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In this paper, we present a method for clustering geo-referenced data
suitable for applications in spatial data mining, based on the medoid
method. The medoid method is related to k-Means, with the restriction
that cluster representatives be chosen from among the data elements. Al-
though the medoid method in general produces clusters of high quality,
especially in the presence of noise, it is often criticized for the Ω(n2) time
that it requires.

Our method incorporates both proximity and density information to
achieve high-quality clusters in subquadratic time; it does not require
that the user specify the number of clusters in advance. The time bound
is achieved by means of a fast approximation to the medoid objective
function, using Delaunay triangulations to store proximity information.

1 Introduction

The rising popularity of Geographical Information Systems (GIS) has mani-
fested itself in an increased demand for systems that can analyze and visualize
geographical and spatial data [22]. However, the emergence of rapid data collec-
tion using remote sensing has resulted in the accumulation of huge volumes of
spatially-referenced information in electronic and magnetic media. Geographic
data and associated spatial data sets are now being generated faster than they
can be meaningfully analyzed [4]. Spatial data mining [26, 28, 29, 41, 51, 52, 53]
aims at benefiting from this information explosion. It provides automated and
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semi-automated analysis of large volumes of spatial information associated with
a GIS, and the discovery of interesting, implicit knowledge in spatial databases.

Central to spatial data mining is clustering [53, 62], which seeks to identify
subsets of the data having similar characteristics. Clustering has been identified
as one of the fundamental problems in the area of knowledge discovery and data
mining [6, 35], and is of particular importance for spatial data sets. Clustering
allows for generalization of the spatial component of the data associated with
a GIS [53, 55, 62], and as such is complementary to the techniques for gener-
alization used in data mining in relational databases [11]. Clustering of large
geo-referenced data sets has many applications [53], and has recently attracted
the attention of many researchers [25, 27, 29, 62, 88, 93, 94]. Some geographical
data mining systems are based entirely on clustering [63].

Here, we consider the problem of knowledge discovery in spatial databases,
those typically associated with GIS, by focusing on the clustering of points
according to their spatial dimensions. Most approaches to knowledge discovery
with geo-referenced data sets have proposed that the process be triggered by
a user query [53, 55, 62, 88], in accordance with the requirements of on-line
analytical processing. This essentially means that clustering would be performed
on-line as new sectors, projections and selections of the data are produced.
Clustering algorithms for spatial data mining must operate on large volumes
of data, and for this reason cannot afford to spend too much time on finding
clusterings of high quality. Algorithms must be especially fast if the knowledge
discovery process is to be an exploratory type of analysis [39, 65], where many
potential hypotheses must be constructed and tested.

Exploratory data analysis favors automatic knowledge discovery that allows
the “data to speak for itself”. Little human participation is involved, minimising
the risk that the domain expert will knowingly or unknowingly bias the study
to support a preconceived hypothesis [66]. However, exploratory data analysis
methods tend to be resource intensive [67]. Nevertheless, the database com-
munity seems to favor semi-automatic knowledge discovery, in what has been
named on-line analytical mining [40], where the system receives a reduced hy-
pothesis space from the human user in the form of a query, or where inductive
bias is to come from the user in selecting parameters from a visualization [3].
Both approaches stand to benefit from faster and more robust spatial clustering
algorithms.

In spatial settings, clustering criteria almost invariably make use of some
notion of proximity, usually based on the Euclidean metric, as it captures the
essence of spatial autocorrelation and spatial association [39]. Bottom-up ap-
proaches, in which clusters are formed by agglomeration of items that are ‘close’
together, are in accordance with the view that in geographical application areas,
nearby items have more influence upon each other [91, Chapter 11].

However, top-down approaches to clustering are also of interest [91, Chap-
ter 10]. Instead of composing groups from elements sharing common charac-
teristics, the top-down perspective is one that defines clustering as partitioning
a heterogeneous data set into smaller, more homogeneous groups [6, 35]. This
approach amounts to identifying regions of elements that are very different from
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others in the set. The classical example of this is the k-Means heuristic for clus-
tering. k-Means attempt to partition the data by assigning each data point
to a representative point. The partition optimizes a statistical homogeneity
criterion — namely, the total expected squared dissimilarity is minimized.

In this paper we present a medoid -based clustering method that incorporates
both proximity and density information. Medoid-based clustering [29, 30, 50,
62] is similar to mean-based clustering, but it allows only data points to be
chosen as representatives [42]. The use of medoids for clustering results in
robustness in the statistical sense [77], as outliers in medoid clustering have
less impact on indicators of central tendency than in the optimization problem
that is heuristically solved by k-Means. This statistical robustness is critically
exploited, for example, in one-dimensional (greyscale) data for image analysis
in medical domains [36]. There are also fundamental modeling reasons to prefer
medoids over means [89].

The first paper to introduce clustering for spatial data mining [62] used the
medoid-based approach. Unfortunately, this paper used a random hill-climber
strategy which produced poor partitions [30, 59]. Since then, medoid-based
methods have been introduced which generally produce clusters of higher quality
than k-Means and that are robust to outliers, robust to noise and work well
with random initialization [30]. (By robust to outliers and noise, we mean
the statistical notion of a method working well even in the presence of spurious
data. A second form of robustness is in the numerical analysis sense, in which an
algorithm is said to be robust if it is not sensitive to perturbations in the inputs
or initial conditions. This second type of robustness is particularly important
in those situations in which privacy considerations force researchers to slightly
modify the data points [78], or when the data is only a close approximation to
the ideal values which one wishes to study.)

Nevertheless, there are two main criticisms of medoid-based clustering: if
the number n of data points is large, it typically requires Θ(n2) time for some
hill-climbing iterations, whereas k-Means requires only O(n) time per iteration;
also, as with k-Means, the number of clusters k must be specified in advance.
Recently, more efficient and effective hill-climbers have been developed for the
medoids approach in the context of spatial data mining [29]. The strategies
presented in this paper are further improvements upon these methods.

The medoid-based clustering algorithm that we present requires only ex-
pected O(n log n) time per iteration, and allows for the automatic determination
of the number of clusters. Moreover, we achieve this by incorporating proximity
information using the Voronoi diagram [69] of the data points and its dual, the
Delaunay triangulation. The end result is a partitioning method for clustering
that incorporates density and proximity information as in the agglomerative ap-
proaches. To our knowledge, this is the first time the bottom-up and top-down
philosophies have been combined in this way for clustering. The algorithm is
competitive with recently developed proximity methods for clustering large data
sets.

The organization of this paper is as follows. Section 2 is a discussion of
the advantages and disadvantages of k-Means, leading into the presentation of
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the medoid-based approach in Section 3. Section 4 details the use of Delaunay
triangulations in developing a fast algorithm. Also discussed in this section
is the potential of using the Delaunay triangulation to produce a high-quality
initial clustering, and for automatic determination of the number of clusters.
In Section 5 our method is compared to several others. Section 6 presents
an experimental illustration of the robustness of medoid based clustering. We
conclude with some final remarks in Section 7.

