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Abstract In this paper, we study “robust” dominating sets of random graphs
that retain the domination property even if a small deterministic set of edges
are removed. We motivate our study by illustrating with examples from wire-
less networks in harsh environments. We then use the probabilistic method
and martingale difference techniques to determine sufficient conditions for the
asymptotic optimality of the robust domination number. We also discuss ro-
bust domination in sparse random graphs where the number of edges grows
at most linearly in the number of vertices.
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1 Introduction

Domination of graphs is an important topic from both theoretical and ap-
plication perspectives and has been extensively studied in the random graph
context as well. Throughout, random graphs refer to the Bernoulli or Erdös-
Rényi random graph G obtained by allowing each edge in the complete graph
on n vertices to be present with a certain probability p, independent of the
other edges (for formal definitions, please refer to Section 2). In [7], two point
concentration for the domination number of G is obtained for the case when p
is essentially a constant and this concentration phenomenon was extended for
a wide range of p in [5]. Since then many other variants of domination have
also been studied (see for e.g. [3][6]).

Dominating sets also occur naturally in the design of wireless networks.
In [8], an early application of dominating sets is explored for routing in ad hoc
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wireless networks devoid of any central control. The nodes belonging to the
dominating sets are interpreted as “gateways” through which any two nodes
in the network can communicate with minimal delay. This was extended to
higher dimensional wireless networks in [9] and for a survey on the usage of
domination in communications, we refer to [4].

Ad hoc networks are especially fragile in terms of linkage in the sense
that the sensors are continually moving around and so links may break or
form randomly. Moreover, due to environmental constraints like shadowing and
fading, it may happen that links between certain nodes are simply not feasible.
In such a situation, it is of natural interest to know whether the domination
property is still retained and this is the topic of study in this paper. We
consider dominating sets in the Bernoulli random graph G and are interested
in obtaining “robust” dominating sets that retain the domination property
even if a small deterministic set of edges are removed. We obtain sufficient
conditions for asymptotic optimality of the robust domination number in terms
of the maximum vertex degree and the number of edges of the graph that has
been removed from Kn.

The paper is organized as follows: In Section 2, we state and prove our main
result regarding robust domination number in random graphs for the dense
regime. We use the probabilistic method to establish sufficient conditions for
asymptotic optimality. Next, in Section 3, we also discuss our results for the
robust domination in the sparse regime.

2 Robust Domination

Let Kn be the complete graph on n vertices and let {Z(f)}f∈Kn be indepen-
dent random variables indexed by the edge set of Kn and with distribution

P(Z(f) = 1) = p = 1− P(Z(f) = 0) (2.1)

where 0 < p < 1. Let G be the random graph formed by the union of all
edges f satisfying Z(f) = 1 and let H be any deterministic subgraph of Kn

with m = m(n) edges and a maximum vertex degree of ∆ = ∆(n).
A set S ⊂ V is said to be a dominating set of G \H if each vertex in V \S

is adjacent to at least one vertex in S in the graph G\H. We also say that S is
a H−robust dominating set or simply a robust dominating set. The H−robust

domination number or simply the robust domination number is defined to be
the minimum size of a dominating set in G \H and is denoted by γ(G \H).

We seek conditions on H so that the robust domination number Γn :=
γ(G \ H) and the actual domination number γ(G) ≤ Γn are of the same
order. Intuitively, if H is sparse, then we expect Γn and γ(G) to be close
with high probability, i.e., with probability converging to one as n → ∞.
This is illustrated in our first result below that obtains bounds for Γn in
terms of the maximum vertex degree ∆ of the graph H. For 0 < x, y < 1

we define un(x, y) :=
log(nx)

| log(1−y)| and set un := un(p, p). Moreover, we use the

notation an = o(bn) to denote that an

bn
−→ 0, as n → ∞.



Robust Domination in Random Graphs 3

Lemma 1 The following properties hold:

(a) Let λa := np and λb := n| log(1 − p)| > λa. For every θ > 2, there exists

a λ0 = λ0(θ) > 0 such that if λ0

n ≤ p ≤ 1− 1
n3 , then

P

(

Γn ≥ un

(

1−
θ log logλb

logλa

))

≥ 1− exp

(

−
3n

8
·
(logλb)

θ

λa

)

. (2.2)

(b) Let ∆ be the maximum vertex degree of H and suppose np −→ ∞ and

p ≤ p0 for some constant 0 < p0 < 1. For every ǫ > 0 and all n large,

P (Γn ≤ un(1 + ǫ) +∆) ≥ 1−
1

log(np)
. (2.3)

Consequently if ∆ = o(un) and p ≤ p0 is such that np −→ ∞, then Γn

un
−→ 1

in probability as n → ∞.

The condition np −→ ∞ ensures that G is reasonably dense in terms of its
vertex degrees. In particular if the edge probability p is a constant, then un

is of the order of logn and moreover both λa and λb are of the order of n.

