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Abstract— This paper presents a novel incorporation of
probabilistic constraints and Second Order Cone Program-
ming (SOCP) with economic Model Predictive Control (MPC).
Hereby the performance of the controller is robustyfied in the
presence of both model and forecast uncertainties. Economic
MPC is a receding horizon controller that minimizes an eco-
nomic objective function and we have previously demonstrated
its usage to include a refrigeration system as a controllable
power consumer with a portfolio of power generators such that
total cost is minimized. The main focus for our work is power
management of the refrigeration system. Whereas our previous
study was entirely deterministic, models of e.g. supermarket
refrigeration systems are uncertain, as are forecasts of outdoor
temperatures and electricity demand. The linear program we
have formulated does not cope with uncertainties and thus
it is, liable to drive an optimal solution to an infeasible
or very expensive solution. The main contribution of this
paper is the Finite Impulse Response (FIR) formulation of
the system models, allowing us to describe and handle model
uncertainties in the framework of probabilistic constraints. Our
new solution using this setup for robustifying the economic
MPC is demonstrated by simulation of a small conceptual
example. The scenario is primarily chosen to illustrate the effect
of our proposed method in that it can be compared with our
previous deterministic simulations.

I. INTRODUCTION

In [1] we introduced economic MPC to control a number

of independent dynamic systems that must collaborate to

minimize the overall cost of satisfying the cooling demand

for some goods while meeting market demands for power

at all times. Our control strategy is an economic optimizing

model predictive controller, economic MPC. MPC for

constrained systems has emerged during the last 30 years

as the most successful methodology for control of industrial

processes [2]. MPC is increasingly being considered for

refrigeration systems [3], [4] and for power production

plants [5]. MPC based on optimizing economic objectives

has only recently emerged as a general methodology with

efficient numerical implementations and provable stability

properties [6]–[8]. Our proposed economic MPC controller

has previously been formulated in a deterministic setting

and the contribution of this paper is to put our strategy

into a more realistic scenario where different uncertainties

always affect the system. Thus, this paper provides a

novel extension to the economic MPC to provide robust

performance in the presence of both forecast and model

T. G. Hovgaard and L. F. S. Larsen are with Danfoss
Refrigeration and A/C Controls, DK-6430 Nordborg, Denmark.
{tgh,lars.larsen}@danfoss.com

J. B. Jørgensen is with DTU Informatics, Technical University of Den-
mark, DK-2800 Lyngby, Denmark. jbj@imm.dtu.dk

uncertainties. This is done in a way similar to [9] where

energy consumption for climate control is minimized under

influence of uncertain weather predictions but also the

ability to handle model uncertainties in the closed-loop

MPC is an important issue in this paper.

The Smart Grid is the future intelligent electricity grid

and is intended to be the smart electrical infrastructure

required to increase the amount of green energy significantly.

The Danish transmission system operator (TSO) has the

following definition of Smart Grids which we adopt in

this work: ”Intelligent electrical systems that can integrate

the behavior and actions of all connected users - those

who produce, those who consume and those who do

both - in order to provide a sustainable, economical and

reliable electricity supply efficiently” [10]. A larger share

of intermittent stochastic power-generating sources such

as wind turbines makes it difficult to balance demand and

supply of electricity in a flexible and cost-efficient manner.

To account for this we previously introduced large power

consumers, such as cold rooms, or an aggregation of a

number of like consumers such as supermarket systems,

with the ability to adjust the power consumption profile to

the power supply. Due to the large thermal capacity of cold

rooms, their consumption of electricity can, to some degree,

be shifted in time to benefit the overall system. The thermal

capacity in the refrigerated goods is then utilized to store

”coldness” such that the refrigeration system can increase

cooling when there is an over production of energy and

then lower its consumption at other times. The temperature

is allowed to vary within certain bounds, which have no

impact on food quality. We exploit that the dynamics of

the temperature in the cold room are rather slow while the

power consumption can be changed rapidly. [9], [11], [12]

also utilized load shifting capabilities to reduce total energy

consumption.