2 The k-Means approach

A distinct characteristic of clustering for data mining applications is the huge
size of the data files involved. While the standard hierarchical clustering meth-
ods can handle data with numeric and categorical values using complex simi-
larity measures [43, 48], their O(n2) computational cost makes most of them
unacceptable for clustering large data sets [60]. This has prompted data mining
researchers [9, 46, 47] to adapt k-Means [56] (or Basic Isodata [21]) for efficient
processing of large sets with both numeric and categorical attributes.

2.1 The optimization problem

By iteratively improving an initial clustering (perhaps a random clustering), the
k-Means method produces an approximate solution to the following optimiza-
tion problem:

minimize M(C) =
n−1∑
i=0

wi d
2(si, rep[si, C]), (1)

where

1. S = {s0, s1, s2, . . . , sn−1} is a set of n data items in the m-dimensional
real space <m;

2. the weight wu may reflect relevance of the observation su, and d(~x, ~y) =
(
∑m

j=1 |xj − yj |2)1/2 is the Euclidean metric;

3. C = {c0, c1, . . . , ck−1} is a set of k centers, or representative points of <m;
and

4. rep[si, C] is the closest point in C to si; that is,

d(si, rep[si, C]) = min
j∈{0,...,k−1}

d(si, cj).

Here we focus on the case m = 2 (the points si are two-dimensional vectors).
The partition into clusters is defined by assigning each si to its representative
rep[si, C]. Those data items assigned to the same representative are deemed to
be in the same cluster; thus, the k centers encode the partition of the data.

The basic k-Means heuristic is a simple one. For each cluster, a new repre-
sentative is computed by taking a weighted average of the cluster points. Next,
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using the new representatives, a new clustering is obtained. These steps are
repeated until an iteration occurs in which the clustering does not change.

There are a number of variants of k-Means. These may

• use random or other methods to obtain an initial partition;

• recompute the clustering each time a new representative is computed
(the so-called ‘combinatorial’ reclassification [2]), rather than waiting un-
til the new representatives of all clusters have been determined (‘non-
combinatorial’ reclassification);

• make use of other classification methods.

One variant of k-Means which uses random initialization and non-combinatorial
reclassification is Basic Isodata [21]. According to Aldenderfer and Blash-
field [2], Basic Isodata was the procedure inside the software package CLUS-
TAN [92]. Combinatorial reclassification has been favored in Data Mining ap-
plications [46, 47].

A third popular variant of k-Means is a combinatorial version in which the
update of a representative takes place only if that update would result in a
decrease in M(C). This variant goes by several names: hill-climber [2], basic
minimum squared error [21], and cluster-swapping [80]. Other variants of k-
Means also appear in the literature of vector quantization [13].

2.2 An interpretation of k-Means

All variants of k-Means can be considered a direct simplification of Expectation
Maximization (EM), in that they iteratively perform a simplified expectation
step and a maximization step. The minimization step of k-Means is the max-
imization step of EM, when EM is dealing with a mixture of k multivarite
normal distributions sharing a known common covariance matrix Σ and the
only unknown parameters are the mean vectors ~µj of the components. How-
ever, the expectation step is replaced by a classification step that also has some
origins in maximum likehood estimation. This classification step simply assigns
each observation si to the nearest representative cj . The vector cj can serve
as an estimate for ~µj . The underlying intuition follows from the observation
that the multivariate normal distribution N~µj ,Σ(~x) is large when ‖~x − ~µj‖2Σ−1

is small, because the bell-shape of the normal distribution has a peak at ~µj

with iso-lines (level contours) defined by the covariance matrix Σ. Thus k-
Means can be viewed as an approximation of the squared Mahalanobis dis-
tance ‖~x− ~µj‖2Σ−1 = (~x− ~µj)tΣ−1(~x− ~µj) with the squared Euclidean distance
‖~x − ~µj‖2I = (~x − ~µj)t(~x − ~µj), which is easier to compute. The dependence
on the squared Euclidean distance (or gravity model) [34] and not simply the
Euclidean distance is a source of concern when using k-Means for geographical
data [59].
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The criterion in (1) is in fact a special case of several based on the total
dispersion matrix or total scatter matrix

T =
n−1∑
i=0

(si − µ̄)(si − µ̄)t,

where µ̄ is the total observed mean vector; that is, µ̄ =
∑n−1

i=0 si/n. The cri-
teria occur often in statistics in multivariate analysis of variance, and their
motivation derives from the corresponding statistical theory [39]. The entries
of T are the sum of squares of cross products determined by the data, and as
such do not vary. However, if P is a partition of the data (a clustering), then
T = W (P ) +B(P ) where W (P ) is the pooled ‘within-group’ dispersion matrix
and B(P ) is the ‘between-group’ dispersion matrix. Methods more general than
k-Means attempt to find a partition that minimizes the size of W (P ) (implic-
itly maximizing the size of B(P )). The traditional way to measure size are the
trace and the determinant of these matrices. The optimization problem of (1)
corresponds to minimizing the trace of W (P ). This shows that k-Means favors
hyperspherical clusters and that it is sensitive to scaling or similar transforma-
tions [2, 21].

2.3 Advantages and disadvantages of k-Means

The attractiveness of k-Means is due to its its computational efficiency. It
requires only O(tmkn) time, where t is the number of iterations over the entire
data set, m is the dimension, k is the number of clusters, and n is the number
of data items. As t,m, k � n for data mining applications, in terms of n one
may simply describe k-Means as requiring O(n) time.

Despite its efficiency, k-Means variants have other drawbacks well-documented
in the literature:

1. From an optimization point of view, it often converges to a local optimum
of poor quality.

2. Because k central vectors are means of cluster points, they are commonly
adopted as representative of the data points of the cluster. However, it is
possible for the average of the coordinates to have no valid interpretation;
for example, the average of the coordinates of a group of schools may
indicate that the representative school lies in the middle of a lake.

3. k-Means is very sensitive to the presence of noise and outliers, as well as
to the initial random clustering [50, page 277]. In particular, much effort
has been focused on the sensitivity of k-Means and EM on the set of
representatives used to initialize the search [2, 10, 33].

4. The method is statistically biased. For parametric statisticians, this im-
plies that even if provided with the exact number of distributions in a uni-
form family mixture (for example, all multivariate normal distributions),
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and large volumes of data, k-Means converges to the wrong parameter
values. This has favored other statistical methods such as EM [17]. k-
Means is also statistically inconsistent. This has favored Bayesian and
Minimum Message Length (MML) methods [20, 72, 87] (in fact, Wal-
lace’s MML method pioneers these type of alternatives [85]). For an ac-
count of these methods and their relation to Minimum Description Length
(MDL) [71], see the recent paper of Wallace and Dowe [86]. However,
these alternative methods require the user to define a probabilistic model
of the classes, and their high sensitivity to the initial random solution has
prompted researchers to incorporate initialization mechanisms [33]. Some
need to approximately solve NP-hard problems as well, or use dynamic
programing algorithms that require Ω(n2) time.

