a

learning rate of 10−5 and a momentum of 0.9.

In [3] the keyword spotter applying feature function φ1A was

shown to outperform a state-of-the-art left-right HMM with 5 emit-

ting states and 40 diagonal Gaussians, consisting of two sub HMM

models, the keyword model and the garbage model (see Figure 1).
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Fig. 1. ROC curve for the discriminative keyword spotter using φ1A

(DISC) and the HMM approach (results taken from [3])

For feature function φ1D we used the parameters G and O that

resulted in the best phoneme recognition rate (G = 1 and O = 1.5).

Table 1 shows the average AUC for the different versions of the fea-

ture function φ1: best performance is achieved when using φ1D or

φ1A, and there is no statistical significant difference between the re-

sult obtained with these two feature functions. Figure 2 illustrates

the ROC curve obtained with φ1D (DISC-BLSTM) and φ1A (DISC)

for the TIMIT experiment. Next, we compared the performance of

version of φ1 AUC

φ1D 0.981

φ1A 0.980

φ1E 0.970

φ1C 0.965

φ1B 0.942

Table 1. AUC for different versions of φ1 (TIMIT experiment)

the keyword spotter using φ1A with the best BLSTM keyword spot-

ter using φ1D on the Belfast Sensitive Artificial Listener database. In

contrast to the TIMIT database which contains read utterances, the

SAL corpus contains spontaneous and emotionally colored speech.

Note that the SAL utterances have a length of up to 15 seconds which

1200 positive and 200 negative utterances
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Fig. 2. ROC curve for the discriminative keyword spotter using φ1A

(DISC) and φ1D (DISC-BLSTM)

is longer than the TIMIT sequences, increasing the probability of

false positives. For a more detailed description of the SAL database

see [8] or [7]. We randomly selected 24 keywords, whereas for each

keyword we chose 20 utterances in which the keyword is not uttered

and up to 20 utterances (depending on how often the keyword oc-

curs in the whole corpus) which include the keyword. On average, a

keyword consisted of 5.4 phonemes. Both the BLSTM network and

the keyword spotter were trained on the TIMIT database without

any further adaptation to the SAL corpus. For this task our BLSTM

approach (using φ1D) was able to outperform the keyword spotter

which does not use long-range dependencies via BLSTM output ac-

tivations. The average AUC was 0.80 for the BLSTM experiment

and 0.68 for the experiment using the original feature function φ1A,

respectively. The ROC for both experiments can be seen in Figure 3.
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Fig. 3. ROC curve for the SAL experiment applying the BLSTM

feature function φ1D (DISC-BLSTM) and the original function φ1A

(DISC)

6. CONCLUSION

This work presented several methods for enhancing the robustness

of a discriminative keyword spotter with a BLSTM recurrent neural

network. The best method used a modified feature function that in-

cluded both the phoneme probability scores obtained from a BLSTM

network and those given by a hierarchical phoneme classifier. For

the TIMIT experiment, both the BLSTM keyword spotter and the

non-enhanced version gave almost perfect detection rates. However

the BLSTM system gave an 18% improvement in average AUC on

the SAL database. This indicates the greater robustness of BLSTM

to spontaneous, emotionally colored speech.

For future experiments we will focus on retraining the BLSTM

keyword spotter on forced alignments from the SAL database, as

a next step towards further improving keyword detection rates for

spontaneous emotional speech.
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