
ROBUST DISTRIBUTED COORDINATION OF HETEROGENEOUS ROBOTS THROUGH TEMPORAL
PLAN NETWORKS

Andreas F. Wehowsky, Stephen A. Block, and Brian C. Williams

Computer Science and Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, Cambridge, MA, 02139, USA,

Email: andreas@wehowsky.dk, {sblock, williams}@mit.edu

ABSTRACT

Real-world applications of autonomous agents require
coordinated groups to work in collaboration. Dependable
systems must plan and carry out activities in a way that
is robust to failure to and uncertainty. Previous work has
produced algorithms that provide robustness at the plan-
ning phase, by choosing between functionally redundant
methods, and at the execution phase, by dispatching tem-
porally flexible plans. However, these algorithms use a
centralized architecture in which all computation is per-
formed by a single processor. As a result, these imple-
mentations suffer from communication bottlenecks at the
master processor, require significant computational capa-
bilities, and do not scale well.

This paper introduces the plan extraction component of a
robust, distributed executive for contingent plans. Con-
tingent plans are encoded as Temporal Plan Networks
(TPNs), which compose temporally flexible plans hier-
archically and provide a choose operator. First, the TPN
is distributed over multiple agents, by creating a hierar-
chical ad-hoc network and mapping the TPN onto this
hierarchy. Second, candidate plans are extracted from the
TPN with a distributed, parallel algorithm that exploits
the structure of the TPN. Third, temporal consistency of
the candidate plans is tested using a distributed Bellman-
Ford algorithm. This algorithm is empirically validated
on randomized contingent plans.

Key words: distributed AI; planning; plan execution and
monitoring.

1. INTRODUCTION

The ability to command coordinated groups of au-
tonomous agents is key to many real-world tasks, such
as the construction of a Lunar habitat. In order to achieve
this goal, we must perform robust execution of contin-
gent, temporally flexible plans in a distributed manner.

Methods have been developed for the dynamic execu-
tion [1] of temporally flexible plans [2]. These methods
adapt to failures that fall within the margins of the tempo-
rally flexible plans and hence add robustness to execution
uncertainties.

Figure 1. Multiple Rover testbed

To address plan failure, [3] introduced a system called
Kirk, that performs dynamic execution of temporally
flexible plans with contingencies. These contingent plans
are encoded as alternative choices between functionally
equivalent sub-plans. In Kirk, the contingent plans are
represented by a Temporal Plan Network (TPN) [3],
which extends temporally flexible plans with a nested
choose operator. To dynamically execute a TPN, Kirk
continuously extracts a plan from the TPN that is tempo-
rally feasible, given the execution history, and dispatches
the plan, using the methods of [4]. Dynamic execution
of contingent plans adds robustness to plan failure. How-
ever, as a centralized approach, Kirk is extremely brit-
tle to poor communication at the master processor due to
the communication bottleneck. In addition, Kirk does not
scale well as the size of the plan is increased.

We address these two limitations through a distributed
version of Kirk, which performs distributed dynamic ex-
ecution of contingent temporally flexible plans. This pa-

Proc. of 'The 8th International Symposium on Artifical Intelligence, Robotics and Automation in Space - iSAIRAS’, Munich, Germany.
5-8 September 2005, (ESA SP-603, August 2005)

per focuses on the algorithm for dynamically selecting a
feasible plan from a TPN. Methods for performing dis-
tributed execution of the plan are presented in [5]. Our
key innovation is a hierarchical algorithm for searching a
TPN for a feasible plan in a distributed manner. In partic-
ular, our plan selection algorithm, called the Distributed
Temporal Planner (DTP), is comprised of three stages.

1. Distribute the TPN across the processor network,

2. Generate candidate plans through distributed search
on the TPN, and

3. Test the generated plans for temporal consistency.

This paper begins with an example TPN and an overview
of the way in which DTP operates on it. We provide a for-
mal definition of a TPN and then discuss the three stages
of DTP. Finally, we discuss the complexity of the DTP al-
gorithm and present experimental results demonstrating
its performance.