Setting θ = 3 in (2.2), we then get that Γn ≥ un

(

1−O
(

log logn
logn

))

with

probability at leat 1− e−C(logn)3 for some constant C > 0. Similarly, the final
statement (2.3) implies that if ∆ = o(logn), then Γn ≤ un(1 + 2ǫ) with high
probability, for any arbitrary constant ǫ > 0.

Combining the observations of the previous paragraph, we get that Γn ∼ un

with high probability, where we use the notation an ∼ bn to denote that
an

bn
−→ 1 as n → ∞. Thus the robust domination number satisfies

Γn ∼ un ∼ γ(G) and is therefore asymptotically equal to the “ideal” domina-
tion number γ(G), with high probability.

Proof of Lemma 1 (a): Since γ(G\H) ≥ γ(G), it suffices to lower bound γ(G)
and for completeness, we give a small proof using a union bound argument
covering all possibilities, as in [7] [5]. Specifically, letting λa := np, λb =
n| log(1 − p)| and tn := log λa−θ log log λb

| log(1−p)| vertices, we show that there exists

a dominating set containing tn vertices, with high probability.
We begin with upper and lower bounds for tn. Using | log(1 − p)| > p,

we see that tn ≤ log λa

p = n log λa

λa
< n

4 if λa ≥ λ0, a sufficiently large absolute

constant. Moreover, we have that λa > (logλb)
2θ for all n ≥ N0 = N0(θ) large,

provided np ≥ λ0 = λ0(θ) is large. Indeed if p ≤ 1
2 , then using | log(1−p)| < 2p,

we get that λa − (logλb)
2θ ≥ np − (log(2np))2θ > 0 if np ≥ λ0 = λ0(θ) is

sufficiently large. On the other hand if 1
2 ≤ p ≤ 1− 1

n3 , then λa = np > n
2 and

(log λb)
2θ =

(

logn+ log log

(

1

1− p

))2θ

≤ (log n+ 6 log logn)2θ <
n

2

for all n ≥ N0 = N0(θ) large. Summarizing, we get that

logλa

2| log(1 − p)|
< tn < n

logλa

λa
<

n

4
(2.4)
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for all n large.
Let S be any set containing tn vertices. For a vertex v ∈ Sc, the probability

that v is not adjacent to any vertex of S is (1 − p)tn = (log λb)
θ

λa
. Thus the

vertex v is adjacent to some vertex of S with probability 1 − (log λb)
θ

λa
and so

if Edom(S) is the event that S is a dominating set, then using the fact that
the complement set Sc has n− tn ≥ 3n

4 vertices (see (2.4)), we get that

P (Edom (S)) ≤

(

1−
(log λb)

θ

λa

)

3n
4

≤ exp

(

−
3n

4
·
(log λb)

θ

λa

)

.

Since there are
(

n
tn

)

≤
(

ne
tn

)tn
= exp

(

tn log
(

ne
tn

))

sets of size tn, we use

the union bound and the bounds in (2.4), to see that the probability that there
exists a dominating set of size at most tn is bounded above by

exp

(

tn log

(

ne

tn

))

exp

(

−
3n

4
·
(log λb)

θ

λa

)

≤ exp

(

n
logλa

λa
log

(

2ne| log(1− p)|

logλa

))

exp

(

−
3n

4
·
(logλb)

θ

λa

)

= exp

(

n
logλa

λa
log

(

2eλb

logλa

))

exp

(

−
3n

4
·
(logλb)

θ

λa

)

≤ exp

(

n
logλa

λa
log (2eλb)

)

exp

(

−
3n

4
·
(log λb)

θ

λa

)

≤ exp

(

n
(log(2eλb))

2

λa

)

exp

(

−
3n

4
·
(logλb)

θ

λa

)

≤ exp

(

−
3n

8
·
(logλb)

θ

λa

)

(2.5)

for all n ≥ N0 not depending on λa or λb, where the second inequality in (2.5)
is true provided np = λa ≥ λ0 is large and the final inequality in (2.5) is true
if we choose θ > 2 strictly.

Proof of Lemma 1 (b): Let D be any set containing (1+ ǫ)un +∆ vertices.
Each vertex v /∈ D is adjacent to at least (1 + ǫ)un vertices of D in the
graph Kn \H and so the probability that v is not adjacent to any vertex of D
in G \H, is at most (1− p)(1+ǫ)un = 1

(np)1+ǫ . Thus if B is the set of all vertices

not dominated by D in G\H, then E#B ≤ n
(np)1+ǫ and so a direct application

of Markov inequality gives that

P

(

#B ≥
n log(np)

(np)1+ǫ

)

≤
1

log(np)
. (2.6)

By definition D ∪ B is a dominating set in G \H and has size

#(D ∪ B) ≤ (1 + ǫ)un +∆+
n log(np)

(np)1+ǫ
(2.7)
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with probability at least 1− 1
lognp , by (2.6). Also since p ≤ p0 a constant, we

have that | log(1 − p)| ≤
∑

k≥1 p
k ≤ p

1−p ≤ p
1−p0

and so

n log(np)

(np)1+ǫ
=

1

(np)ǫ
log(np)

p
<

1

(np)ǫ
un

1− p0
< ǫun

for all n large, since np −→ ∞. From (2.7), we then the upper deviation bound
in (2.3).