3 The k-Medoids problem

Our approach is based on the so called k-Medoids problem [50, 62]. This
attempts to solve a variant of the problem shown in (1), with the added restric-
tion that C ⊂ S (that is, the representatives must be data points), and with no
squaring of the the Euclidean distances [50]. More precisely, the problem is:

minimize M(C) =
n−1∑
i=0

wi · d(si, rep[si, C]), (2)

where C ⊂ S. By removing the square we obtain what statisticians refer to
as ‘least absolute values regression’ [77]. The consideration of absolute error
is mathematically more difficult and computationally less tractable than the
squared error of (1). However, it is statistically more robust [50] and preferred
in many geographical situations [89]. Without the restriction C ⊂ S, the case
k = 1 constitutes the famous Fermat-Weber point problem [34, 57], for which
no exact solution is known.

With the restriction C ⊂ S, the optimization problem (2) is also well known
to the operations research community as the discrete p-median problem [1]. (the
operations research literature uses p instead of k for the number of groups).
However, the p-median problem is known to be NP-hard. It has a zero-one
integer programming formulation [70] with n2 variables and n2 + 1 constraints,
and many heuristic techniques have been developed to for this problem [18,
73, 74, 75, 76, 84]. Lagrangian relaxation has been successfully used for small
problems in facility location [16, 61, 90]. While facility location problems may
involve perhaps hundreds of points, the p-median problem cannot be expected
to be solved optimally for the large number of observations (several thousand
or more) that knowledge discovery applications typically involve.

For finding high quality approximate solutions, hill-climbing variations of an
interchange heuristic [18, 38, 58, 84] are considered very effective [29, 59, 62].
Other alternatives have been also explored: tabu search [73], genetic algo-
rithms [45, 7, 8, 31, 32], and simulated annealing [58]. The trade-off of effort
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versus quality tends to favor hill-climbers over these methods. However, the
alternatives occasionally identify solutions which are closer to optimality.

Alternatively, the optimization problem (2) may be amenable to polynomial
approximation schemes [5]. These randomized algorithms produce with very
high probability a solution that is within a constant factor c from optimality.
For example, for the case m = 2 there exists an approximation scheme that for
any ε > 0 produces a solution C with cost M(C) at most 1 + 1/ε times the
optimum in O(nO(ε+1)) time [5]. While for ε = 2 this result seems less effective
than the success observed in practice by interchange hill-climbing heuristics, it
does offer a guarantee on the quality of the solution.

A heuristic proposed in 1968 by Teitz and Bart [84] is a hill-climber that is
regarded as the best known benchmark [44]. It has been remarkably successful
in finding local optima of high quality in applications to facility location prob-
lems [58, 73], and with some improvements, very accurate for the clustering of
large sets of low-dimensional spatial data [29], even in the presence of noise or
outliers. We will refer to this heuristic as TB.

The hill-climbing nature of TB local search is clearly revealed if we structure
the search space of the k-Medoids problem as a graph with

(
n
k

)
nodes. The

nodes of this graph are all sets C ⊂ S with |C| = k, representing a choice of k
medoids. The edges of the graph are defined as follows: two nodes C and C ′

are adjacent if and only if |C ∩C ′| = k − 1; that is, if they differ in exactly one
point.

As every node in the graph represents a feasible solution, we seek to find the
node in the graph that minimizes M(C) in (2). The hill-climber interchange
heuristic starts at some initial solution C0, and explores the graph by moving
from the current node to one of its neighbors. Letting Ct be the current node
at hill-climbing step t, the heuristic examines a set N(Ct) of neighboring nodes
of Ct, and considers the best alternative to Ct in this neighborhood: the node
M(Cj) = minC∈N(Ct)M(C). Provided that the new node Cj is an improvement
over the old (that is, if M(Cj) < M(Ct)), Cj becomes the new current node
Ct+1 for time step t+ 1. When no better solution is found in the neighborhood
N(Ct), the search halts.

The neighborhood N(Ct) is explored in an order influenced by previous fail-
ures in the exploration. When searching for a profitable interchange, TB consid-
ers the points in turn, according to a fixed circular ordering (s0s1, s2, . . . , sn−1).
When the turn for point si arrives, TB verifies whether si already belongs to the
set of representatives. If so, the point is ignored, and the turn passes to the next
point in the circular list, si+1 (or s0 if i = n− 1). If si is not a representative,
then it is considered for inclusion in the set. The most advantageous interchange
Cj of non-representative si and representative sj is determined, over all possible
choices of sj ∈ Ct. Only when Cj = {sj} ∪ Ct \ {si} is better than Ct does
the set Cj become the new current solution Ct+1. Then, the turn passes to the
next point in the circular list. When a full cycle through the set of points yields
no improvement, a local optimum has been reached, and the search halts.

We now detail the time and space complexity of TB (refer to Figure 1).
It is not hard to see that the algorithm requires O(kn) space. Clearly, the
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1 TB(S, k)
2 begin
3 i← 0; t← 0; last change← i;
4 repeat
5 if si 6∈ Ct = {st0 , st1 , st2 , . . . stk−1} then
6 begin
7 C ′ ← C

tj

i that minimizes M(Ctj

i ) for j = 0, . . . , k−1,
where Ctj

i = Ct ∪ {stj
} \ {si};

8 if M(C ′) < M(Ct) then /* a swap is found */
9 begin
10 Ct+1 ← C ′; t++; last change← i;
11 end 12 i← (i+ 1) mod n;
13 until (i = last change);
14 end

Figure 1: Pseudocode for the TB heuristic.

time required to compute M(C ′) on an adjacent node C ′ of C is O(n log k)
time. Since C ′ and C differ on only one point, with appropriate structures
for point location, O(n log k) steps are sufficient to find rep[s, C ′] for all s ∈ S
(rep[s, C ′] is either unchanged or the new representative si). O(n) time suffices
to compute M(C ′) as defined in (2). Therefore, the time required in Line 7 to
test representatives of Ct for replacement by si is O(nk log k) time.

Let w be the number of iterations in the repeat loop. By assigning a flag to
each element of S the test in Line 5 can be done in O(1) time. The total time
of the algorithm is therefore O(nkw log k) time.