2. EXAMPLE SCENARIO

In this section, we discuss at a high level the three step
approach taken by DTP to solve an example problem. A
TPN is to be executed by a group of seven processors,
p1, . . . , p7. The TPN is represented as a graph in Fig. 2,
where nodes represent points in time and arcs represent
activities. A node at which multiple choices exist for the
following path through the TPN is a choice node and is
shown as an inscribed circle.

[0,0][0
,0
]

[0
,0
] D[0,0]

ActivityC [1,2]

[0
,0
]

JI

[0,0]

[0,0]

[0,3]

HG

E F

ActivityA [1,2]

ActivityB [1,2]

K L M N

ActivityD [1,2]

A B

[0
,0
]

[0,0]

[0,0]

[0
,0
]

C

[0,3]

Figure 2. Example TPN

First, the TPN itself is distributed over the processors to
allow the plan selection to take place in a distributed fash-
ion. To facilitate this, a leader election algorithm is used
to arrange the processors into a hierarchy (Fig. 3). The
hierarchical structure of the TPN is then used to map sub-
networks to processors. For example, the master proces-
sor p1 handles the merging of multiple branches of the
plan at the start node (node A) and the end node (node
B). It passes responsibility for each of the two main sub-
networks to the two processors immediately beneath it in
the hierarchy. Nodes C,D,E,F,G,H are passed to p2 and
nodes I,J,K,L,M,N are passed to p3.

p6

p3

p7

p1

p2

p4 p5

Figure 3. A three-level hierarchy formed by leader elec-
tion

The processors then work together to extract a temporally
consistent plan from the TPN. The first stage generates a
candidate plan, which corresponds to selecting a single
subnetwork from the plan at each of the choice nodes.
This is done in a hierarchical fashion, where each pro-
cessor sends messages to its neighbors, requesting that
they make selections in the subnetworks for which they
are responsible. These selections are made in parallel. In
this example, only the subnetwork owned by p2 (nodes
C,D,E,F,G,H) contains a choice of path, so p2 must de-
cide between ActivityA and ActivityB, whereas p3
has no choice to make.

Having generated a candidate plan, the third and final step
of DTP is to test it for consistency. Again, this is done in
a hierarchical fashion, where consistency checks are first
made at the lowest level and successful candidates are
then checked at an increasingly high level. For example,
p2 and p3 simultaneously check that their subnetworks
are internally consistent. If so, p1 then checks that the
two candidates are consistent when executed in parallel.
In DTP, candidate generation and consistency checking
are interleaved, such that some processors generate can-
didates while others simultaneously check consistency.

3. TEMPORAL PLAN NETWORKS

A TPN augments temporally flexible plans with a
choose operator and is used by DTP to represent a con-
tingent, temporally flexible plan. The choose operator
allows us to specify nested choices in the plan, where
each choice is an alternative sub-plan that performs the
same function.

The primitive element of a TPN is an activity[l, u],
which is a hardware command with a simple temporal
constraint. The simple temporal constraint [l, u] places
a bound t+ − t− ∈ [l, u] on the start time t− and end
time t+ of the network to which it is applied. A TPN is
built from a group of activities and is defined recursively
using the choose, parallel and sequence operators,
which derive from the Reactive Model-based Program-
ming Language (RMPL) [6].

• choose(TPN1, . . . , TPNN) introduces multiple
subnetworks of which only one is to be chosen. A
choice variable is used at the start node to encode the
currently selected subnetwork. A choice variable is
active if it falls within the currently selected portion
of the TPN.

• parallel(TPN1, . . . , TPNN) [l, u] introduces
multiple subnetworks to be executed concurrently.
A simple temporal constraint is applied to the entire
network. Each subnetwork is referred to as a child
subnetwork.