From the discussion following Lemma 1, we see that if the edge probabil-
ity p is a constant, then ∆ = o(logn) is sufficient to ensure the asymptotic
equivalence of the robust and the ideal domination numbers. However, in this
case we also know that with high probability, the vertex degree in the ran-
dom graph G in fact grows linearly with n, which is much larger than logn.
Therefore could we, perhaps under additional assumptions, establish asymp-
totic equivalence for conflict graphs H that are sparse in comparison to G?
Addressing this issue, we have the following result for random graphs with a
convergent edge probability sequence.

Theorem 1 Suppose np −→ ∞, p ≤ 1 − 1
n3 and p = p(n) −→ p0 for some

constant 0 ≤ p0 ≤ 1. As before, let H = H(n) be any deterministic graph with

maximum vertex degree ∆ = ∆(n) and containing m = m(n) edges. If either

∆ = o(n(1− p)) or m = o(nun(1− p)), (2.8)

then Γn

un
−→ 1 in probability as n → ∞.

Continuing with constant edge probability example, we see from Theorem 1
that if p is a constant, then either ∆ = o(n) or m = o(n logn) is sufficient
for Γn and γ(G) to be asymptotically equal.

For the case p0 = 0 which is of interest in communication networks, we
see that there are robust dominating sets that asymptotically have the same
size as the ideal dominating sets even if the number of edges removed per
vertex is much larger than the vertex degree itself. This is true because the
expected degree of a vertex in G equals (n− 1)p ≈ np and so by the standard
deviation estimate (A.1), we can deduce that each vertex has degree at most of
the order of np with high probability. Condition (2.8) ensures that the robust
domination number is asymptotically optimal provided ∆ = o(n), even if ∆ is
much larger than np.

To prove Theorem 1, we perform a case by case analysis of Γn based on the
asymptotic edge probability p0. Recalling the definition of un(x, y) and un =
un(p, p) prior to Lemma 1, we have the following result.

Lemma 2 Suppose that ∆ ≤ r0n− 1 for some constant 0 < r0 < 1.
(a) For every ǫ > 0 there are positive constants λi = λi(ǫ, r0), i = 1, 2 such

that if λ1

n ≤ p ≤ min
(

1
2 , 1− exp

(

− ǫ2(1−r0)
16

))

, then

P

(

Γn ≤
(1 + 6ǫ)un

1− r0

)

≥ 1− zn, (2.9)
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where

zn := min

(

exp

(

−
λ2n

4(np)(1+4ǫ)(1−r0)−1

)

,
1

(np)ǫ/2

)

.

(b) For every ǫ > 0 and every constant 0 < p < 1, we have that

P (Γn ≤ (1 + ǫ)un(p, p(1− ǫ)− r0)) ≥ 1− exp

(

−
ǫ2np

8

)

. (2.10)

(c) For every ǫ > 0, there is a constant C = C(ǫ) > 0 such that if

q1 := max
(

1− p, ∆
n

)

≤ 2−2/ǫ−2 then

P (Γn ≤ (1 + ǫ)un(p, 1− q1)) ≥ 1−
C

nǫ/2
. (2.11)

Parts (a), (b) and (c) of Lemma 2 essentially obtain deviation upper bounds
for Γn for the cases p0 = 0, 0 < p0 < 1 and p0 = 1, respectively.

We use the probabilistic method to prove Lemma 2 and so we begin with
a couple of common definitions. For integer t ≥ 1 let X := (X1, . . . , Xt) be
a random t−tuple chosen from V t, that is independent of the graph G. Also
let PX denote the probability distribution of X . In each of the three cases
below, we choose the tuple X appropriately so that certain niceness properties
are satisfied and exploit this to estimate the domination number.

Proof of Lemma 2 (a): For a constant 0 < ζ < 1 to be determined later,
let t = un

1−ζ . Assuming thatXi, 1 ≤ i ≤ t are independent and chosen uniformly
randomly from V, we estimate below the number of vertices “left out” by the
set D := {X1, . . . , Xt}. For a vertex v, the PX−probability that the random
variable X1 is equal to v or adjacent to v in H is at most ∆+1

n ≤ r0. Therefore
if Q(v) is the number of indices i, 1 ≤ i ≤ t such that Xi is not adjacent to v
in the graph H, then EX(Q(v)) ≥ t(1 − r0) and using the standard deviation
estimate (A.1) we get for ǫ > 0 that

PX (Q(v) ≥ t(1− r0)(1 − ǫ)) ≤ exp

(

−
ǫ2

4
t(1− r0)

)

. (2.12)

In the Appendix we show that un(x, x) =
log(nx)

| log(1−x)| is strictly decreasing for

all x > λlow

n where λlow > 0 is a sufficiently large absolute constant. Therefore

if λlow

n ≤ p ≤ λup := 1 − exp
(

− ǫ2(1−r0)
16

)