Several works exist that consider constrained model

predictive control (MPC) in the presence of uncertainty

[13]. In many applications distributions can be quantified for

uncertainty and if this information is ignored (e.g. by defining

worst-case costs and invoking constraints over all uncertainty

realizations) it can lead to conservative results, and the need

for a stochastic extension to constrained MPC is clear [14].

Taking expected values of the cost provides an obvious way

to utilize probabilistic information [15]. However constraints

often admit a probabilistic formulation too, e.g. a variable

should not exceed a certain bound with a given probability.
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[16] and [17] considered MPC with probabilistic constraints

with the cost based on the expected value of a linear

function of the states. In the former the implementation

of probabilistic constraints can be conservative due to the

use of statistical confidence ellipsoidal approximations,

whereas the latter uses affine disturbance feedback. [18]

and [19] demonstrate that probabilistic linear constraints

can be written as second-order cone (SOC) constraints

that are convex provided the probability involved is greater

than 0.5. Probabilistic constraints are also introduced in

[20] for model uncertainties and in [21] for uncertain

disturbances. Both works confine the analysis to open loop

optimization whereas [22] uses SOCP methods to calculate

steady-state targets for MPC under uncertainty. In [23]

a fast algorithm for MPC with probabilistic constraints

is presented. For power management scenarios e.g. [24]

proposed a risk-constrained stochastic programming for

signing day-ahead contracts under uncertain price forecasts

and in [25] a stochastic mixed-integer program is proposed

for the scheduling of reserves by demand response under

forecast uncertainty and random outages of generating units

and transmission lines.

This paper is organized as follows. Section II introduces

economic MPC and illustrates the problem with linear pro-

gramming for uncertain systems. In section III we explain

the different sources of uncertainty and reformulate both the

model and forecast uncertainties to fit into solutions with

probabilistic constraints. Section IV describes the models,

assumptions and scenarios used for our case study, and the

results are provided in section V. We give conclusions in

Section VI.

II. ECONOMIC MPC FOR LINEAR SYSTEMS

In this section we describe the economic MPC for linear

systems. The Economic MPC minimizes an economic cost

directly as opposed to minimizing the deviation from a set-

point in some norm. We consider continuous variables only

and the resulting optimal control problem is formulated as a

linear program. The solution of this program is implemented

on the system in a receding horizon manner.

A. Distributed Independent System

In this paper, we consider a distributed independent system

represented in continuous time as:

Yi(s) = Gyu,i(s)Ui(s) +Gyd,i(s)Di(s) i ∈ P (1a)

Zi(s) = Gzu,i(s)Ui(s) +Gzd,i(s)Di(s) i ∈ P (1b)

with i ∈ P = {1, 2, . . . , P} being an index referring to each

plant. U ∈ C
nu is the manipulable variables, D ∈ C

nd is

known disturbances, Y ∈ C
ny is the outputs associated with

a cost, and Z ∈ C
nz is the outputs associated with output

constraints. Gyu, Gyd, Gzu, and Gzd are transfer function

matrices of compatible size.

The set of plants, P , consists of controllable produc-

ers (e.g. conventional power plants), SC , non-controllable

producers (e.g. wind farms), SNC , controllable consumers

(e.g. large cooling houses as in this paper), DC and non-

controllable consumers, DNC . We combine the effect from

all non-controllable units in the net power demand signal

r. In this signal we model changes in e.g. wind speed

as step-like changes. The dynamically independent plants

must collaborate to meet a common objective i.e. satisfy

the market demand for the goods they produce. The optimal

control problem defining the economic MPC for (1) may

then be stated as the block-angular linear program:

min
{x,u,y,z}

φ =
∑

i∈S

(

∑

k

c′u,iui,k + c′y,iyi,k

)

(2a)

s.t.
∑

i∈SC

yi,k −
∑

i∈DC

yi,k ≥ rk (2b)

xi,k+1 = Aixi,k +Biui,k + Eidi,k (2c)

yi,k = Cixi,k +Diui,k + Fidi,k (2d)

zi,k = Cz,ixi,k +Dz,iui,k + Fz,idi,k (2e)

umin,i ≤ ui,k ≤ umax,i (2f)