• sequence(TPN1, . . . , TPNN) [l, u] introduces
multiple subnetworks which are to be executed se-
quentially. A simple temporal constraint is applied
to the entire network. For a given subnetwork, the
subnetwork following it in a sequence network is
referred to as its successor.

Graph representations of the activity, choose,
parallel and sequence network types are shown in
Fig. 4. Nodes represent time events and directed edges
represent simple temporal constraints.

activity

parallel

A

Z

[l,u]

[0,0][0
,0
]

[0
,0
][0,0]

ES

S E

choose

A

Z

[0,0][0
,0
]

[0
,0
] ES [0,0]

sequence

A

[0,0]

[0
,0
]

ES

Z

[0,0]

[0,0]

[l,u]

[l,u]

Figure 4. TPN Constructs

Definition 1 A feasible solution of a TPN is an assign-
ment to choice variables such that 1) all active choice
variables are assigned, 2) all inactive choice variables
are unassigned, and 3) the currently selected temporally
flexible plan is temporally consistent. A temporally flexi-
ble plan is temporally consistent if there exist times that
can be assigned to all events such that all temporal con-
straints are satisfied.

4. TPN DISTRIBUTION

The DTP algorithm distributes the computation involved
in finding a feasible solution to the TPN over all available
processors. Consequently, the processors must be able
to communicate with each other, in order to coordinate
their actions. We therefore establish an ad-hoc communi-
cation network such that adjacent processors are able to

communicate. In addition, an overall leader must be se-
lected to communicate with the outside world and initiate
planning.

4.1. Ad-Hoc Processor Network Formation

We use the leader election algorithm in [7] to arrange
the processors into a hierarchical network, an example
of which is shown in Fig. 3. For each node, the node im-
mediately above it in the hierarchy is its leader, those at
the same level within that branch of the hierarchy are its
neighbor leaders and those directly below it in the hierar-
chy are its followers. The leader election algorithm forms
the hierarchy using a message passing scheme and in do-
ing so, ensures that every node can communicate with
its leader, as well as all neighbor leaders and followers.
In addition, the hierarchical nature of the network lends
itself well to the distribution of the TPN, which is also
hierarchical.

4.2. TPN Distribution over the Processor Network

We implement the distribution of the DTP computation
by assigning to each processor responsibility for a num-
ber of nodes from the TPN graph representation. Each
processor maintains all the data from the TPN relevant to
the nodes for which it is responsible.

This distribution scheme requires that processors respon-
sible for TPN nodes linked by temporal constraints are
able to communicate. The algorithm in Fig. 5 distributes
the TPN over the processor hierarchy such that this com-
munication is available. It allows distribution down to
the level at which a processor handles only a single node.
This allows DTP to operate on heterogeneous systems
that include computationally impoverished processors.

We now demonstrate the distribution algorithm using the
TPN in Fig. 2 and the processor hierarchy in Fig. 3. The
TPN is supplied from an external source, which estab-
lishes a connection with the top leader, p1. The TPN is
a parallel network at the highest level, so processor
p1 assigns the start and end nodes (nodes A,B) to itself
(line 7). There are two subnetworks, which p1 assigns
to its two followers, p2 and p3 (lines 15-18). p1 passes
the choose network (nodes C,D,E,F,G,H) to p2 and the
sequence network (nodes I,J,K,L,M,N) to p3. p2 and
p3 then process their networks in parallel. p2 assigns the
start and end nodes (nodes C,D) to itself (line 7). The net-
work has two subnetworks, which p2 assigns to two of its
followers, p4 and p5 (lines 15-18). p2 passes ActivityA
(nodes E,F) to p4 and ActivityB (nodes G,H) to p5.
Since activities can not be decomposed, p4 and p5 assign
nodes E,F and G,H, respectively, to themselves (lines 3-
4). Meanwhile, p3 receives the sequence network and
assigns the start and end nodes (nodes I,J) to itself (line
7). The network has two subnetworks, which p3 assigns
to two of its followers, p6 and p7 (lines 15-18). p3 passes
ActivityC (nodes K,L) to p6 and ActivityD (nodes