, then for all n ≥ N0(ǫ, r0) large we

have that

t ≥ un(p, p) ≥ un(λup, λup) ≥
logn

2| log(1− λup)|
=

8

ǫ2(1− r0)
logn, (2.13)

where the second inequality in (2.13) is true since λup is a constant and

so log(nλup) ≥
log n
2 for all n large. Therefore setting

Etot :=
⋂

v/∈D

{Q(v) ≥ t(1− r0)(1− ǫ)} ,
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we get from the union bound, (2.12) and (2.13) that

PX (Etot) ≥ 1− n ·
1

n2
= 1−

1

n
.

We assume henceforth that Etot occurs.
Next, we estimate the number of distinct entries in X . Since | log(1−p)| > p,

we get for any constant ζ > 0 that t = 1
1−ζ

log(np)
| log(1−p)| <

log(np)
p(1−ζ) < ǫn

2 (1 − r0),

provided np ≥ λlow = λlow(ǫ, ζ, r0) is large enough. Now, for i 6= j, the prob-
ability that Xi equals Xj is 1

n and so the PX−expected number of repeated

entries is at most t2

n ≤ ǫt
2 (1 − r0). If Erep is the event that the number of

repeated entries is at most tǫ(1 − r0) then PX(Ec
rep) ≤

1
2 , by the Markov in-

equality. Combining with the estimate for PX(Etot) in the previous paragraph
we then get from the union bound that Etot∩Erep occurs with PX−probability
at least 1

2 − 1
n > 0.

We assume henceforth that Etot ∩ Erep occurs so that each vertex v is
adjacent to least t(1 − ǫ)(1 − r0) − tǫ(1 − r0) ≥ t(1 − 2ǫ)(1 − r0) and at

most t = un

1−ζ vertices of D, in the graph Kn \H. Setting 1− ζ := (1−2ǫ)(1−r0)
1+ǫ ,

we then get that the probability of the event Jv that v is not adjacent to any
vertex of D in the graph G \ H, is at most (1 − p)(1+ǫ)un = 1

(np)1+ǫ and at

least (1− p)t = 1

(np)(1−ζ)−1 . If Ltot :=
∑

v/∈D 11(Jv), then ELtot ≤
n

(np)1+ǫ and a

direct application of the Markov inequality gives us that

P

(

Ltot ≥
n

(np)1+ǫ/2

)

≤
1

(np)ǫ/2
. (2.14)

Similarly ELtot ≥
n

(np)(1−ζ)−1 and so using the standard deviation estimate (A.1)

we get that

P

(

Ltot ≥
2n

(np)1+ǫ

)

≤ exp

(

−
Cn

(np)(1−ζ)−1

)

≤ exp

(

−
Cn

(np)(1+4ǫ)/(1−r0)

)

(2.15)
since (1 − ζ)−1 = 1+ǫ

(1−2ǫ)(1−r0)
≤ 1+4ǫ

1−r0
provided ǫ > 0 is a small enough

constant. We fix such an ǫ henceforth.
If Ltot ≤

n
(np)1+ǫ/2 , then Γn ≤ #D + Ltot ≤

un

1−ζ + n
(np)1+ǫ/2 and moreover,

using | log(1 − p)| < 2p for p < 1
2 , we have for np ≥ λlow large enough

that n
(np)1+ǫ/2 < ǫ log(np)p < 2ǫun. Thus

Γn ≤

(

1

1− ζ
+ 2ǫ

)

un ≤

(

1 + 4ǫ

1− r0
+ 2ǫ

)

un ≤
(1 + 6ǫ)un

1− r0

and together with (2.14) and (2.15), this obtains the desired upper bound
in (2.9).

Proof of Lemma 2 (b): We begin with a couple of preliminary calculations.
If dG(v) is the degree of v in G, then EdG(v) = (n − 1)p. Therefore from the
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deviation estimate (A.1), we get that dG(v) ≥ np(1 − ǫ) with probability at

least 1 − exp
(

− ǫ2

5 np
)

. Letting Edeg :=
⋂

v{dG(v) ≥ np(1− ǫ)}, we get from

the union bound that

P(Edeg) ≥ 1− n exp

(

−
ǫ2

5
np

)

≥ 1− exp

(

−
ǫ2

8
np

)

(2.16)

for all n large.
We henceforth assume that Edeg occurs and let Xj , 1 ≤ j ≤ t be indepen-

dently and uniformly chosen from the vertex set V also independent of the
graph G. Let N (Xi) be the set of all neighbours of Xi in the graph G \ H
and set N [Xi] := {Xi} ∪ N (Xi) to be the closed neighbourhood of Xi. Set-
ting B :=

⋃

1≤j≤t N [Xj ], we see that each vertex in B is adjacent to at least
one vertex in {Xj}1≤j≤t and so D :=

⋃

{Xj}1≤j≤t

⋃

(V \ B) is a dominat-
ing set for G \ H. Letting PX be the distribution of {Xj}1≤j≤t, we see that
the PX−expected size of D is

EX#D ≤ t+ (n− EX#B) (2.17)

and in the rest of the proof below, we use telescoping to bound the expected
size of B.