The TB heuristic forbids the reconsideration of si for inclusion until all other
non-medoid points have been considered as well. The heuristic can be therefore
be regarded as a local variant of tabu search [37]. TB’s careful design balances
the need to explore a variety of possible interchanges against the ‘greedy’ desire
to improve the solution as quickly as possible. Because TB organizes its search
in this way, it exhibits better behavior not shared by other hill-climbers [29].

One strength of the TB heuristic is that although w = O(tn) in the worst
case, the number of evaluations of M per improvement of C is typically constant
[29, 84]. Usually only a constant number of neighbors of Ct are examined for the
next interchange. However, in order to terminate, TB requires a complete pass
through the data set in which each potential exchange is shown not to improve
the value of M(C). Strategies to detect that the last hill-climbing step has been
reached have been proposed, but they reduce the time requirements only by a
constant factor [29]. Although the TB heuristic is faster than all other known
hill-climbers, it nevertheless requires at least Ω(n2) time to approximately solve
the k-Medoids problem with n data points.



Robust distance-based clustering 10

4 Incorporating proximity and improving effi-
ciency

In this section, we present a variant of the k-Medoids approach that requires
subquadratic time to terminate. The fundamental idea is that the clustering
measure M(C) for k-Medoids should be taken as a guide to clustering only
— its optimization is only the means towards that goal. Although evaluating
M(C) exactly requires O(nk log k) time for an arbitrary choice of C, we give
a method for approximating M(C) in O(uk2 log k) time, after a preprocessing
time in O(n log n+ un log u).

4.1 Fast approximation of the clustering measure

How can M(C) be approximated in time sublinear in n? The idea is to consider
only the most important contributions to the sum, according to what M(C) is
meant to measure about a clustering.

The minimization of M(C) can be viewed as an attempt to minimize the
expected distance between a point and its representative. Minimizing M(C) is
equivalent to minimizing M(C)

W , where W =
∑n−1

i=0 wi is the sum of all weights.
Note also that if Kj is the cluster represented by a medoid rep[Kj ], then

M(C)
W

=
n−1∑
i=0

wi

W
d(si, rep[si, C])

=
k−1∑
j=0

∑
si∈Kj

wi

W
d(si, rep[Kj ]).

Here, M(C)
W consists of k terms, each measuring the expected discrepancy (lack

of homogeneity) within a cluster. For each cluster, M(C) incorporates the
weighted discrepancies between the points in the cluster and their representative.

The purpose of clustering is to identify subsets, each of whose points are
highly similar to one another. However, the greatest individual contributions
to that portion of M(C) associated with a cluster Kj are made by outliers
assigned to Kj , points which exhibit the least similarities to other points, and
which often should not be considered to be part of any cluster. Moreover, in
the early approximations explored by TB, the set Ct of representatives exhibit
more outliers (inappropriate assignments of points to representatives) for those
representatives that are not in areas of high density. That is, in the early stages,
there are poor representatives in Ct which can be detected because their nearest
neighbors are far.

To eliminate the inappropriate contributions of outliers towards the expected
discrepancy within clusters, the strategy we adopt is to estimate the expected
discrepancy amongst non-outlier points only. To do this, we limit the contri-
butions to M(C) to those points which lie amongst the closest to the medoids
of C. Instead of finding a medoid set which best represents the entire set of
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points S, we propose that a medoid set be found which best represents the set
of points in its own vicinity: specifically, the u nearest neighbors of each of the
representatives in C.

In order to be able to efficiently determine a set of uk points in the vicinity
of a set Ct of medoids, we preprocess the full set of n points as follows:

1. For each point si ∈ S, we find its u nearest neighbors.

2. Using this information, we construct the nearest-neighbor directed graph [24]
G = (S,E) of regular out-degree u and with the set of n points s0, . . . , sn−1

as nodes. The edge set E consists of those pairs of nodes (si, sj) for which
sj is one of the u nearest neighbors of si. The adjacency representation
of this regular graph has O(un) size.

During the hill-climbing process, whenever TB evaluates a candidate set
Ct of representatives, only uk non-representatives will be examined. First,
only those points that are adjacent in the nearest neighbor digraph to some
representative cj ∈ Ct are ordinarily allowed to contribute to the evaluation
of M(Ct). We call this set P (C) of points the party of C. To be precise,
P (C) = {si ∈ S|(cj , si) ∈ E and cj ∈ C}. However, since two medoids in Ct

may share neighbors in the nearest neighbor digraph, the situation may arise
where fewer than uk points are evaluated, (i.e. ‖P (Ct)‖ < uk). In order for
the hill-climbing process not to be attracted to medoid sets where fewer than
uk points are evaluated, two strategies can be applied to pad the number of
evaluations out to exactly uk.

The first strategy fills the quota of uk points by randomly selecting from
among the remaining points. The second strategy fills the quota from among
the points of the proximity graph by repeatedly adding the contribution of
the point which is farthest from its representative medoid, as many times as
necessary to bring the total number of contributions to M(C) up to exactly
uk. More precisely, the point chosen is the one which maximizes the following
expression:

max
{j|0≤j≤k−1 & cj∈Ct}

max
{si∈P (Ct)| rep[Ct,si]=cj}

d(si, cj).

In our implementations, we have opted for the latter strategy to assure conver-
gence. Unlike the former strategy, the latter is deterministic, and preserves the
hill-climbing nature of TB.

Using the proximity digraph in this way allows us to obtain an approximation
M ′(C) to M(C) in O(uk) time. Note that our approach does not restrict the
candidates for a swap in the search by TB, but rather it achieves its time
savings by effectively simplifying the graph for the p-median problem that TB
must solve. Restricting swaps in TB on the basis of their distance is common
in the statistical literature, but has been shown to result in solutions of poor
quality [29, 83].

We complete the description of our approach with the details of the prepro-
cessing we proprose for computing G.
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4.2 Delaunay triangulations

Given a set of data points S = {s0, . . . , sn−1} in the plane, the Voronoi region
of si ∈ S is the locus of points (not necessarily data points) which have si

as a nearest neighbor; that is, {x ∈ <2| ∀ j 6= i, d(x, si) ≤ d(x, sj)}. Taken
together, the n Voronoi regions of S form the Voronoi diagram of S (also called
the Dirichlet tessellation or the proximity map). The regions are (possibly
unbounded) convex polygons, and their interiors are disjoint.

The Delaunay triangulation D(S) of S is a planar graph embedding defined
as follows: the nodes of D(S) consist of the data points of S, and two nodes si, sj

are joined by an edge if the boundaries of the corresponding Voronoi regions
share a line segment.

Delaunay triangulations capture in a very compact form the proximity rela-
tionships among the points of S. They have many useful properties, the most
relevant to our application being the following:

1. If si is the nearest neighbor of sj from among the data points of S, then
(si, sj) is an edge in D(S). That is, the 1-nearest neighbor digraph is a
subgraph of the Delaunay triangulation.