1: wait for TPN

2: n← number of followers of p

3: if TPN is of type activity then

4: assign start and end nodes of TPN to p

5: else

6: k ← number of subnetworks

7: assign start and end nodes to p

8: if n = 0 then

9: if p has a neighbor leader v then

10: send k

2
subnetworks of TPN to v

11: assign k

2
subnetworks of TPN to p

12: else

13: assign TPN to p

14: end if

15: else if n ≥ k then

16: for each of k subnetworks of TPN do

17: assign subnetwork of TPN to a follower of p

18: end for

19: else if n < k then

20: for each of n subnetworks of TPN do

21: assign subnetwork to a follower of p

22: end for

23: assign remaining (k − n) subnetworks of TPN to p

24: end if

25: end if

Figure 5. TPN Distribution Algorithm for node p

M,N) to p7. p6 and p7 then assign nodes K,L and nodes
M,N, respectively, to themselves (lines 3-4).

5. CANDIDATE PLAN GENERATION

Having distributed the TPN across the available proces-
sors, DTP conducts search for candidate plans. These
plans correspond to different assignments to the choice
variable at each choice node [8]. DTP uses parallel, re-
cursive, depth first search to make these assignments.
This use of parallel processing is one of the key ad-
vantages of DTP over traditional centralized approaches.
DTP is implemented using a distributed message-passing
architecture and uses the following messages during can-
didate plan generation.

• findfirst instructs a network to make the initial
search for a consistent set of choice variable assign-
ments.

• findnext is used when a network is consistent in-
ternally, but is inconsistent with other networks. In
this case, DTP uses findnext messages to conduct
a systematic search for a new consistent assignment,
in order to achieve global consistency. findnext

systematically moves through the subnetworks and
returns when the first new consistent assignment is
found. Therefore, a successful findnext message
will cause a change to the value assigned to a sin-
gle choice variable, which may in turn cause other
choice variables to become active or inactive.

• fail indicates that no consistent set of assignments
was found and hence the current set of assignments
within the network is inconsistent.

• ack, short for acknowledge, indicates that a con-
sistent set of choice variable assignments has been
found.

Whenever a node initiates search in its subnetworks, us-
ing findfirst or findnextmessages, the relevant pro-
cessors search the subnetworks simultaneously. This is
the origin of the parallelism in the algorithm.

DTP operates on three network types formed from the
four types fundamental to a TPN. These are activity,
parallel-sequence and choose-sequence, as
shown in Fig. 6, where the subnetworks Ai, . . . , Zi

are of any of these three types. We handle the simple
temporal constraint present on a sequence network by
considering a sequence network as a special case of
a parallel-sequence network, in which only one
subnetwork exists.

activity

parallel-sequence

A1

Z1

[l,u]

[0,0][0
,0
]

[0
,0
][0,0]

ES

S E

S

Zn

[0,0]

[l,u]

Zn

[0,0]

[0,0]

[0,0]

choose-sequence

A1

Z1

[0,0][0
,0
]

[0
,0
][0,0]

E

Zn

[0,0]

Zn

[0,0]

[0,0]

[0,0]

Figure 6. Constructs for DTP

This choice of network types requires that a network is
able to communicate directly with its successor. This
is made possible by the Sequential Network Identifier
(SNI), which is a pointer to the start node of the successor
network.

The following three sections describe the actions carried
out by the start node of each network type on receipt of
a findfirst or findnext message. Note that while
a simple temporal constraint [l, u] is locally inconsis-
tent if l > u, we assume that the TPN is checked prior
to running DTP, to ensure that all temporal constraints
are locally consistent. This assumption means that only
parallel-sequence networks can introduce temporal
inconsistencies.

Activity During search, an activity node propagates
request messages forward and response messages back-
ward.