Formally, for 1 ≤ j ≤ t we let Bj :=
⋃

1≤i≤j N [Xi] and estimate the
expected increment EX#Bj−EX#Bj−1. Adding these increments would then
give us the desired bound for B = Bt. Specifically, we have by construction
that #Bj = #Bj−1 +#(N [Xj ] \ Bj−1) and for any set S,

#(N [Xj ] ∩ S) =
∑

y∈S

11 (y ∈ N [Xj ])

=
∑

y∈S

11(y = Xj) + 11 (y ∈ N (Xj))

=
∑

y∈S

11(y = Xj) + 11 (Xj ∈ N (y)) .

Thus EX#(N [Xj ] ∩ S) = 1
n

∑

y∈S(d(y) + 1), where d(y) is the degree of ver-
tex y in G \H and setting S = V \ Bj−1 =: Bc

j−1, we therefore get that

EX#Bj = EX#Bj−1 +
1

n
E

∑

y∈Bc
j−1

(d(y) + 1). (2.18)

We recall that Edeg occurs and also that the maximum vertex degree of H

is∆ and so
∑

y∈Bc
j−1

(d(y)+1) ≥ #Bc
j−1(np(1−ǫ)+1−∆).Defining βj :=

E#Bj

n ,

we then get that βj ≥ θ1+θ2βj−1, where θ1 = 1−θ2 := p−pǫ−∆−1
n . Applying

recursion and using the fact that β1 > 0, we get that

βt ≥ θ1
(

1 + θ2 + . . .+ θt−2
2

)

+ θt−1
2 β1

≥
θ1

1− θ2
(1− θt−1

2 )

= 1− (1 − θ1)
t−1. (2.19)
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Substituting (2.19) into (2.17) and using #B
n = βt, we finally get that EX#D ≤

t+ n(1 − θ1)
t−1.

Summarizing, if the event Edeg occurs, then there exists a dominating set

of size at most t + n(1 − θ1)
t−1. Setting t − 1 = (1 + ǫ) log (np)

| log(1−θ1)|
we get

that n(1 − θ1)
t−1 = n

(np)1+ǫ = O
(

1
nǫ

)

and so the above iteration procedure

necessarily terminates after at most t steps to provide the desired dominating
set D of size at most t+ 1. By Lemma statement

θ1 = p(1− ǫ)−
∆− 1

n
≥ p(1− ǫ)− r0

for all n large and so D has size at most (1+ǫ)un(p, p(1−ǫ)−r0). From (2.16),
we then get (2.10).

Proof of Lemma 2 (c): For t ≤ 2 logn, let X = (X1, . . . , Xt) be a uniformly
randomly chosen t−tuple from V t with distinct entries. Say that a vertex v is
bad if v is not adjacent to any vertex of X in G \H and let q := 1 − p. The
vertex v is not adjacent to Xi in G \H if either v = Xi or v is adjacent to Xi

in H or the edge (v,Xi) is not present in G. Therefore if Ai denotes the event
that v is not adjacent to Xi in G \H, then

P(Ai) = 11(Zi) + 11(Zc
i )q (2.20)

where Zi is the event that either v = Xi or v is adjacent to Xi in H. More-
over, because the entries of X are distinct, the events Ai and Aj are mutu-
ally P−independent, given X .

Thus denoting Abad(v) to be the event that v is bad, we see that

EXP(Abad(v)) = EXP





⋂

1≤j≤t

Aj





= EX

t
∏

j=1

P(Aj)

= EX





t−1
∏

j=1

P(Aj)EX (P(At) | X1, . . . , Xt−1)



 . (2.21)

Given X1, . . . , Xt−1, the random variable Xt is equally likely to be any of the
remaining n− t+1 vertices from {1, 2, . . . n} and since the vertex v is adjacent
to at most ∆ vertices in H, the event Zi defined prior to (2.20) occurs with
conditional probability

PX(Zi | X1, . . . , Xt−1) ≤
∆+ 1

n− t+ 1
.