∆umin,i ≤ ∆ui,k ≤ ∆umax,i (2g)

zmin,i ≤ zi,k ≤ zmax,i (2h)

with i ∈ P and k ∈ T . T ∈ {0, 1, . . . , N}. The objective

function (2a) says that the total cost of production from all

the power plants in the time horizon considered must be

minimal. (2b) couples the independent plants by requiring

that the supply exceeds the demand. This is not a realistic

constraint for controlling an entire Smart Grid where supply

and demand have to balance at all times. But for the

illustration of the effect gained from including controllable

consumers, this simplification does not change the solution.

(2c)-(2e) are the discrete-time state space realization of (1),

(2f) constitutes the input constraints and (2g) is a constraint

on the rate of movement (∆uk = uk − uk−1). The output

constraints are represented by (2h).

The supply-demand constraint (2b) and the output con-

straints (2h) may not be feasible for every disturbance and

initial state scenario. In such situations (2) may be modified

to a feasible linear program by representing (2b) and (2h) as

soft constraints with large constraint violation penalties.

(2) can be formulated as an instance of a linear program

which may be solved efficiently using Dantzig-Wolfe decom-

position [26].

B. Linear Programs and Control with Uncertainty

The optimum of a linear program is an extreme point, as

illustrated in Fig. 1. This property of linear programs leads

to either dead-beat or idle control when linear programs are

used to solve model predictive control problems with an ℓ1-

penalty [27]. For economic MPC the fact that the optimum

is an extreme point implies that even small perturbations

in the data or the disturbances may change the otherwise

optimal solution to an infeasible or very expensive solution.

Uncertainties are always present in real systems and the

solution we presented in [1] is therefore entirely concep-

tual. Exemplified by the power production case, an optimal

solution is one where the amount of power produced exactly
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matches the consumption. However, due to the optimization

relying on a prediction of power production from non-

controllable producers, there is a risk of power shortage if

e.g. the estimate of power from non-controllable producers

was overstated. Since this situation is very expensive, a more

desirable solution would be to produce just enough extra

power to leave room for most of the effect from uncertainties.

Another scenario would be the cold room temperature that, in

an energy context, optimally aims at the upper limit, causing

the foodstuff to be damaged if the surrounding temperature

gets higher than predicted or if the real dynamics of the

refrigeration system are slightly different than modeled. This

has previously been handled by adding a somewhat arbitrary

amount of back-off from the calculated optimal point. In this

work we want to introduce a confidence interval such that the

solution accounts for the amount of uncertainty. The tubes

in Fig. 1 illustrate this.

III. ECONOMIC MPC WITH PROBABILISTIC

CONSTRAINTS

As pointed out above the optimal solution to a

deterministic LP is not always optimal, nor feasible,

in the stochastic case. Therefore we describe means to

handle the uncertainties in both forecasts and in the

models of the system. We are using assumptions of the

uncertainty belonging to certain distribution functions and

define the confidence level (probability) that the constraints

should hold with. The probabilistic constraints are then

reformulated as their deterministic counterparts.

First we define the system model in Finite Impulse Re-

sponse (FIR) form:

yk = bk +

k
∑

i=0

Hiuk−i, Hi =

{

D for i = 0
CAi−1B for i > 0

(3)

u1

u2

u2 Min

u2 Max

u1 Min u1 Maxy2 Max

y2 Min

y1 Min

y1 Max

Region of 

feasible 

solutions.

Fig. 1. Example of LP with two inputs and two outputs. Boundaries of
the feasible region are illustrated with green for input constraints and red
for output constraints. The arrows indicate possible optimal solutions and
the circles illustrate the confidence interval around a solution caused by
uncertainty.

where bk is a bias term. Next, the stochastic optimization

problem is defined as (boldface variables are uncertain):

min E

{

N
∑

k=0

ck
′uk

}

(4a)

s.t.

umin ≤ uk ≤ umax (4b)

Prob {yk ≥ rk} ≥ 1− α, α ∈ [0; 1] (4c)

yk = bk +

k
∑

i=1

Hiuk−i +

k
∑

i=1

HD,idk−i (4d)

where r is a reference trajectory, d a disturbance, 1− α the

confidence level for the constraint, and:

1) ck ∼ N(c̄k, σ
2
c ) 2) rk ∼ N(r̄k, σ

2
r)

3) Hi ∼ N(H̄i,Σ
2
H) 4) HD,i ∼ N(H̄D,i,Σ

2
H)

5) dk ∼ N(d̄k, σ
2
d)

(5)

1) and 2) are forecast uncertainties, 3) and 4) describe model

uncertainties while 5) is uncertainty in the disturbances.