Parallel-Sequence Network On receipt of a findfirst
message, the start node v of a parallel-sequence net-
work S calls parallel-findfirst(v) (Fig. 7). The
node initiates a search of S’s subnetworks and of any
successor network, in order to find a temporally consis-
tent plan. First, the start node sends findfirst mes-
sages to the start node of each child subnetwork of the
parallel-sequence structure (lines 2-4) and to the
start node of the successor network, if present (lines 5-
7). These searches are thus conducted in parallel. If any
of the child subnetworks or the successor network returns
a fail message (line 12), then no consistent assignment
to the choice variables exists and the start node returns
fail (line 13).

1: parent← sender of msg

2: for each child do

3: send findfirst to w

4: end for

5: if successor B exists then

6: send findfirst to B

7: end if

8: wait for all responses from children

9: if successor B exists then

10: wait for response from B

11: end if

12: if any of the responses is fail then

13: send fail to parent

14: else

15: if check-consistency(v) then

16: send ack to parent

17: else

18: if search-permutations(v) then

19: send ack to parent

20: else

21: send fail to parent

22: end if

23: end if

24: end if

Figure 7. parallel-findfirst(node v)

Conversely, suppose that all child subnetworks and
the successor network return ack messages, indicat-
ing that variable assignments have been made such
that each is internally temporally consistent. The start
node must then check for consistency of the entire
parallel-sequence network S (line 15). This is per-
formed by a distributed Bellman Ford consistency check-
ing algorithm, which is explained in the next section. If
the consistency check is successful, the start node returns
an ack message to its parent (line 16) and the search of
the parallel-sequence network is complete.

If, however, the consistency check is not success-
ful, the start node must continue searching through
all permutations of assignments to the child subnet-
works for a globally consistent solution. It calls

search-permutations(v) (line 18) and sends an ack

message to its parent if this is successful and a fail mes-
sage otherwise.

In the search-permutations(node v) function
(Fig. 8), the start node sends findnext messages to
each subnetwork (lines 1-2). If a subnetwork returns
fail, the start node sends a findfirst message to that
subnetwork to reconfigure it to its original, consistent
solution (lines 11-12) and we move on to the next
subnetwork. If at any point, a subnetwork returns ack,
the start node tests for global consistency and returns
true if successful (lines 4-6). If the consistency check is
unsuccessful, we try a different permutation of variable
assignments (line 8) and continue searching. If all
permutations are tested without success, the function
returns false (line 15).

1: for w = child-0 to child-n do

2: send findnext to w

3: wait for response

4: if response = ack then

5: if check-consistency(v) then

6: return true

7: else

8: w ← child-0

9: end if

10: else

11: send findfirst to w

12: wait for response

13: end if

14: end for

15: return false

Figure 8. search-permutations(node v) function

When the start node v of a parallel-sequence

network receives a findnext message, it executes
parallel-findnext(v) (Fig. 9). First, the start
node calls search-permutations(v) to systemati-
cally search all consistent assignments to its subnetworks,
in order to find a new globally consistent assignment (line
1). If this is successful, the start node sends ack to its
parent (line 2). If it fails, however, the start node attempts
to find a new assignment to the successor network. If
a successor network is present, the start node sends a
findnext message and returns the response to its par-
ent (lines 3-6). If no successor network is present, then
no globally consistent assignment exists and the node re-
turns fail (line 8).

Choose-Sequence Network When the start node of
a choose-sequence network receives a findfirst

message, it executes the choose-findfirst() func-
tion (Fig. 10). The node searches for a consistent plan by
making an appropriate assignment to its choice variable.
It also initiates a search in any successor network. To do
so, it first sends a findfirst message to the successor
network if present (lines 2-4). It then systematically as-
signs each possible value to the network’s choice variable
and, in each case, sends a findfirst message to the
enabled subnetwork (lines 5-7). If a subnetwork returns

1: if search-permutations() then

2: send ack to parent

3: else if successor B exists then

4: send findnext to B

5: wait for response

6: send response to parent

7: else

8: send fail to parent

9: end if

Figure 9. parallel-findnext(node v) function

fail, indicating that no consistent assignment exists, the
current value of the choice variable is trimmed from its
domain to avoid futile repeated searches (line 18), and
the next value is assigned.