Plugging this into (2.20) we obtain

EX (P(At) | X1, . . . , Xt−1) ≤
∆+ 1

n− t+ 1
+ q ≤

∆

n− 2 logn
+ q ≤ 2q1
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for all n large, where q1 := max
(

q, ∆n
)

. Continuing iteratively, we see from (2.21)
that

EXP(Abad(v)) ≤ (2q1)
t ≤

1

(np)1+ǫ/2
(2.22)

provided we set t :=
(

1 + ǫ
2

) log (np)
| log(2q1)|

. Using p ≤ 1 and q1 ≤ 2−2/ǫ−2 we see

that the required condition t ≤ 2 logn is satisfied for all n large.
IfNbad :=

∑

v 11(Abad(v)) is the total number of bad vertices, then from (2.22)
we see that

EXENbad ≤
n

(np)1+ǫ/2

and so there exists a choice of X such that ENbad ≤ n
(np)1+ǫ/2 . We fix such a X

henceforth and get from the Markov inequality that

P(Nbad ≥ 1) ≤
n

(np)1+ǫ/2
≤

C

nǫ/2
,

for some constant C > 0 since p ≥ 1− 2−2/ǫ−2 (see statement of the Lemma).
In other words, with probability at least 1 − C

nǫ/2 , the vertices in X form a
dominating set of G and so

P

(

Γn ≤
(

1 +
ǫ

2

) log (np)

| log(2q1)|

)

≥ 1−
C

nǫ/2
. (2.23)

Again using q1 ≤ 2−2/ǫ−2 we have that 1+ǫ/2
| log(2q1)|

≤ 1+ǫ
| log q1|

and so (2.23) implies

that Γn ≤ (1 + ǫ)un(p, 1 − q1) and this obtains the desired deviation upper
bound in (2.10).

We now use Lemma 2 to prove Theorem 1 below.
Proof of Theorem 1: We consider three separate subcases depending on whether
the asymptotic edge probability p0 = 0, 1 or otherwise. For p0 = 0 and ∆ =
o(n), we use the lower deviation bound in part (a) of Lemma 1 and the upper
deviation bound in part (a) of Lemma 2 to get that Γn

un
−→ 1 in probability.

Similarly, the cases 0 < p0 < 1 and p0 = 1 are obtained using parts (b) and (c),
respectively, of Lemma 2.

For m = o(nun(1 − p)), we include a small “preprocessing” step. First
consider the case p0 = 0. For ǫ > 0 let Q be the set of all vertices with degree
at most ǫn. In the proof of Lemma 2(a), we now chooseXi, 1 ≤ i ≤ t uniformly
and independently from Q and estimate the number of vertices covered by the
set D := {X1, . . . , Xt} ∪ Qc. For ǫ > 0 and a vertex v, the PX−probability
that X1 is equal or adjacent to v in H is at most ∆+1

#Q ≤ ǫ
1−ǫ < 2ǫ since by

definition, the set Qc has size o(un) < ǫun < ǫn for all n large.
If Ltot is the number of vertices “left out” by {X1, . . . , Xt}, then arguing

as in the proof of Lemma 2(a) we get that both (2.14) and (2.15) holds and so

Γn ≤ #D + Ltot ≤ (1 + C1ǫ)un +#Qc ≤ (1 + C2ǫ)un
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for some constants C1, C2 > 0. Since ǫ > 0 is arbitrary, we argue as in the first
paragraph of this proof to then get that EΓn = un(1 + o(1)). An analogous
analysis holds for the cases 0 < p0 < 1 and p0 = 1 as well.

3 The Sparse Regime

In this section, we discuss robust domination in the sparse regime when np −→
λ < ∞. We consider the cases λ = 0 and 0 < λ < ∞ separately and have the
following result regarding the robust domination number.

Theorem 2 We have:

(a) If np −→ 0, n2p −→ ∞ and either ∆ = o(n) or m = o(n3p), then 4Γn

n2p −→ 1
in probability as n → ∞.
(b) Suppose np −→ λ for some 0 < λ < ∞ and either ∆ = o(n) or m = o(n2).
For every ǫ > 0, we have

P

(

a(λ)(1 − ǫ) ≤
γ(G)

n
≤

Γn

n
≤ b(λ)(1 + ǫ)

)

−→ 1 (3.1)

where

a(λ) :=







λe−2λ λ ≤ λ0

log λ−3 log log λ
λ , λ > λ0

, b(λ) :=







λ
4 , λ ≤ 1

log λ+1
λ , λ > 1

,

and λ0 > 0 is an absolute constant not depending on the choice of λ or H.

Essentially, for λ = 0 we see that Γn is of the order of n2p while for the
“intermediate” regime 0 < λ < ∞, the robust domination number is of the
order of n, with high probability.

Proof of Theorem 2(a): If Ytot and Ztot denote, respectively, the number
of edges and the number of isolated edges of G \ H, then Ytot

2 ≤ Γn ≤ Ztot

2
and so it suffices to bound Ytot and Ztot. The expected number of edges in G

is
(

n
2

)

p = n2p
2 (1+ o(1)) and so from the deviation estimate (A.1) in Appendix,

we get that

P

(

2Γn ≥ Ztot ≥
n2p

2
(1 + ǫ)

)

≤ exp

(

−
ǫ2n2p

8

)

. (3.2)

This provides an upper bound for Γn.