A. Forecast Uncertainty

1) Uncertainty in price, ck: Since we are minimizing the

expected value of the objective function we use the certainty

equivalent description and substitute c̄k with ck.

2) Uncertainty in the reference, rk: The probability con-

straint is reformulated as a deterministic constraint:

Prob {Y ≥ R} ≥ 1− α (6a)

R− R̄

σr
∼ N(0, 1) ⇒ Φ

(

Y − R̄

σr

)

≥ 1− α (6b)

Φ(x) is the cumulative distribution function (CDF) of a

zero mean unit variance Gaussian random variable x

Y ≥ R̄+ σrΦ
−1(1− α) (7)

Hence a security margin is added to rk resulting in a back-off

from the optimal (in the deterministic case) boundary. This

strategy is closely related to the affine feedback methods

described e.g. in [28] and [17].

B. Model and Disturbance Uncertainty

3), 4) and 5) lead to stochastic programming which is

described in this section. We formulate the system using the

FIR description in Eq. (3)-(5):

Y =
[

C Γ
]

[

Upast

U

]

+
[

CD ΓD

]

[

Dpast

D

]

(8)

and the optimization problem as:

minU φ = E

{

N−1
∑

k=0

cu,kuk

}

(9a)

s.t.

yk =
[

Ck Γk

]

[

Upast

uk

]

+
[

CD,k ΓD,k

]

[

Dpast

dk

]

(9b)

Prob {yk ≥ rk} ≥ 1− α, k = 1, 2, · · · , N (9c)
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where Ck and Γk are rows from the corresponding matrices

in Eq. (10) and subscript ”past” indicates the previous signals

corresponding to the number of coefficients in the FIR model.

[

ΓN×N | CN×(n−1)

]

=


























H1 0 · · · · · · · · · 0
...

. . .
. . .

. . .
. . .

...

Hn
. . .

. . .
. . .

. . .
...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
0 · · · 0 Hn · · · H1

|
|
|
|
|
|
|

Hn · · · · · · H2

0
. . .

. . .
...

...
. . .

. . .
...

0 · · · 0 Hn

0 · · · · · · 0
...

...
...

...

0 · · · · · · 0



























(10a)

Upast =







u−(n−1)

...

u−1






, U =







u1

...

uN






(10b)

The statistical properties of the resulting output yk can be

described as:

YU ∼ N(ȲU ,ΣYU
), YD ∼ N(ȲD,ΣYD

) (11a)

Y = YU +YD, Y ∼ N(ȲU + ȲD,ΣYU
+ΣYD

) (11b)

where:

ȲU,k =
[

C̄k Γ̄k

]

[

Upast

U

]

(12a)

ΣYU ,k =
[

Upast U
]

[

ΣC,k 0
0 ΣΓ,k

] [

Upast

U

]

(12b)

The product of the two normally distributed variables coming

from the model uncertainties and the uncertain disturbance

respectively can be described by an approximate normal

distribution with the following properties [29]:

ȲD,k ≈
[

C̄D,k Γ̄D,k

]

[

D̄past

D̄

]

(13a)

ΣYD,k ≈
[

D̄past D̄
]

[

ΣCD,k 0
0 ΣΓD,k

] [

D̄past

D̄

]

+

[

C̄D,k Γ̄D,k

]

ΣD

[

C̄D,k

Γ̄D,k

]

(13b)

Hence, using that (yk− ȳk)/Σ
1/2
y,k ∼ N(0, 1), the probabilis-

tic constraint can be reformulated as follows:

Prob {yk ≥ rk} ≥ 1− α (14a)

Φ−1(α)

∥

∥

∥

∥

Σ
1/2
∗

[

∗past
∗

]∥

∥

∥

∥

2

+ ȳk ≥ rk (14b)

where the ’*’ indicates that the norm is taken of the vector

formed by all the quadratic terms described in Eq. (12b) and

(13b). Hence, in a MIMO case where yk is the sum of two

independent outputs, the vector in the norm would simply

contain an element from each of the outputs. This is easily

realized by the property
√
a2 + b2 + c2 = ‖[a b c]‖2. The

constraint in Eq. (14b) has the form of a second order cone

and the solution to the optimization problem constrained by

Eq. (14b) can be computed using SOCP as in [18], [19].

In summary, uncertain model descriptions alone or in

combination with uncertain disturbances lead to second order

cone constraints, while an uncertain reference just adds a

margin to the boundary. These two cases can of course easily

be combined.

IV. SIMPLE POWER MANAGEMENT SCENARIO

The case study used in this paper includes two controllable

power generators and one power consumer. The power

consumer is a cold room for which we provide a simple

model. This case study is identical to the one presented in [1]

to illustrate the properties and potential of economic MPC

in managing the power production and consumption in a

distributed energy system. The novelty in this paper is the

inclusion of a realistic scenario with uncertainties in both

models and forecasts and the means to handle such as de-

scribed in the previous sections. We use the Economic MPC

implementation with probabilistic constraints formulated as

an SOCP to calculate the cost-optimal control in presence of

uncertainties with known probability distribution functions.

A. Controllable Power Generators

In [30] simple models for power generators are provided.

In this paper we adopt these models which are of the form:

φi =
∑

k∈T

c′iui,k (15a)

Yi(s) = Gi(s)Ui(s) Gi(s) =
1

(τis+ 1)3
(15b)

umin,i ≤ ui,k ≤ umax,i (15c)

∆umin,i ≤ ∆ui,k ≤ ∆umax,i (15d)

to model two conventional power generators where ui is

the power set-point for the i-th generator. (15a) represents

the costs of producing power from a given power generator.

Power generator 1 is cheap and slow, (c1, τ1, umin,1, umax,1,
∆umin,1, ∆umax,1) = (1, 20, 0, 15,−1, 1). Power generator

2 is expensive and fast, (c2, τ2, umin,2, umax,2, ∆umin,2,
∆umax,2) = (2, 10, 0, 15,−3, 3). The model in Eq. (15)

describes the closed-loop system with internal controllers and

is therefore quite simple without the lower level complexity

of the generators. The model has been validated against

experimental data at DONG Energy, Denmark.

B. Simple Cold Room

The energy balance for the cold room is

mcp
dTcr

dt
= Qload −Qe (16)

with

Qload = (UA)amb−cr(Tamb − Tcr) (17a)

Qe = (UA)cr−e(Tcr − Te) (17b)

Tcr is the temperature in the cold room which must be

kept within certain bounds, Tcr,min ≤ Tcr ≤ Tcr,max. Te

is the evaporation temperature of the refrigerant. It can be

1518



controlled by the compressor work and must satisfy Tcr ≥
Te. Tamb is the ambient temperature. UA is the heat transfer

coefficient. m and cp are the mass and the overall heat

capacity of the refrigerated goods, respectively. The energy

consumed by the refrigeration system is work performed

by the compressors: WC = ηQe. η is the coefficient of

performance. In this work η is assumed to be constant.

Consequently

WC(s) =
a− bs

τs+ 1
Te(s) +

αKd

τs+ 1
Tamb(s) (18a)

Tcr(s) =
Ku

τs+ 1
Te(s) +

Kd

τs+ 1
Tamb(s) (18b)

with Y3 = WC , Z3 = [Tcr;Tcr −Te], U3 = Te, D3 = Tamb.