1: parent← sender of msg

2: if successor B exists then

3: send findfirst to B

4: end if

5: for w = child-0 to child-n do

6: choicevariable← w

7: send findfirst to w

8: wait for response from child w

9: if response = ack then

10: if successor B exists then

11: wait for response from successor B

12: send response to parent

13: else

14: send ack to parent

15: end if

16: return

17: else

18: remove w from child list

19: end if

20: end for

21: send fail to parent

Figure 10. choose-findfirst() function

As soon as a subnetwork returns ack, indicating that a
consistent assignment to the subnetwork was found, the
start node waits for a response from the successor net-
work (if present) to determine whether or not a consistent
assignment was found to it too (line 11). Once a response
has been received from the successor network, the start
node forwards this response to its parent and the search
terminates (line 12). If no successor network is present,
the network is consistent and the start node returns ack
to its parent (line 14).

If all assignments to the network’s choice variable are
tried without receipt of an ack message from a child sub-
network, the start node returns fail to its parent, indi-
cating that no consistent assignment exists (line 21).

When the start node of a choose-sequence net-
work receives a findnext message, it executes the
choose-findnext() function (Fig. 11). The start node
first attempts to find a new consistent assignment for the

network while maintaining the current value of the choice
variable. It does so by sending findnext to the currently
selected subnetwork (lines 1-2). If the response is ack,
a new consistent assignment has been found, so the start
node returns ack to its parent and the search is over (lines
4-6).

1: w ← current assignment

2: send findnext to w

3: wait for response

4: if response = ack then

5: send ack to parent

6: return

7: end if

8: while w < child-n do

9: w ← next child

10: send findfirst to w

11: wait for response

12: if response = ack then

13: send ack to parent

14: return

15: else

16: remove w from child list

17: end if

18: end while

19: if successor B exists then

20: send findnext to B

21: for w = child0 to child-n do

22: choice variable← w

23: send findfirst to w

24: wait for response from child w

25: if response = ack then

26: break

27: end if

28: end for

29: wait for response from B

30: send response to parent

31: else

32: send fail to parent

33: end if

Figure 11. choose-findnext() function

If this fails, however, the start node searches through un-
explored assignments to the network’s choice variable, in
much the same way as it does on receipt of a findfirst
message (lines 8-18). Finally, if this strategy also fails,
the start node attempts to find a new consistent assign-
ment in any successor network, by sending a findnext
message to the node referenced by its SNI parameter
(lines 19-20). Note that the start node must reset the local
network to the previous consistent configuration, because
the unsuccessful search has left it in an inconsistent state.
This is achieved by repeating the search process used on
receipt of a findfirst message (lines 21-28). Once the
successor network has replied, the start node forwards the
response to its parent (lines 29-30).

6. TEMPORAL CONSISTENCY CHECKING

Each of the candidate assignments generated dur-
ing search on the TPN must be tested for tem-
poral consistency, which is implemented by the
check-consistency(node v) function. Consistency
checking is performed with the distributed Bellman-Ford
Single Source Shortest Path algorithm [9], which is run
on the distance graph corresponding to the currently ac-
tive portion of the TPN. Temporal inconsistency is de-
tected as a negative weight cycle [2]. The consistency
checking process is interleaved with candidate gener-
ation, such that DTP simultaneously runs multiple in-
stances of the distributed Bellman-Ford algorithm on iso-
lated subsets of the TPN.

The distributed Bellman-Ford algorithm has two key ad-
vantages. First, it requires only local knowledge of the
network at every processor. Second, when run syn-
chronously, it runs in time linear in the number of pro-
cessors in the network. DTP ensures synchronization by
the fact that whenever a node initiates search in its sub-
networks, it waits for responses from all processors in the
form of ack or fail messages before proceeding.