We now obtain general lower bounds for Γn assuming that np −→ λ
and ∆ ≤ r0n − 1 for some finite constants 0 < r0 < 1 and 0 ≤ λ < ∞.
As discussed before, it suffices to obtain a deviation bound for Ytot and we
use the second moment method. For an edge e ∈ Kn \H, let Ae be the event
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that e is isolated so that Ytot =
∑

e∈Kn\H
11(Ae), where 11(.) is the indicator

function. Since each vertex has degree at most n, we have that

P(Ae) ≥ p(1− p)2n−4

=
p

(1− p)4
(1− p)2n

=
p

(1− p)4
e−2λ(1 + o(1))

= pe−2λ(1 + o(1)) (3.3)

and since ∆ ≤ r0n we have that the number of edges in H is m ≤ 1
2∆n ≤

1
2r0n

2. Therefore from (3.3), we get that

EYtot ≥

((

n

2

)

−m

)

pe−2λ(1 + o(1)) ≥
n2p

2
e−2λ(1− r0 − ǫ) (3.4)

for all n large.

Next, the minimum vertex degree in Kn \H is n− 1−∆ ≥ n(1− r0) and
so for distinct edges e1 6= e2 in Kn \H, we argue as in (3.3) to get that

P (Ae1 ∩Ae2 ) ≤ p2(1− p)4(n−r0n−3) = p2e−4λ(1−r0)(1 + o(1)).

Thus again using (3.3), we get that P (Ae1 ∩ Ae2 )− P(Ae1)P(Ae2 ) is bounded
above by

p2e−4λ
(

e4λr0 − 1
)

(1 + o(1)) ≤ P(Ae1)P(Ae2 )
(

e4λr0 − 1
)

(1 + o(1))

and therefore

var(Ytot) =
∑

e∈Kn\H

P(Ae)− P
2(Ae) +

∑

e1 6=e2

P (Ae1 ∩ Ae2)− P(Ae1)P(Ae2 )

≤
∑

e∈Kn\H

P(Ae) +
∑

e1 6=e2

P(Ae1)P(Ae2 )
(

e4λr0 − 1
)

(1 + o(1))

≤ EYtot + (EYtot)
2 (e4λr0 − 1

)

(1 + o(1)). (3.5)

Using (3.5), (3.4) and the Chebychev inequality, we get for ǫ > 0 that

P (Ytot ≤ EYtot(1− ǫ)) ≤
var(Ytot)

ǫ2(EYtot)2

≤
1

EYtot
+
(

e4λr0 − 1
)

(1 + o(1))

≤
C

n2p
+
(

e4λr0 − 1
)

(1 + o(1))

≤
C

n2p
+ 2

(

e4λr0 − 1
)

(3.6)



Robust Domination in Random Graphs 13

where C = C(λ, r0, ǫ) > 0 is a constant. Again using (3.4) and (3.6), we get
that

P

(

2Γn ≥ Ytot ≥
n2p

2
e−2λ(1− r0 − 2ǫ)

)

≥ 1−
C

n2p
− 2

(

e4λr0 − 1
)

. (3.7)

If ∆ = o(n) and λ = 0, then we can set r0 arbitrarily small in the above
analysis and get from (3.2) and (3.7) that 4Γn

n2p −→ 1 in probability as n → ∞.

If m = o(n3p), then the number of vertices with degree larger than ǫn for ǫ > 0
is o(n2p). Performing the “pre-processing” steps as in the proof of Theorem 1,
we again get that 4Γn

n2p −→ 1 in probability.

Proof of Theorem 2(b): We show that there exists a constant C > 0 such
that for every ǫ > 0,

a(λ)(1− ǫ) ≤
EΓn

n
≤ b(λ)(1+ ǫ) and var(Γn) ≤ Cn(logn)2 = o(EΓn)

2. (3.8)

From (3.8) and the Chebychev inequality, we then get (3.1). Also, we only
consider the case ∆ = o(n) and the preprocessing arguments analogous to the
proof of Theorem 2(a) holds for the case m = o(n2).

For convenience, we assume throughout that np = λ and begin with the
lower bounds for EΓn. Set θ = 3 in Lemma 1(a) and let λ0 := λ0(3). Since p =
λ
n , we have that

un =
log(np)

| log(1− p)|
∼ n

logλ

λ
, λa = np = λ, λb = n| log(1 − p)| ∼ λ

and so for ǫ > 0 we have that un

(

1− 3 log log λb

log λa

)

≥ a(λ)n(1−ǫ) for all n large.

Consequently, for λ > λ0, we get from (2.2) in Lemma 1 that

P (Γn ≥ a(λ)n(1 − ǫ)) ≥ 1− e−Cn

and so EΓn ≥ a(λ)n(1 − 2ǫ) for all n large. For λ < λ0, we use (3.4) and the

fact that ∆ = o(n) to get that EΓn ≥ n2p
4 e−2λ(1 − 2ǫ) = a(λ)n(1 − 2ǫ) for

all n large.
Next, for the upper bound for EΓn for λ ≤ 1, we recall from the discussion

prior to (3.4) that EΓn ≤ EZtot

2 ≤ n2p
4 = λn

4 . For λ > 1, we use the alteration
method as in the proof of Lemma 1(b). Let D be any set of un +∆ vertices.
Each vertex v /∈ D is adjacent to at least un vertices of D and so v is not
adjacent to any vertex of D in G \H with probability at most (1− p)un = 1

np
and if B is the set of all “bad” vertices in Dc not adjacent to any vertex
of D, then the expected size of B is at most 1

p = n
λ . Moreover, the asymptotic

relation | log(1 − p)| ∼ p and ∆ = o(n) imply that D has size un + ∆ ≤
(

log λ
λ + o(1)