2. The number of edges in D(S) is at most 3n− 6.

3. The average number of neighbors of a site si in D(S) is less than 6.

4. The Delaunay triangulation is the most well-proportioned over all trian-
gulations of S, in that the size of the minimum angle over all its triangles
is the maximum possible.

5. If si, sj , and sj form a triangle in D(S), then the interior of this triangle
contains no other point of S.

6. The triangulation D(S) can be robustly computed in O(n log n) time.

7. The minimum spanning tree is a subgraph of the Delaunay triangulation,
and in fact, a single-linkage clustering (or dendrogram) can be found in
O(n log n) time from D(S).

8. The u nearest neighbors of a point si can be found in O(u log u) expected
time from D(S) [19]. The algorithm is simple and practical. Place the
Delaunay neighbors of si ∈ S in a priority queue with the Euclidean
distance to si as its key. Repeatedly extract the item with smallest key
and place its Delaunay neighbors not already examined in the priority
queue (again, the key is the Euclidean distance to si). When u items have
been extracted, then terminate: these are the u-nearest neighbors.

Figure 2 shows a set of 100 data points and its corresponding Delaunay tri-
angulation. More information regarding Delaunay triangulations and Voronoi
diagrams can be found in [64, 68]. Figure 3 shows the clustering obtained with
our algorithm on the data shown in Figure 2, using k = 10 and u = 6. The
positions of the 10 medoids are indicated with the � symbol.
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Figure 2: A data set and its Delaunay triangulation.
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Figure 3: Clustering produced using a proximity graph derived from the Delau-
nay triangulation.

The total time required to find u neighbors for all si is in O(un log u).
Since Θ(n log n) time is required for computing a Delaunay triangulation,

setting u = Θ( log n
log log n ) allows the nearest neighbor graph G to be constructed

in O(n log n) total time. Thereafter, each evaluation of M(C) would take
Θ(k2 log k log n

log log n ) time. The TB heuristic would then requireO(n log n+ tk2n log k log n
log log n )

time, where t is the number of hill-climbing improvements. Keeping in mind
that k and t� n, if one assumes k and t to be constant, the total time bound
simplifies to O(n log n).

Of course, the user is free to choose larger or smaller values of u. The
larger the value of u, the closer the performance becomes to that of the original
TB heuristic, and the more time taken. Small choices of u result in very fast
execution times, at the cost of a degradation in quality. In practice, the user
could base the choice of u according to a time budget.

4.3 Initialization using the Delaunay triangulation

As a result of the experiments described in Section 6, we discovered that the
degradation in quality for small choices of u is most evident in the increased
sensitivity of the method to the choice of initial set of representatives. One
way of dealing with this increased sensitivity is to provide the heuristic with an
initial set which is known to be of high quality. For the heuristic to be effective,
this initial set must itself be efficiently computed.

The Delaunay triangulation used in the preprocessing of the u-nearest-neighbour
graph G can be of use here as well. Efficient methods based on the Delaunay tri-
angulation have recently been proposed for non-representative-based clustering
in space [23, 49]. Given a threshold value δ > 0, all edges of the triangulation
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with length greater than δ are deleted. If δ is sufficiently large, the remaining
edges form a disconnected graph. If a connected component contains at least a
minimum number of nodes ν (say, 2 or 3), it can be interpreted as a cluster.

Given a desired value of k, it is possible to determine the threshold value δ
which gives rise to k clusters. This can be done as follows:

1. Initialize a set union-find structure, with each data point in its own set.

2. Sort the edges of the Delaunay triangulation in increasing order of length.

3. For each edge in the list, merge the sets containing its endpoints. With
every merge, keep track of the number of sets having at least ν nodes.

4. Stop when the number of such sets reaches k.

From each of the k clusters produced, one point may be selected arbitrarily as
an initial representative for the modified TB heuristic. The method is efficient,
as the time complexity required is dominated by the cost of constructing the
Delaunay triangulation, namely O(n log n).

The technique described above is precisely that used to produce a form of
proximity tree called a dendrogram [54, 91], which has already seen much use in
geographical data analysis. Initially, each data point is associated with its own
leaf, and each leaf constitutes a cluster with only one member. Iteratively, the
pair of nodes representing the two closest clusters are joined under a new parent
node, and their data points together form a new cluster associated with that
parent node. The two clusters are deleted from the pool of available clusters,
and the new merged cluster is added to the pool. The process terminates when
only one cluster remains.

The technique is also essentially the same as the so-called Kruskal algorithm
for constructing a Minimum Spanning Tree (MST) [15] — the MST is known
to be a subgraph of the Delaunay triangulation, and can even be obtained from
the triangulation in O(n) time [69]. The same connected components can be
obtained simply by deleting the largest edges of the MST until the desired
number of connected components is obtained.

The initial clustering produced using this technique is more than just a
convenient byproduct of the use of Delaunay triangulations or dendrograms;
although non-representative-based, it is still possible to say something about
the quality of the clustering. Let K = {K1,K2, . . . ,Kk(δ)} be the clustering
resulting from any choice of threshold value δ. Let δb be the minimum distance
between two clusters; that is, δb = mini{d(si, sj)| si ∈ Ki&sj 6∈ Kj}. Also,
for cluster Ki, consider the partition of Ki which would result in the greatest
separation between elements of the two partitions. Let δw be the maximum
such separation over all clusters. It is easy to see that δw ≤ δ < δb. Informally
speaking, no gap within a cluster can be greater than the smallest distance
between clusters.

Conversely, a suggestion for the number of clusters k can be obtained through
an appropriate choice of δ. A profile of threshold values versus number of edges
retained can be generated in O(n log n) time by sorting the edges according to
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Figure 4: Distribution of edge lengths for the data in Figure 2.

their lengths (see Figure 4 for the profile of the data shown in Figure 2). If
clusters are indeed present, the profile would initially rise at a gentle slope to a
point or region of inflection, and more steeply thereafter. Picking δ just below
the point of inflection would eliminate all of the steep part of the curve, leaving
most of the edges joining elements within a cluster. This value of δ could then
be used to determine k.

Picking a value of δ significantly below the inflection region can result in the
more loosely-associated clusters breaking apart. However, in those situations
where the clusters are less fragile, even these low values of δ would be suitable.

5 Comparison and Discussion

We now compare our approach with recent approaches for clustering and for
determining an appropriate number of groups.

5.1 On finding clusters in subquadratic time

The first agglomerative algorithm to require Θ(n log n) expected time is DB-
SCAN [27]. The algorithm is regulated by two parameters, which specify the
density of the clusters to be retrieved. The algorithm places the data points
in an R∗-tree, and uses the tree to perform u-nearest-neighbor queries (usually
u = 4) to achieve the claimed performance in an amortized sense. An extra
Θ(n log n) expected time is taken in helping the users determine the density pa-
rameters, by sorting all distances between a point and its 4-nearest neighbors,
and finding a valley in the distribution of these distances.