7. PERFORMANCE ANALYSIS

The overall time complexity of the centralized plan-
ning algorithm is worst-case exponential. The backtrack
search used to assign choice variables has worst-case time
complexity Ne, where N is the number of nodes and e
is the size of the domain of the choice variables. The
Bellman-Ford algorithm used for consistency checking
has complexity N2logN +NM , where M is the number
of edges.

DTP also has exponential overall time complexity. The
backtrack search remains Ne in the worst case, but we
can expect significant computational savings from the
fact that the distributed Bellman-Ford algorithm runs in
time N .

A C++ implementation of DTP was used to test the
run time performance of DTP by simulating an array of
processors searching for a feasible solution to a TPN.
Exactly one node was assigned to each processor and
the number of nodes in the TPN was varied between 1
and 100. In each case, the number of TPN constructs
(parallel, sequence or choose) was varied between
3 and 30 and the maximum recursive depth was varied be-
tween 4 and 10. Run time was measured by the number
of listen-act-respond cycles completed by the processor
network.

Fig. 12 shows a plot of the number of cycles against the
number of nodes. The results show that the variation in
the number of cycles is approximately linear with the
number of nodes. This shows that in practice, the run
time is dominated by the distributed Bellman Ford con-

sistency checking algorithm, which is linear in the num-
ber of nodes, not by the backtrack search, which is expo-
nential.

0 20 40 60 80 100
0

20

40

60

80

100

120

140

C
y
c
le

s

Nodes

Figure 12. Number of cycles vs. number of nodes

This is because the worst-case exponential time complex-
ity of DTP occurs only when the TPN is composed en-
tirely of choose networks, in which case there is no op-
portunity for parallel execution. However, typical TPNs
used in real applications consist largely of parallel and
sequence networks. This allows processors to conduct
parallel search and consistency checks, which greatly re-
duces the time complexity of DTP.

8. DISCUSSION

This paper introduced the Distributed Temporal Planner
(DTP), which is the plan selection component of a dis-
tributed executive that operates on contingent, temporally
flexible plans. DTP distributes both data and processing
across all available agents. First, DTP forms a processor
hierarchy and assigns subnetworks from the TPN to each
processor. It then searches the TPN to generate candi-
date plans, which are finally checked for temporal con-
sistency. DTP exploits the hierarchical nature of TPNs to
allow parallel processing in all three phases of the algo-
rithm.

ACKNOWLEDGMENTS

This work was made possible by the sponsorship of the
DARPA NEST program under contract F33615-01-C-
1896.

REFERENCES

1. Morris, P. and Muscettola, N. Execution of temporal
plans with uncertainty. In AAAI-00, 1999.

2. Dechter, R., Meiri, I., and Pearl, J. Temporal con-
straint networks. Artificial Intelligence, 49:61-95,
1991, 1990.

3. Kim, P., Williams, B., and Abramson, M. Executing
reactive, model-based programs through graph-based
temporal planning. In Proc. of IJCAI 2001, Seattle,
WA, 2001.

4. Tsamardinos, I., Muscettola, N., and Morris, P. Fast
transformation of temporal plans for efficient execu-
tion. In AAAI-98, 1998.

5. Stedl, J. L. A formal model of tight and loose team
coordination. Master’s thesis, MIT, Cambridge, MA,
September 2004.

6. Williams, B. C., Ingham, M., Chung, S., and Elliott,
P. Model-based programming of intelligent embedded
systems and robotic explorers. In IEEE Proceedings,
Special Issue on Embedded Software, 2003.

7. Nagpal, R. and Coore, D. An algorithm for group for-
mation in an amorphous computer. In Proc. of PDCS
1998, Las Vegas, NV, 1998.

8. Mittal, S. and Falkenhainer, B. Dynamic constraint
satisfaction problems. In AAAI-1990, 1990.

9. Lynch, N. Distributed Algorithms. Morgan Kauf-
mann, 1997.