The constraints are

Tcr,min ≤ Tcr ≤ Tcr,max (19a)

0 ≤ Tcr − Te ≤ ∞ (19b)

Te,min ≤ Te ≤ Te,max (19c)

Thus, the refrigeration system can be modeled in a form

compatible with the economic MPC for linear systems. The

model here is somewhat simplified, especially the assumption

for (18). However the resulting dynamics are well suited for

illustrating the conceptual case in this paper.

C. Supply and Demand

The production by the power generators, y1,k+y2,k, must

exceed the demand for power by the cooling house and the

other consumers

y1,k + y2,k ≥ y3,k + rk k ∈ T (20)

We model wind farms as instantaneously changing systems

and include the effect of their power production in the

exogenous net power demand signal, rk. This is seen in the

case study in Fig. 2.

D. Uncertainty

In our scenario the models of power plants and refrig-

eration systems are not perfectly known and an uncertain

FIR as in Eq. (3)-(5) is used for the system models. The

temperature surrounding the cold room (Tamb) is stochastic

as is the reference (r). The latter is caused by the predictions

of both non-controllable consumption and non-controllable

production being uncertain. We have already seen how the

price (c) can be assumed as deterministic without changing

the solution.

V. RESULTS

In [1] we have demonstrated the significant savings

gained by including controllable consumers in the setup.

Hence, we will only consider the improved ability to handle

uncertainties without unnecessary high costs or severe

violation of constraints.

Using Yalmip [31] we have simulated the scenario described

in the previous section. The constraints on the cold room

temperature and on balancing supply and demand are

formulated as probability constraints and implemented with

SOCP as described in section III. A simulation scenario

is provided in Fig. 2. From the figure it is noted how

the refrigeration system is utilized to balance the power

demand such that extra power is used when it is freely

available and less is used at other times. This is further

elaborated on in [1]. But what is more important for the

(a) Power productions / consumption. P.G. #1 and 2 show the power
productions from the two power plants (blue) and their power set-points
(red). C.R. #1 is power consumption in the cold room.

(b) ”Total Power” shows total power production (blue) versus the reference
consumption (with (black) and without (red) refrigeration). C.R. #1 shows
the temperature in the cold room Tcr and the control signal Te. (Tcr,min,
Tcr,max) and outdoor temperature, Tamb, are shown with dotted and solid
black respectively.

Fig. 2. Simulation of Power Management scenario. α = 0.5, Hi ∼ N(H̄i, 0.0055
2), rk ∼ N(r̄k, 0.7071

2), Tamb ∼ N(T̄amb, 1.7321
2). The shaded

bands show the 95% confidence interval from 10,000 random instances.
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work presented here are the confidence intervals shown

as shaded areas around each of the trajectories. The solid

lines are the expected outcome, while the shaded areas

are created by 10,000 simulations with random instances

of the noise descriptions. The 95% percentile was used

both in the SOCP formulation and for plotting the shaded

areas. It is easily seen how the amount of back-off from the

boundaries is just enough to account for the 95% confidence

interval of the uncertainty descriptions for the system. This

is particular clear in Fig. 2(b), where the total production is

above the total consumption, Tcr stays within the boundaries

specified and Te ≤ Tcr is satisfied. All with 95% probability.

Regarding the uncertainty of the predictions of outdoor

temperature and power demand in a closed-loop scenario, a

variance that increases over the prediction horizon could be

chosen such that the short-term predictions are more certain

than those at the end of the horizon. Furthermore the dis-

turbances could be measured at each time step, minimizing

the uncertainty in the vector of past disturbances to the level

related to doing the measurement.

VI. CONCLUSION

In this paper we have extended our analysis of economic

MPC for a Power Management scheme in which we included

a refrigeration system with thermal storage capabilities as

a controllable power consumer in order to minimize the

total cost. We have presented a novel formulation including

uncertainties from both system models and forecasts in the

framework of probabilistic constraints. Thereby our previous

economic MPC based on linear programming has evolved

into a stochastic economic MPC that can be implemented

as a convex SOCP. The concept was demonstrated in a con-

ceptual case as an efficient way to treat uncertainties in the

system. Therefore, the proposed economic MPC controller

can now be implemented in a realistic scenario with robust

performance guarantees.
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