DBSCAN presents the user with the profile of distances to 4-nearest neigh-
bors, ranked from farthest to nearest; for the data of Figure 2, this is shown in
Figure 5 (a), with an enlarged portion in Figure 5 (b). It is up to the user to de-
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Figure 5: Profile produced by DBSCAN to assist user in selecting density
parameter.

cide where in the profile the valley begins. Selecting a density of approximately
0.05 results in the points marked 2 in Figure 5 (c) being identified as outliers,
and filtered out. With the remaining data, DBSCAN then finds a partition
into 9 clusters equivalent to the grouping in Figure 3.

It has been found [88, 93] that determining the parameters of DBSCAN is
difficult for large spatial databases. An alternative that does not require input
parameters is DBCLASD [93]. Like DBSCAN, DBCLASD can find clusters
of arbitrary shape, not necessarily convex; however, DBCLASD is significantly
slower than DBSCAN.

The clusters produced by DBSCAN and our approach seem to be of equal
quality (see Section 6 for an example). Our approach shares with DBSCAN
the interesting feature that it does not require any assumptions or declarations
concerning the distribution of the data. We have also found that the implemen-
tations of both approaches require roughly the same computational time, once
the parameters of DBSCAN have been discovered. Otherwise, DBSCAN must
continually ask for assistance from the user.

Another type of clustering method is based on imposing a grid on the data
points [14, 82, 81, 88, 94]. The idea is a natural one: when a grid is imposed
on the data, those grid boxes containing a large number of data points would
indicate good candidates for clusters. The difficulty for the user is in determining
the granularity of the grid. Maximum entropy discretization [14] allows for the
automatic determination of the grid granularity, but the size of the grid generally
grows quadratically in the number of data points. Later, the BIRCH method
saw the introduction of a hierarchical structure for the economical storage of
grid information, called a Clustering Feature Tree (CF-Tree) [94].
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The recent STING method [88] combines aspects of these two approaches.
STING constructs a hierarchical data structure whose root covers the region
of analysis. In a fashion similar to that of a quadtree [79], each region has 4
children representing 4 sub-regions. However, in STING, all leaves are at equal
depth in the structure, and all leaves represent areas of equal size in the data
domain. For each node ν, statistical information is computed — namely, the
total number tν of points that correspond to the area covered by the node ν,
the center ~cν of mass (average), the standard deviation ~σν , the largest values
~maxν , and so on. The structure is built by finding information at the leaves and

propagating it to the parents according to arithmetic formulae; for example, the
total number of points under a parent node is obtaining by summing the total
number of points under each of its children.

STING’s data structure is similar to that of a multidimensional database,
and thus can be queried by OLAP users using an SQL-like language. When
used for clustering, the query proceeds from the root down, using information
about the distribution to eliminate branches from consideration. As only those
leaves that are reached are relevant, the data points under these leaves can be
agglomerated. It is claimed that once the search structure is in place, the time
taken by STING to produce a clustering will be sublinear. However, as we
indicated earlier, determining the depth of the structure is a challenge.

STING is a statistical parametric method, and as such can only be used in
limited applications. It assumes the data is a mixture model and works best
with knowledge of the distributions involved. However, under these conditions,
methods such as EM [17], AUTOCLASS [12], MML [87] and Gibb’s sampling
are perhaps more effective for clustering. Recall that both DBSCAN and our
approach are non-parametric — we are not learning parameters of a probability
distribution nor do we assume their existence.

A second problem with STING is that the grid to be imposed on the data
grows very rapidly with the number of dimensions. Thus, with bidimensional
points, if the grid is divided into s slabs in each dimension, the time and space
requirements of the algorithm are at least Ω(s2). This limits the number of
slabs to O(n1/2), if linear time and storage is desired. This in turn imposes
limitations upon the granularity of the cells in the grid. Figure 6 illustrates the
bottom level grid constructed using STING on the data set of Figure 2. Our
implementation of STING uses O(n) space, as it limits the number of cells at
the bottom level to g = 4c, where c is the first integer such that 4c > n. Figure 6
also shows the value of the count statistic at all levels of the STING hierarchical
data structure. The bottom level cells have the total number of points in the
cell. Each parent cell contains the sum of its 4 offspring.

The construction of the hierarchical data structure requires Ω(n log n) time
if there are Ω(n) leaves, as the construction of any tree by iterative insertion
requires time proportional to the external path length of the tree. If a lin-
earization of space is used, then the arithmetic for summation from offspring to
parents demands operations on bit patterns of the indices of slabs. This costs
Ω(log n) per point. The STING construction runs in linear time if the depth is
of the structure is restricted to 4 levels [88].
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Figure 6: The bottom level grid constructed by STING, and the hierarchy of
counts per region.

Figure 7: Two-color map produced by STING.

STING finds clusters that are restricted to orthogonal polygons, and its
result is a two-color map where disjoint regions are assumed to indicate different
clusters. For example, Figure 7 is the result of clustering with STING the data
of Figure 2. The results produced by STING are maps of cells in the bottom
level grid. The cells are colored black, if in a cluster, or white, if not in a cluster.
A statistical test on density is made on bottom level cells to decide whether or
not they belong to a cluster. In our example, only cells with a count of 4 or
larger are accepted as belonging to a cluster. This is justified by the observation
that when n = 100 points are distributed among the 256 cells independently
and uniformly, the probability that the count of a particular cell equaling 3 is
0.816, while the probability that the count equals 4 is 0.124. Thus, if a cells
with a count of 3 were to be accepted, there would be an approximately 82%
chance of declaring a cell to be a cluster when it actually is filled with random
data. Accepting cells with a count of 4 or larger implies, under this model, a
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risk of less than 1 chance in 8 of accepting a random pattern as a group.
In our sample data, only 6 groups are found by STING, although the data

set has at least 8 obvious clusters. Many points that are clearly members of
clusters are not labeled as such, as they were found themselves in cells with too
low a count. This poor clustering reflects many of the problems with this type of
statistical approach when attempting to keep the algorithmic time requirements
close to O(n log n). First, the results are not robust with respect to the grid
granularity and to the positions of the slabs. The same fine grid, translated by
a small amount, may give very different results. Second, the statistical model
or assumed probability distributions may not be accurate for the data. Other
tests may accept or reject more cells. In our sample data, a cell with a count of
1 besides a cell with a count of 9 should probably be accepted. Incorporating
such robust statistical tests that consider spatial autocorrelation would be very
useful; however, they would have a serious impact on performance.

STING seems very well suited for an OLAP environment and SQL-type
queries specifying several characteristics on the attributes of geo-referenced
records. In such settings, an indexing hierarchical structure such as STING’s
allows for the elimination of many sub-nodes on the basis of attributes values,
thereby arriving at a relatively small number of cells at the bottom level where
the statistical density tests are performed. In fact, it may be the SQL query
itself which specifies the minimum density threshold. However, our interest here
is in robust spatial clustering based on geo-reference and proximity.