)

n. The set D ∪ B is a dominating set of G \ H and has an

expected size of at most n
(

log λ+1
λ + o(1)

)

≤ b(λ)n(1+ ǫ) for all n large. This

completes the proof of the expectation bounds in (3.8).
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Next, to prove the variance bound in (3.8), we use the martingale differ-
ence method. For 1 ≤ j ≤ n, let Fj = σ ({Z(f) : f = (u, v), 1 ≤ u < v ≤ j})
denote the sigma field generated by the state of the edges in the complete sub-
graph Kj. Defining the martingale difference Rj := E(Γn | Fj)−E(Γn | Fj−1),
we get that Γn − EΓn =

∑n
j=1 Rj . By the martingale property we then have

var(Γn) = E





n
∑

j=1

Rj





2

=
n
∑

j=1

ER2
j . (3.9)

To evaluate ER2
j , we introduce the graph G(j) obtained by using indepen-

dent copies for the states of all edges (u, j), 1 ≤ u < j and retaining the same
state as G for the rest of the edges. With this notation, we rewrite Rj =

E(Γn −Γ
(j)
n | Fj), where Γ

(j)
n is the domination number of the graph G(j) \H

and so squaring and taking expectations, we get ER2
j ≤ E(Γn − Γ

(j)
n )2. To

estimate the difference |Γn −Γ
(j)
n |, we let D be any minimum size dominating

set of G \H. Adding all vertices adjacent to the vertex j in the graph G(j) to

the set D gives us a dominating set of G(j) \H and so Γn ≤ Γ
(j)
n + lj , where lj

is the total number of edges containing j as an endvertex either in G or G(j).

By symmetry, we therefore get |Γn − Γ
(j)
n | ≤ lj and so ER2

j ≤ El2j .
The expected number of edges in G containing j as an endvertex is

(n − 1)p ≤ λ and so if Eup is the event that the vertex j is adjacent to at
most C1 logn edges in G then using Chernoff bound we get for s > 0 that

P(Ec
up) ≤ e−sC1 logn(1 − p+ esp)n−1

≤ e−sC1 logn exp ((es − 1)(n− 1)p)

≤ C2e
−sC1 log n (3.10)

for some constant C2 = C2(λ, s) > 0. Setting s = 1 and choosing C1 large, we

get that P(Ec
up) ≤ 1

n6 . Defining an analogous event E
(j)
up for the graph G(j),

we get from the union bound that Fup := Eup ∩ E
(j)
up occurs with probability

at least 1 − 2
n6 . If Fup occurs, then lj ≤ 2C1 logn and other wise, we use the

bound lj ≤ 2n. Combining this with the discussion in the previous paragraph,
we get

ER2
j ≤ El2j

≤ (2C1 logn)
2 + 4(2n)2P(F c

up)

≤ (2C1 logn)
2 +

2(2n)2

n6

≤ C3(log n)
2

for some constant C3 > 0. Plugging this into (3.9) gives the variance bound
in (3.8) and therefore completes the proof of Theorem 2(b).
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Appendix

Standard Deviation Estimate: Let Zi, 1 ≤ i ≤ t be independent Bernoulli
random variables satisfying P(Zi = 1) = pi = 1− P(Zi = 0). If Wt =

∑t
i=1 Zi

and µt = EWt, then for any 0 < η < 1
2 we have that

P (|Wt − µt| ≥ ηµt) ≤ 2 exp

(

−
η2

4
µt

)

. (A.1)

For a proof of (A.1), we refer to Corollary A.1.14, pp. 312, Alon and Spencer
(2008).

Montonicity of un(x): The function un(x) :=
log(nx)

| log(1−x)| has a derivative

u′
n(x) =

H(x)− x log n

x(1 − x)| log(1 − x)|2

where

H(x) := −x · log x− (1− x) · log(1 − x) (A.2)

is the binary entropy function and logarithms are natural throughout. If x > 1
2 ,

then H(x)−x log n ≤ 1− logn
2 < 0 for all n ≥ 4. The numerator H(x)−x log n

has derivative log
(

1
x − 1

)

− logn < 0 for all x > 1
n+1 . Thus for λ

n < x < 1
2

and λ > 1 we use (1−x)| log(1−x)| < x to get that H(x)−x logn is bounded
above by

H

(

λ

n

)

−
λ log n

n
=

−λ logλ

n
−

(

1−
λ

n

)

log

(

1−
λ

n

)

≤ −
λ logλ

n
+

λ

n

which is strictly less than zero if λ > e.
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