Another hierarchical approach for clustering two-dimensional points inO(n log n)
time has been presented recently [54], based on dendrograms. Unfortunately,
such hierarchical approaches had generally been disregarded for knowledge dis-
covery in spatial databases, since it is often unclear how to use the proximity
tree to obtain associations, or to find associations between two proximity trees
built from distinct data layers in a GIS [27]. Such approaches do not suggest
any agglomerative conditions by which these search trees can be pruned [27].

5.2 On finding the number of groups in subquadratic time

There are two classical approaches to finding the number k of groups: AU-
TOCLASS [12] and MML [87]. Both demand a declaration of a probabilistic
mixture model.

AUTOCLASS [12] searches for the classes using a Bayesian statistical tech-
nique. It requires an explicit declaration of how members of a class are dis-
tributed in order to form a probabilistic class model. AUTOCLASS uses a
variant of EM [17], and thus is a randomized hill-climber similar to k-Means or
TB, with additional techniques for escaping local maxima. It also labels some
data points as noise. Figure 8 presents clusters obtained by AUTOCLASS on
the data of Figure 2. AUTOCLASS obtains clusterings of a quality similar to
that of k-Medoids, but it requires more CPU time.

Similarly, MML methods [87] require the declaration of a model for which to
describe the data, in two parts. The first part is an encoding of parameters of
the mixture model; the second is an encoding of the data given the parameters.
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Figure 8: Clustering produced using AUTOCLASS.

There is a trade-off between the complexity of the model and the quality of fit
to the data. There are also hard optimization problems that must be solved
heuristically when encoding parameters in the fewest number of bits. Figure 9
presents clusters obtained by SNOB [87] on the same data as Figure 2. SNOB
obtains only 7 clusters, and requires more CPU time than k-Medoids.

For an approach that does not assume a predefined mixture model, Ng and
Han [62] proposed to run CLARANS once for each k, from 2 to n. For each
of the discovered clusterings, the silhouette coefficient [50] is calculated. The
clustering of maximum silhouette coefficient is chosen, determining the number
of classes. This is prohibitively expensive for large values of n, since it implies
invoking CLARANS Θ(n) times.

Compared to these methods, our approach is either more generally applica-
ble, in that it does not require the declaration of a mixture model, or far much
more efficient, as in the case of the proposal of Ng and Han [62]. Also, as shall
be seen in Section 6, our approach does not sacrifice quality of the results.

6 An illustration of the method

In this section we present an experimental illustration contrasting k-Means, the
original TB, and our algorithms, based on a simple generator of bi-dimensional
data sets and mechanisms for adding noise. We first describe this generator.

The generator program takes three input values: the two integer inputs
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Figure 9: Clustering produced using SNOB.

k > 0 and n > 0, and a real value 0 ≤ φ ≤ 1. The program produces as
output n points within (or very close to) the unit square [0, 1] × [0, 1]. The
points generated are distributed in k natural clusters. The input parameter φ
designates the proportion of noise — approximately φn of the points are simply
generated uniformly at random within the unit square. The remaining (1−φ)n
points are designated as cluster data, and are generated within k circles of
equal radii. Initially, the centers ~c0, . . . ,~ck−1 are chosen at random uniformly
and independently within the unit square. The program then computes the
common circle radius r = σ/2 from the the separation of the closest pair of
centres σ = mini 6=j d(~ci,~cj). Then, the program repeats n times the following
procedure to generate a point in <2.

1. It generates a random number ρ uniformly in [0, 1].

2. If ρ ≤ φ, it outputs a random pair in [0, 1]× [0, 1], by uniformly and inde-
pendently chosing two numbers xi1 ∈ [0, 1] and xi2 ∈ [0, 1] and outputing
~sti = (xi1, xi2).

3. If ρ > φ, the program selects a circle by choosing an index t ∈ {0, . . . , k−1}
uniformly at random, and the real polar coordinates (γ, θ) with γ ∈ [0, r]
and θ ∈ [0, 2π), again uniformly at random. It then outputs the point
~sti = (xi1, xi2) = ~ctt + (γ sin θ, γ cos θ). ~sti is guaranteed to lie within the
tth circle.

Note that if a virtual center ~cj lies near the boundary of the unit square,
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the circle centered at ~cj with radius r = σ/2 may intersect the exterior of the
square. Also note that each virtual circle is the result of mapping a uniform
distribution over [0, r] and [0, 2π) around the circle. This results in a non-
uniform distribution with a peak at the center of the circle. This simple model
illustrates the case of data drawn from a bounded region (the unit square), with
cluster distributions cluster distributions within a bounded region (a circle).

This generator can be represented by a mixture model that produces a ran-
dom vector X taking values in the sample space <2. Finite mixture models
represent the distribution of such a random variable or vector X (with sample
space X ) by a probability density function p(x) of the form

p(x) = π0f0(x) + . . .+ πk−1fk−1(x),

where
∑k−1

j=0 πj = 1, πj > 0, and fj(·) is probability density functions for
0 ≤ j ≤ k−1. The parameters πj are called the mixing weights and the fj(·)
are called the component densities of the mixture. If the component densities
are parametric, p(x) has the following more explicit representation

p(x) = π0f0(x|~θ0) + . . .+ πk−1fk−1(x| ~θk−1),

=
k−1∑
j=0

πjfj(x|~θj)

where ~θj denotes the vector of parameters defining fj(·).
For the generator presented above we first describe the component densities.

We write U(S) for the uniform distribution over the set S. Thus, U([0, 1]×[0, 1])
is the uniform distribution over the unit square; that is, regions of equal area
have equal probability and the unit square has probability one. We write P (~c+r)
for the peak distribution over the circle centered at ~c and radius r. Then, the
mixture of generator produces a random vector ~sti = (xi1, xi2) ∈ <2 with a
probability density function given by

p(~x) =
1− φ
k
· P (~c0 + r) + . . .+

1− φ
k
· P (~ck−1 + r) + φ · P ([0, 1]× [0, 1]).

While the parametric statistical inference exercise would emphasize the find-
ing of k, φ, r and ~ci for i = 0, . . . , k−1, we focus on recuperating the clusters as
generated. The generator program can secretly label each data point si either
as noise or with the index of the virtual circle used, leaving to the clustering
algorithm the task of deciding which points are which. The quality of a par-
tition is the percentage of non-noise points that are labeled correctly by the
clustering algorithm. The fewer the mislabeled points, the higher the quality of
the partition.

In this setting, we have modeled noise as additive noise, because it appears
as an additive term in the finite mixture model. Our experiments compare
clustering algorithms over differing levels of additive noise — that is, differing
values of φ. For this purpose, the generator is modified to initially produce
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a data set with no noise, and then randomly delete the replace the desired
proportion (φn) points with noise drawn from U([0, 1]× [0, 1]).

Also, for the same data set and level of additive noise, we compare with
different levels of multiplicative noise — the term for it will appear as a multi-
plicative factor in the finite mixture model. A second generator program takes
each data point and perturbs it slightly. The idea here is to test the numerical
robustness (or robustness to multiplicative noise) of the algorithms. The model
by which we perturb each point is to use each point si of the data set as a center
of a peak distribution P (~si + ψr) to generate a replacement point no further
away that ψr from si. The levels of multiplicative noise are regulated by the
parameter ψ. The case ψ = 0 replaces each point by itself, introducing no mul-
tiplicative noise. As ψ grows, the original circle clusters become less dense, and
more overlap occurs.

Table 10 shows comparisons of the algorithms for one data set of 300 data
items generated by Equation (3). The algorithms compared are k-Means, TB,
and our modified TB. The original TB heuristic is initialized always with a
random set of representatives, and takes as input the number k of clusters. It
represents the desired quality to be achieved by our modified TB.

Our heuristic produces poor results with random initialization when u is
small. However, we present experiments in which it is initialized using edge-
length clustering to obtain an initial set of representatives. The modified TB is
not told the value of k, but instead must automatically determine the number
of clusters to use. Despite this handicap, the modified TB performs well in
comparison to k-Means.

Since k-Means improves with good guesses of initial representatives, we
also compare k-Means using initialization from connected components of a
minimum spanning tree, as described in Section 4.3. This results in a version
of k-Means that knows the number k of clusters, but now requires Ω(n log n)
time. Nevertheless, its higher quality makes it a better benchmark than ordinary
k-Means.

Each entry of the first table is an average of 10 runs on one data set. The
second table shows averages of 100 runs on 10 different data sets. Each average
value is presented with a 95% confidence interval.

The results of the experiments indicate that whereas k-Means is competitive
with TB and modified TB in the absence of noise, it quickly succumbs as the
level of noise rises. On the other hand, modified TB with good initialization
matches the quality of the original TB to a very high degree when only additive
noise is present. In the presence of multiplicative noise, the modified TB does
not perform as well as the original TB, yet significantly better than MST-
initialized k-Means.

7 Final remarks

Recently, the identification of clustering as a central task in Knowledge Dis-
covery and Data Mining (KDDM) has attracted researchers to investigate the
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One data set Error in Group Assignment
10 runs per set Algorithm

n = 300, u = 6, k = 10 k-Means TB Modified TB
Initialization (variable k)

Random MST Random DT edge length
Noise

Mult. Additive
ψ = 0 φ = 0 39% ±7 8% 0%±0 9%

φ = 0.1 30% ±4 27% 8%±0 9%
φ = 0.2 30% ±5 30% 8%±0 11%

ψ = 0.5 φ = 0 29% ±5 12%±4 6%±0 17%±4
φ = 0.1 30% ±4 30%±6 8%±0 14%±4
φ = 0.2 30% ±5 31%±3 8%±0 14%±4

ψ = 1.0 φ = 0 33% ±5 19%±4 8%±0 15%±3
φ = 0.1 26% ±6 36%±9 9%±1 16%±6
φ = 0.2 35% ±6 30%±5 11%±1 15%±4

ψ = 1.5 φ = 0 34% ±4 22%±3 8%±0 16%±5
φ = 0.1 30% ±4 31%±6 11%±1 14%±3
φ = 0.2 34% ±4 30%±5 10%±1 24%±4

10 data sets Error in Group Assignment
10 runs per set Algorithm

n = 300, u = 6, k = 10 k-Means TB Modified TB
Initialization (variable k)

Random MST Random DT edge length
Noise

Mult. Additive
ψ = 0 φ = 0 31% ±4 7%±2 3%±1 10%±2

φ = 0.1 30% ±4 23%±5 8%±1 10%±2
φ = 0.2 30% ±5 30%±3 8%±1 11%±2

ψ = 0.5 φ = 0 30% ±4 12%±4 6%±1 15%±4
φ = 0.1 30% ±4 30%±4 8%±1 15%±4
φ = 0.2 30% ±5 30%±5 8%±1 16%±4

ψ = 1.0 φ = 0 31% ±5 20%±4 8%±1 15%±4
φ = 0.1 30% ±6 32%±4 9%±1 16%±4
φ = 0.2 31% ±6 30%±5 11%±1 16%±4

ψ = 1.5 φ = 0 33% ±4 22%±4 8%±0 15%±5
φ = 0.1 32% ±4 31%±5 10%±1 16%±4
φ = 0.2 32% ±4 31%±5 11%±1 25%±4

Figure 10: Comparisons of k-Means, TB and modified TB.
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scaling of clustering methods to large data sets [10]. The perspective of KDDM
on clustering has generally been that of a density estimation problem solved
through k-Means [9] or EM [33]. In particular, much effort has focused on the
sensitivity of k-Means and EM on the set of representatives used to initialize
the search.

The medoids approach is robust with respect to random initialization, addi-
tive noise and multiplicative noise. This comes from considering a loss function
or risk function [13] that is not based on the total squared distance (as with
k-Means), but on the total absolute distance. Heuristics for approximating
the medoid clustering require very careful design in order to be applied to large
data sets. We have presented a fast heuristic based on the precomputation of
the Delaunay triangulation and the u-nearest-neighbour graph.

Researchers have recently identified a set of desiderata for clustering meth-
ods [10, 9, 33] with which our medoid approach complies. Namely, the clustering
method should be stoppable and resumable, with the capacity to obtain a clus-
tering solution at any time, and to be able to improve on the quality of the
solution given more computational resources. Also, since clustering is central to
spatial generalization, it has been suggested [88] that clustering methods should
find groups directly from the data; this favors the medoid approach over others
such as k-Means.

Thus, we have presented a clustering method which exhibits the character-
istics of density-based clustering (as does DBSCAN), but one which does not
demand a density model from the user, and which is robust to outliers and noise.

The medoid approach has limitations in that is fundamentally based around
the Euclidean metric, and thus uses the same inductive principle [13] as k-
Means. It is a representative-based, one-shot partition clustering method. The
improvements on time complexity presented here can not be directly extended
to three or more dimensions, as the complexity of the size of the Delaunay tri-
angulation is no longer subquadratic. However, we expect that the technique of
using the u-nearest neighbour graph can be generalized. Finally, our approach
is sensitive to the initial set of representatives. Obtaining an initial set of repre-
sentatives is itself a clustering problem where we are prepared to trade quality
for speed. Our choice of using information from the Delaunay triangulation and
the minimum spanning tree may require futher investigation.
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